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Abstract

Single amino acid variants (SAVs) are the most abundant form of known genetic variations associated with human disease.
Successful prediction of the functional impact of SAVs from sequences can thus lead to an improved understanding of the
underlying mechanisms of why a SAV may be associated with certain disease. In this work, we constructed a high-quality
structural dataset that contained 679 high-quality protein structures with 2,048 SAVs by collecting the human genetic
variant data from multiple resources and dividing them into two categories, i.e., disease-associated and neutral variants. We
built a two-stage random forest (RF) model, termed as FunSAV, to predict the functional effect of SAVs by combining
sequence, structure and residue-contact network features with other additional features that were not explored in previous
studies. Importantly, a two-step feature selection procedure was proposed to select the most important and informative
features that contribute to the prediction of disease association of SAVs. In cross-validation experiments on the benchmark
dataset, FunSAV achieved a good prediction performance with the area under the curve (AUC) of 0.882, which is
competitive with and in some cases better than other existing tools including SIFT, SNAP, Polyphen2, PANTHER,
nsSNPAnalyzer and PhD-SNP. The sourcecodes of FunSAV and the datasets can be downloaded at http://sunflower.kuicr.
kyoto-u.ac.jp/&sjn/FunSAV.
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Introduction

With the rapid progress of genomic profiling technologies such

as single nucleotide polymorphism allele genotyping arrays and

next-generation DNA sequencing, an unprecedented amount of

information about single amino acid variants (SAVs) has been

produced. According to the recent results of the 1000 Genomes

project [1], there are approximately 15 million SNPs, and

1 million short insertions and deletions, and 20,000 structural

variants in the human genome [1], which are still rapidly

increasing. It is estimated that there are 3,5 million SAVs in an

individual according to the recent sequencing of the whole human

genome [2,3,4,5].

SAVs, also known as non-synonymous SNPs (nsSNPs), are the

most abundant form of single nucleotide polymorphisms (SNPs)

that cause amino acid substitutions in the protein products [6].

Among various SAVs, some may cause deleterious diseases while

other amino acid substitutions are neutral which will not affect the

function of the protein. Previous studies on protein structures and

functions have suggested that some SAVs are responsible for

certain disease types, and it is reported that about 60% of

Mendelian diseases are caused by amino acid substitutions [7].

The information of SAVs can be used to trace the migration

patterns of ancient humans and the ancestry of modern humans.

Nonetheless, its most important application may be to interpret

the functional effect and impact of genomic variation, relating

complex interactions with phenotypes and translating these

discoveries into medical practices [8]. Therefore, discriminating

disease-associated (i.e. non-neutral) from neutral variants is of

great importance in the post-genomic era, which can help

understand the genotype/phenotype correlations and develop

treatment strategies for diseases. It is also important to identify

whether a SAV is neutral or non-neutral from the disease

diagnosis perspective.

In the past few decades, a variety of computational methods

have been developed to predict the functional impact of SAVs in a

protein [9,10,11,12,13,14,15,16,17]. These methods typically

employ approaches such as statistical rules or machine learning

algorithms. The input features used by these methods generally

include amino acid sequence, 3D structure, physicochemical

properties of amino acids, evolutionary information and complex

residue-contact network features. Most of these methods have
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been implemented as standalone software or webservers to provide

academic-free prediction of the functional impact of SAVs to the

research community. Most of these methods were developed based

on protein sequence analysis, such as SIFT [18], SNAP [15],

PANTHER [19] and PhD-SNP [20]. The consensus of those

studies is that sequence features are essential for making the

prediction, while 3D structural features could further improve the

prediction of disease-associated SAVs when structure information

is available.

In this study, we present a novel approach for predicting the

functional impact of SAVs based on a two-stage random forest

algorithm. This approach, termed as FunSAV (Functional effect

predictor of SAVs) (See Fig. 1 for an overview of the

methodology), combines a variety of sequence and structural

features as well as network properties and uses a two-step efficient

feature selection to remove the noisy and redundant features in

order to characterize the relative importance of each feature type.

The final two-stage FunSAV classifier takes as input the prediction

outputs from the first-stage classifier and scores from other

prediction tools. Extensive comparisons of FunSAV with six other

popular tools on the benchmark dataset and another independent

test dataset show that this two-stage predictor provides a

competitive performance with most of the tools, illustrating the

effectiveness and advantage of this new approach.

Materials and Methods

Datasets
We retrieved the disease-associated and neutral SAVs to

compile a structural benchmark dataset of human genetic

variants [21]. First, disease-associated variants were extracted

from the UniProt [22] human sequence variations (release

2010_11 as of 02 Nov 2010) where variants were divided into

three categories: disease, polymorphism or unclassified. Disease-

associated variants were further filtered by removing non-

Mendelian disease variants that have not been assigned any

MIM number from the OMIM database [23]. Neutral variants

were taken from the Ensembl human variation database [24]

(version 59_37d). In this study, we only extracted the verified

SAVs by the HapMap project [25] to construct a high-quality

benchmark dataset. Cd-hit [26] was then used to cluster protein

sequences and reduce sequence homology in the dataset at the

sequence identity (SI) level of 40%, in order to minimize the

dataset bias introduced by homologues. All the sequences in the

initial dataset were further mapped to the PDB database [27]

by BLAST search [28]. All the NMR structures and the

structures solved by X-Ray diffraction with resolutions lower

than 2.5 Å were excluded. Details of how to map the locations

of variants onto the corresponding PDB structure can be found

in previous work [21]. Next, ambiguous and conflicting

annotations of the disease-associated and neutral variant entries

were removed. Finally, we obtained a dataset with 679 protein

structures containing 1,056 disease-associated and 992 neutral

SAVs, with a roughly balanced ratio of 1:1. We randomly chose

865 disease-associated and 801 neural SAVs as the benchmark

dataset and the rest comprising of 191 disease-associated and

191 neutral SAVs as the independent dataset in order to

validate our method.

Feature Extraction
Sequence or sequence-derived features. We derived a

variety of different sequence features that have proved useful in

previous studies of the functional effect prediction of SAVs. These

include: (1) position-specific scoring matrices (PSSMs) generated

by PSI-BLAST [28]; (2) predicted secondary structure by

PSIPRED [29]; (3) predicted solvent accessibility by the SSpro

program from the SCRATCH package [30]; (4) predicted native

disorder by DISOPRED [31]; (5) Conservation score extracted

from the PSSM generated by PSI-BLAST; (6) PSIC score that

represents how likely it is for a particular amino acid to occupy a

specific position in protein sequence, calculated by PSIC [32]; (7)

Aggregation properties calculated by TANGO [33] were used to

describe the residue b-aggregation properties at mutation sites

[34]. Combination of these sequence-derived features has been

shown to be useful for predicting structural or functional

properties of proteins in our recent work [9] and that of others

[35,36,37,38].

Structure features. We used DSSP [39] to extract the

secondary structure annotations, including hydrogen bonds,

solvent-accessible surface area, Ca atom coordinates and backbone

torsion angles. The number of hydrogen bonds was calculated by

HBPLUS [40].

Conservation score. Evolutionary conservation is an impor-

tant concept in bioinformatics. Disease-related mutations are

frequently observed in evolutionarily conserved positions, as these

positions are essential for maintaining the structure or function of

the protein [18,41]. In contrast, neutral variants often appear in

positions that have the potential to be mutated during evolution

[41]. Therefore, the conservation score is a critical feature for

predicting the function impact of SAV.

The conservation score can be defined as:

Scorei~{
X20

j~1

pi,j log2 pi,j

where pi,j is the frequency of amino acid j at position i. These

parameters were extracted from the PSSM generated by PSI-

BLAST. A lower value of the conservation score indicates a higher

conservation at such position.

Coevolutionary features. Coevolutionary features have

been recently found useful for identifying important co-evolving

residues that are more likely to be disease associated upon

mutation [42]. We employed several algorithms and extracted

their respective coevolutionary scores as the candidate features.

Among them, MI (Mutual Information) is a quantity that measures

the mutual dependence between two random variables [43]. MIr

[44] is a refined method that normalizes the raw MI value using

the pair entropy. MIp [45] is another improved measure which

removes the background MI by subtracting APC (Average Product

Correction) from the original MI value. Kai is another method

using chi-squared statistical methods [46] to detect residue co-

evolution from sequence alignments.

Residue-contact network features. They were calculated

as follows: Two residues in a structure will be defined as in contact

if the distance between the centers of them is within 6.5 Å. Graph-

theoretic approaches from the perspective of residue-residue

contact networks is becoming a powerful tool to analyze and

predict the functional impact of SAVs in recent years [47]. In this

study, we calculated a number of distinctive residue-contact

network properties that describe the local environment of the

mutation residue in the residue-contact network, including degree,

closeness, status, hubscore, clustering coefficient, cyclic coefficient,

constraint, betweeness, eigenvector, cocitation, coreness and

eccentrality.

Solvent accessibility. Solvent accessibility has been shown

to be a powerful feature in predicting the disease association

[48,49]. Apart from the predicted solvent accessibility by SSpro
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from protein sequence, we also used the NACCESS program [50]

to calculate the absolute and relative solvent accessibilities of all

atoms, total side chain, main chain, non-polar side chain and all-

polar side chain, respectively.

Solvent exposure features. New solvent exposure features

such as Half-Sphere Exposure were used as candidate features,

which were calculated by the hsexpo program [51]. These include

the coordination number (CN), number of Ca atoms in the upper

Half-Sphere (HSEAU), number of Cb atoms in the upper Half-

Sphere (HSEBU), number of Ca atoms in the lower Half-Sphere

(HSEAD), number of Cb atoms in the lower Half-Sphere

(HSEBD), residue depth (RD) and atom depth (RDa).

Annotations from database. Annotations regarding the

functional sites of a protein can be found in the ‘‘FT’’ line in

UniProt [22]. We extracted nine different types of functional

annotations: ACT_SITE, BINDING, CA_BIND, DISULFID,

DNA_BIND, LIPID, METAL, NP_BIND and MOD_RES.

Prediction scores by other tools. These include: (i) SIFT

score, which was calculated by the SIFT program that uses

sequence homology to predict whether a substitution affects

protein function [10,18]; (ii) SNAP score: SNAP is a method that

predicts the functional effect of single amino acid substitutions

based on neural networks [15]; (iii) Polyphen2 score [52]: It is a

tool based on Naı̈ve Bayes and its output probability of being

variant damaging for a SAV was used as the input feature; (iv)

PANTHER score [19]: it uses Hidden Markov Models (HMMs) to

predict the effect of missense SNPs on protein function and can

output the probability at which a variant is deleterious; (v)

nsSNPAnalyzer [53], which is based on the RF algorithm and

outputs the predicted phenotypic class. We encoded the disease-

associated class as 1 and neutral as -1; (vi) PhD-SNP [20], which is

based on SVM [20] and outputs the predicted phenotypic class.

Similarly, we encoded the predicted class into our RF models.

Feature vector encoding. The extracted features are listed

in Table 1. We used a sliding window approach with the size of 15

residues to extract the relevant features and used them as the input

to build the RF models. In terms of feature nomenclature, each

residue was respectively named as V1, V2, …, V15 according to

its position in the local window, while the centered residue was

denoted as V8. The elements in the PSSM (with a total dimension

of 15620 = 300) were denoted as V1, V2, …, V300, respectively.

Table 2 lists the abbreviations of the 15 final selected features used

in this study.

Performance Evaluation
We used Sensitivity (SEN), Specificity (SPE), Precision (PRE),

Accuracy (ACC), the Matthew’s correlation coefficient (MCC) and

the area under the curve (AUC) to evaluate the predictive

performance of our method.

The Sensitivity (SN) is defined as:

SN~TP=(TPzFN)

The Specificity (SP) is defined as:

SP~TN=(TNzFP)

The Precision (PRE) is defined as:

PRE~TP=(TPzFP)

The overall Accuracy (ACC) is defined as:

ACC~(TPzTN)=(TPzTNzFPzFN)

The Matthew’s correlation coefficient (MCC) [54] is defined as:

MCC~
TP|TN{FP|FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFN)|(TPzFP)|(TNzFN)|(TNzFP)
p

where TP is the number of true positives, TN is the number of true

negatives, FP is the number of false positives and FN is the number

of false negatives, respectively.

More specifically, AUC is the area under the receiver operating

characteristic (ROC) curve, which is a plot of true positive rate

(TPR) against false positive rate (FPR). TPR is the ratio of the

number of correctly classified disease-associated SAVs to the total

number of disease-associated variants, while FPR is the ratio of the

number of correctly classified neutral SAVs to the total number of

neutral variants.

Feature Selection
We proposed a novel two-step feature selection procedure to

select the most informative features for predicting the functional

effect of SAVs. The first feature selection method is based on the

mean decrease Gini index (MDGI), which was calculated by the

RF package in R [55]. MDGI is the mean decrease of Gini index,

which is equal to the Gini coefficient multiplied by 100. The Gini

coefficient is a measure of inequality of a distribution and is

defined as a ratio of the areas on the Lorenz curve diagram [56].

MDGI represents the importance of individual vector element for

correctly classifying a SAV as being disease-associated or neutral.

The mean MDGI Z-Score of each vector element is defined by the

following equation:

MDGI Z{Score~(xi{�xx)=s

where xi is the mean MDGI of the i-th feature, �xx is the mean value

of all elements of the feature x and s is the standard deviation (SD),

respectively. In this study, the vector element with MDGI Z-Score

larger than 1.0 was selected as an optimal feature candidate (OFC)

determined by the MDGI Z-Score.

The second step is a stepwise feature selection by training and

evaluating the corresponding RF classifiers based on five-fold

cross-validation tests. We randomly divided our benchmark

dataset into five subsets in each validation step. Then at each

Figure 1. Overview of the FunSAV method for predicting the functional effect of SAVs. Features used by FunSAV are derived from the
amino acid sequence of the protein, 3D structure of the protein, as well as network properties which are calculated based on the representation of
the protein structure as a residue-residue contact network. A full list of the extracted features is given in Table 1. After feature selection,
distinguishable features between disease-associated and neutral SAVs are statistically analyzed and used as the input to construct RF models.
Prediction performance is evaluated by both 5-fold cross-validation and independent tests.
doi:10.1371/journal.pone.0043847.g001
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cross-validation step, four subsets were merged as the training set

to train the model, while the rest subset was singled out as the test

set to validate the built model. This procedure was repeated five

times such that each subset was used in the training and validated

in the testing. Then the above five-fold cross-validation procedure

was repeated 100 times. As a result, we calculated the average of

predicted scores of RF classifiers, and then carried out the

performance evaluation.

We performed the stepwise feature selection (also called

backward feature selection) by training the RF model with all

the initial OFC features in the first round. Then in the second

round, one feature would be removed from the initial feature set.

In this round, each feature would be removed once a time, and all

of the 65 combinations (each containing the rest 64 features) were

used to train the corresponding RF models whose performance

would be subsequently evaluated. If the resulting RF predictor

achieved a higher MCC, such feature would be removed and the

Table 1. Features used in this study, which are categorized into nine major types: sequence or sequence-derived, structure,
residue-contact network features, computed scores, annotations from database, solvent exposure features, coevolutionary
features, solvent accessibilities and conservation score.

Feature type Annotation

Sequence or sequence derived
features

Mutation residue and residue neighbor in the range of window size

Wild type residue and mutation type residue

PSSM (PSI-BLAST [28])

Mass weight change upon mutation

Aggregation properties (TANGO [33])

SCRATCH (SSpro) score [30]

PSIPRED score [29]

DISOPRED score [31]

PSIC score [32]

Structure features B-factor

a-helix or b-bend or coil (DSSP [39])

ACC (number of water molecules in contact with this residue *10) (DSSP [39])

Disulfide bond and residue distance in the 3D structure

KAPPA: virtual bond angle (bend angle) defined by the three Ca atoms of residues I22,I,I+2 (DSSP [39])

ALPHA: virtual torsion angle (dihedral angle) defined by the four Ca atoms of residues I21, I, I+1,I+2.(DSSP [39])

TCO: cosine of angle between C = O of residue I and C = O of residue I21. (DSSP [39])

X-CA Y-CA Z-CA: echo of Ca atom coordinates (DSSP [39])

Number of H-bonds (HBPLUS [40])

Metal-binding residue and the 3D distance

Hydrogen bond (DSSP)

Dihedral angle, Ca atom coordinates (DSSP [39])

Distance between SAVs to the origin of the coordinates

Network features degree, closeness, status, hubscore, clustering coefficient, cyclic coefficient, constraint, betweeness, eigenvector, cocitation,
coreness, eccentrality.

Computed scores SIFT score [18]

PolyPhen2 score [52]

SNAP score [15]

PANTHER [19]

nsSNPAnalyzer [53]

PhD-SNP [20]

Annotations from database Functional region annotation from UniProt [22]

Sequence distance between SAV and functional region

3D distance between SAV and functional region

Pfam family annotation from Pfam [73]

Solvent exposure features Solvent exposure feature calculated by biopython [51]

Coevolutionary features MI, MIp, MIr and Kai value

Solvent accessibilities Solvent accessibility calculated by NACCESS [50]

Conservation score Conservation score

doi:10.1371/journal.pone.0043847.t001
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corresponding combination was used in the next round. This

stepwise feature selection process continued until MCC no longer

increased. In this way, most important and informative features

can be systematically identified.

Random Forest
The random forest algorithm was originally developed by Leo

Breiman [57] and has been implemented as the Random Forest

package in R [55]. In this study, we designed and constructed the

first-stage and two-stage RF models of FunSAV. Specifically, the

first-stage RF classifier of FunSAV was trained based on the

optimal 15 features that were selected through a two-step feature

selection procedure. We further developed a two-stage predictor,

which was trained using RF by combining the outputs of the first-

stage classifier and the scores from six other tools SIFT, SNAP,

PolyPhen2, nsSNPAnalyzer, PANTHER and PhD-SNP.

Results and Discussion

Optimal Feature Candidate Selection
It is well known that efficient feature selection can significantly

improve the prediction performance of machine learning-based

classifiers. Furthermore, feature selection can be used to select the

most relevant and informative features that contribute to the

success of a classifier by reducing the initial high-dimensional

feature space to a lower but more compact one. In this work, we

selected 15 optimal features that were shown to better distinguish

disease-associated from neutral SAVs to train the first-stage

FunSAV classifier based on the constructed benchmark dataset.

These 15 final optimal features were selected by two consecutive

steps. In the first step, the mean MDGI Z-Scores of all the 1804

initial features (see Table S1 for a full list) were calculated by RF

and the relative importance of these features was sorted and

evaluated. As a result, 65 features with the mean MDGI Z-Score

.1.0 were selected as OFCs. The relative importance and ranking

of the optimal feature groups are given in Figure 2. Among them,

the feature with the highest mean MDGI Z-Score (.9.0) is the

solvent accessibility feature calculated by NACCESS. Solvent

exposure features and DSSP_ACC also have larger MDGI Z-

Scores, while network and co-evolution features have moderate

MDGI Z-Scores ranging from 1.0 to 4.0 (Fig. 2).

The second step is to further select more important features

stepwisely. Figure S1 shows the performance of RF-based

classifiers in terms of MCC by gradually incorporating stepwise

selected features. The mean values, standard deviations of the 15

finally selected features and the P-values indicating the statistical

significance between the disease-associated and neutral SAVs are

provided in Table S2. It can be seen that four types of residue-

contact network features and four types of solvent exposure

features were included in the final feature set. The majority of the

finally selected features are descriptors of the centered mutation

residue (denoted as V8), including the solvent accessibility

calculated by NACCESS, conservation score, SSpro (i.e. binary

classification of relative solvent accessibility as exposed or buried),

exposure_HSEBD and exposure_RD. Nevertheless, other features

that describe the neighboring residues of the mutation position

were also included in the final feature set. These include

network_status_V1, network_status_V7 and network_status_V9,

where V1, V7 and V9 denote neighboring residues at positions

surrounding the centered mutation residue V8. These indicate

that descriptors of neighboring residues of the variants also play an

important role in discriminating disease-associated from neutral

SAVs.

Our two-step feature selection is similar to that of Ebina et al.

[58]. The major difference is that they used SVM in the first step

and RF in the second step to build their classifiers, whereas we

used RF consistently in both steps. Another difference is that they

removed or added individual features by dividing OFC into two

subsets and examining the resulting performance of the classifiers,

while we performed a less time-consuming backforward feature

selection from the whole set of OFCs in the second step. Generally

speaking, this two-step feature selection has two attractive

advantages: (1) It provides a realistic way for selecting an optimal

subset of features with an acceptable computational burden [58]

compared with other computationally intensive feature selection

methods. The latter often rely on trial and error experiments to

Table 2. Abbreviations of the 15 final selected features in this study.

Feature name Residue Position Abbreviation

The non-polar side chain solvent accessibility
calculated by NACCESS

V8 NAC_npa_V8

Conservation score V8 Con_V8

SSpro V8 SSpro_V8

Mass weight change – MW_ch

PSSM V160 PSSM_V160

B-factor V7 B_factor_V7

Coevolutionanry feature MI V8 Co_MI_V8

Exposure feature HSEBD V8 HSEBD_V8

Exposure feature RD V8 RD_V8

Exposure feature HSEBU V9 HSEBU_V9

Exposure fature CN V9 CN_V9

Network feature Status V1 Status_V1

Network feature Closeness V7 Closeness _V7

Network feature Status V9 Status_V9

Network feature Status V7 Status_V7

doi:10.1371/journal.pone.0043847.t002
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select the most relevant features from a relatively small set of

arbitrarily selected features; (2) Although the stepwise feature

selection does not necessarily require an exhaustive search and

may overlook certain effective combinations of candidate features,

it manages to evaluate a sufficient number of feature combinations

and results in one of the best combinations.

We also assessed the prediction performance by combining

different feature groups that correspond to different ranges of

MDGI Z-scores. The resulting performances are given in Table

S3. Our stepwise feature selection was performed using a set of 65

features with Z-Score.1.0. After feature selection, the RF

classifier based on the final optimal feature set attained the

MCC value of 0.510 from the initial value of 0.458. In the

meanwhile, the number of selected features decreased from 65 to

15. The results indicate that stepwise feature selection is effective

at identifying more important and informative features. After the

removal of redundant and less informative features with feature

selection based on the Z-scores, we can efficiently improve the

performance of the RF-based classifiers.

Feature Importance and Contribution
In this section, we elaborated on the 15 finally selected optimal

features. We compared the MDGI Z-scores of these features and

performed the unpaired two-sample t-test (Table S2). The t-test is

a statistical test of whether the mean values of a given feature

between the two sources (i.e. disease-associated and neutral SAVs)

are equal and thus evaluates the potential of such feature in the

discrimination of the two sample sets. The results are illustrated in

Figure 3. It can be seen that for most of the selected features, the

mean values between the disease-associated and neutral SAVs are

significantly different, with the P-value ,,0.01. The only

exception is that the MW_change feature has a P-value of 0.0289.

Previous studies have found solvent accessibilities to be powerful

features for improving the performance [34]. In this study, we

confirm that the most important and contributive features are

related to solvent accessibility, including the solvent accessibility

feature calculated by NACCESS, DSSP_ACC, solvent exposure

features, and the SSpro score which is a descriptor of binary burial

status. We note that most features with higher Z-Scores belong to

the solvent accessibility feature group (Fig. 2). Among them, SSpro

score is the most important feature in terms of the contribution to

the performance improvement (See Table S4 and Fig. 4). If the

SSpro feature was removed from the final feature set with 15

optimal features, the MCC of the resulting classifier would

dramatically decrease from 0.510 to 0.474. Moreover, the classifier

that was trained using only the SSpro feature achieved an MCC of

0.337, which is the highest value among all the individual

classifiers trained based on singular optimal features (Table S4).

This observation is consistent with previous studies that suggest

disease-associated SAVs were more frequently observed in buried

sites [59]. We find that for disease-associated SAVs this feature is

significantly different from that of neutral SAVs (P-value,2.2e-

16). Although SSpro primarily predicts solvent accessibility from

sequences information, its prediction performance has also

benefited from the incorporation of high-quality structural

templates [30]. Therefore, the prediction of SSpro essentially

relies on an effective combination of both the complementary

sequence and structural information. This is particularly advan-

tageous and has an important implication for improving the

training quality of machine learning predictors to learn the

complex sequence-structure-function relationship of proteins.

Thus, inclusion of this feature in the classifier is useful for

improving the performance. Further analysis of solvent accessibil-

ity features calculated by NACCESS revealed a different tendency

of disease-associated and neutral SAVs. Neutral SAVs have higher

NACCESS scores on average than disease-associated SAVs

(Fig. 3). This means that disease-associated variants are more

likely to occur at positions with lower solvent accessibility

compared with neutral variants, that is, they tend to be relatively

deeply buried in the structure. We calculated the solvent

Figure 2. The relative importance and ranking of the optimal feature group, as evaluated by the mean MDGI Z-Score. The bar
represents the mean MDGI Z-Score of the corresponding feature group. NACCESS: solvent accessibilities calculated by NACCESS [50]; exposure:
solvent exposure features calculated by the biopython package [51]; network: residue-contact network features calculated by the JUNG library
available at http://jung.sourceforge.net/; PSSM: PSSM features calculated by PSI-BLAST [28]; co-evolution: coevolutionay features including MIr, MIp,
MI and Kai value; DSSP_ACC: the number of water molecules in contact with the residue of interest extracted from DSSP [39]; conserve_score:
conservation score defined in the Feature extraction Section; SSpro: solvent accessibility calculated by the SSpro program [30]; MW_change: Mass
weight change upon mutation; B_factor: the temperature factor extracted from the PDB file; DISOPRED: predicted native disorder by DISOPRED [31].
doi:10.1371/journal.pone.0043847.g002
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accessibilities of the total (all atoms), non-polar side chain, polar

side chain, total side chain and main chain using NACCESS [50].

After stepwise feature selection, only the solvent accessibility

feature of the non-polar side chain was retained in the final feature

set, which was calculated based on all non-oxygens and non-

nitrogens in the side chain. The solvent accessibility of all non-

oxygens and non-nitrogens in the side chain is more important

than other solvent accessibility features. A possible explanation is

that the atoms (the oxygen or nitrogen) in the side chain play an

important role in forming interactions with other residues of the

protein and the water molecules. These interactions among the

side-chain atoms, other residues and solvent molecules are often

critical for the functionality of the protein.

We noticed several solvent exposure features that were not

employed in previous studies but were found to be useful for the

prediction. These include four solvent exposure features selected in

the final optimal feature set, including HSEBD, RD, HSEBU and

CN. These features have distinctive distribution tendencies

between disease-associated and neutral SAVs, i.e. higher for

disease-associated SAVs and lower for neutral SAVs (Fig. 3). For

example, disease-associated SAVs have relatively higher RD

values, which means that they are more likely to appear in the

inner layer of the protein. CN is a feature that calculates the

number of Ca atoms within a sphere around the Ca atom of the

centered residue, which has been shown to be correlated with the

change in protein stability (measured by the free energy of

unfolding) [51]. HSEBU and HSEBD were calculated by dividing

Figure 3. Comparison of the mean values and standard deviations of the 15 optimal features of disease-associated and neutral
SAVs. ‘‘*’’ represents a P-value in the range of 0.01,0.05, ‘‘**’’ represents a P-value in the range of 2.2e-16,0.01, while ‘‘***’’ represents a P-
value,2.2e-16, respectively. See Table 2 for more details about feature abbreviations.
doi:10.1371/journal.pone.0043847.g003

Figure 4. Effect of the removal or inclusion of the 15 individual optimal features on the prediction performance of the first-stage
FunSAV classifier. Performance was evaluated using MCC. A: Performance of the trained classifier using the individual feature; B: MCC decrease of
the trained classifier by removal of the corresponding feature. See Table 2 for more details about feature abbreviations.
doi:10.1371/journal.pone.0043847.g004
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the sphere into two half spheres and subsequently counting the

numbers of neighboring residues in each half sphere. Although

these four features have an inter-correlation, they have a good

complementarity and thus collectively make a contribution to the

performance improvement.

Another important feature that was not found useful in previous

studies is co-evolution. It refers to a phenomenon induced by the

demand of maintaining the structure and/or function of a protein

during its evolution. We find that neutral SAVs have relatively

higher co-evolution values than disease-associated SAVs. This

suggests that neutral variants are more likely to be involved in co-

evolution, while disease-associated SAVs are more conserved in

the evolution process. The MCC of the classifier trained using the

co-evolution feature is 0.167, and the MCC decrease of the

resultant classifier after removal of this feature is 0.016 (Table S4),

which is a moderate decrease compared to the other 14 individual

classifiers. This shows that co-evolution is also is a relatively

important feature to distinguish disease-associated SAVs from

neutral SAVs.

The B-factor of protein crystal structures is a feature that tends

to be overlooked in the functional effect prediction of SAVs. In this

work, the B-factor was selected in the final subset of 15 features

from the initial 1804 features. It reflects the fluctuation of atoms

about their average positions and contains important information

about protein dynamics [60]. It can be seen from Figure 3 that the

B-factor of V7 position is significantly different between disease-

associated and neutral SAVs. The neutral SAVs have higher B-

factor values than the disease-associated SAVs, suggesting that the

V7 position of neutral SAVs fluctuate more than disease-

associated SAVs. There may be one possible reason to explain

this. Since proteins are composed of consecutive polypeptide

backbones and V7 position is very close to the V8 position where

the mutation actually takes place, the fluctuation of V7 position

also reflects the fluctuation of V8 position and hence was selected

as one of the important final features. However, the reason why

the position is V7 rather than V9 is not clear to us. It may be

because that the Ca atom of V8 residue is closer to V7 than V9

residue, as the lengths of the Ca-N and Ca-C bonds are 0.145 and

0.152 nm, respectively. Therefore, Ca is closer to V7 than V9, and

as a result the V7 position has a greater influence on the variant

than the V9 position. Our study also revealed the significance of

residue-contact network features for predicting the functional

effect of SAVs. A number of features have been previously used to

predict disease-associated SAVs, such as degree, clustering

coefficient, betweenness and closeness [47]. Here, we included

and examined more residue-contact network features. After

feature selection, four such features, i.e. Status.V1, Status.V7,

Status.V9 and Closeness.V7 were selected in the final feature set of

15 optimal features. They belong to two generic categories of

network properties: clossness and status. Both describe the

geodesic distances between the vertex of interest and all other

vertices within the residue-contact graph of a protein chain.

More specifically, closeness is a centrality measure of a vertex

which describes the status of a residue located in the entire

protein structure [47] where highly central residues have higher

closeness values [61]. Such residues interact with a large

number of other residues. Previous studies show that closeness

can be effectively used to identify functionally important

residues [61,62] and disease-associated SAVs can be identified

by a higher closeness measure [47]. Our results in this study are

in good agreement with these studies. Nevertheless, we find the

status to be an additional useful feature for the prediction,

which was not previously recognized. It represents the sum over

all geodesic distances between the residues of interest and all

other residues in the residue-contact graph. From Figure 3, we

can see that neighboring residues of disease-associated SAVs

including V1, V7 and V9 have on average lower status values

than neutral SAVs. The relationship between clossness and

status can be expressed as statusi~(N{1)=clossnessi, where N

is the number of edges within the residue-contact graph. As the

disease-associated SAVs can be identified by a higher closeness

measure, this means that they have lower status values than

neutral SAVs. From the definition of status (statusi~
XN

j~1,i=j

di,j ),

we can see that the status value is determined by two important

factors: the distance between the residue i and j, and the

number of residues (i.e. N) in the residue-contact graph. In

other words, the reason why neighboring residues of disease-

associated SAVs have lower status is because either (1) the

distance between the contacted residues is shorter than that of

neutral SAVs neighbors; (2) the neighboring residues of disease-

associated SAVs are located on the periphery of the structure

and accordingly have a smaller N and thus a smaller status.

Altogether, the closeness and status features of neighboring

residues of the mutant residues (such as V7, V9 and V1

positions) were selected as important residue-contact network

features in the final feature set. The reason why only the

network properties of neighboring residues rather than the

mutant residue itself were selected might be that these residue-

contact network features reflect the interactions between

different neighboring residues surrounding the centered residues

and they can provide sufficient information of the critical local

microenvironment of the mutant residue to improve the

performance of RF classifiers.

Prediction Performance of FunSAV Classifiers
In this study, we chose to use RF instead of SVM as the classifier

in that RF has been shown to outperform SVM in the prediction

of functional impact of SAVs [63,64] and RF classifiers do not

involve time-consuming parameter optimization process and is

thus much faster to train the classifiers than SVM. The 15 optimal

features were used to build the first-stage FunSAV classifier, which

produced a probability score of a SAV being disease associated or

not. This score was then combined with the prediction scores from

Table 3. Prediction performance of the first-stage and two-
stage FunSAV classifiers in comparison with six other
prediction tools.

Classifier Performance

MCC ACC SEN SPE PRE AUC

SNAP 0.426 0.680 0.932 0.441 0.612 0.740

SIFT 0.475 0.734 0.806 0.665 0.695 0.807

PolyPhen2 0.512 0.745 0.879 0.618 0.685 0.838

nsSNPAnalyzer 0.334 0.665 0.546 0.778 0.699 0.662

PANTHER 0.500 0.749 0.776 0.724 0.727 0.816

PhD-SNP 0.350 0.676 0.653 0.697 0.671 0.675

First-stage classifier 0.535 0.767 0.772 0.763 0.755 0.824

PolyPhen2+SIFT+SNAP+
nsSNPAnalyzer+PANTHER
+PhD-SNP

0.513 0.757 0.802 0.708 0.748 0.831

Two-stage classifier 0.598 0.799 0.797 0.801 0.792 0.882

doi:10.1371/journal.pone.0043847.t003
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six other popular tools SNAP, SIFT, PolyPhen2, nsSNPAnalyzer,

PANTHER and PhD-SNP, and used as the input to train the two-

stage classifier. As some variant data could not be predicted by

PANTHER or nsSNPanalyzer in the analysis, we performed 5-

fold cross-validation tests and evaluated the performance of each

of the classifiers using a subset of the benchmark dataset for which

PANTHER and nsSNPanalyzer generated valid predictions (See

Table 3 and Fig. 5A). The first-stage classifier achieved the highest

MCC of 0.535 compared with other individual classifiers and the

second highest AUC of 0.824, which is only lower than PolyPhen2

and is better than other five tools. Both PolyPhen2 and our

method used structural features. These results indicate that when

structure is available, incorporation of structural features are

critical for improving the performance of predicting functional

impacts of SAVs.

We built an integrated classifier by combining the prediction

scores of the six tools (PolyPhen2+SIFT+SNAP+nsSNPAnaly-

zer+PANTHER+PhD-SNP) and achieved an MCC of 0.540 and

an AUC of 0.852. Moreover, we incorporated the prediction

output of the first-stage FunSAV classifier with prediction scores

from SIFT, SNAP, PolyPhen2, nsSNPAnalyzer, PANTHER and

PhD-SNP to build a two-stage FunSAV classifier. As a result, the

prediction performance was significantly improved, with MCC

increased from 0.535 to 0.598, and AUC from 0.824 to 0.882,

respectively. Although the SNAP, SIFT and PolyPhen2 achieved

higher sensitivity (93.2, 80.6 and 87.9% for SNAP, SIFT and

PolyPhen2, respectively), they had lower specificity (44.1, 66.5 and

61.8%, respectively). In contrast, the first-stage FunSAV classifier

achieved a balanced sensitivity and specificity (77.2 and 76.3%,

respectively), while the two-stage FunSAV classifier achieved a

sensitivity of 79.7% and a specificity of 80.1%, respectively. We

also evaluated the prediction performances of the first-stage and

two-stage FunSAV classifiers based on another independent test

dataset. The results are given in Table S5 and Figure 5B. We built

the final FunSAV classifier by combining the first-stage classifier

with the scores of all six other tools SIFT, SNAP, PolyPhen2,

nsSNPAnalyzer, PANTHER and PhD-SNP. The prediction

performance of this new classifier is more robust compared to

other classifiers, and has outperformed the first-stage FunSAV

classifier and the other six individual tools on the independent test

dataset. As a result, AUC accordingly increased from 0.793 to

0.872, and MCC increased from 0.482 to 0.606, both of which are

the overall best performance.

Case Study
To further illustrate the effectiveness of FunSAV for identifying

disease-associated from neutral variants, we present a case study of

three proteins that contain both disease-associated and neutral

variants in this section. The first two proteins tested are not present

in our benchmark dataset for building the FunSAV classifiers.

FunSAV correctly identified the functional effect of all the variants

in the first two proteins. The third protein is provided as an

illustration of the false negatives generated by FunSAV.

The first example is the human ATP: cobalamin adenosyl-

transferase (hATR) [65]. This enzyme catalyzes the final step in

the conversion of vitamin B12 to the human cofactor

adensosylcobalamin. Mutations in hATR result in the metabolic

disorder, known as methylmalonic aciduria (MMA). The variant

M239K (dbSNP: rs9593) is a neutral substitution, while the

variants E193K and I96T result in methylmalonic aciduria

(MMA), an inborn error of metabolism due to the impaired

isomerization of L-methymalonyl-CoA to succinyl CoA during

the oxidation of propionate towards the TCA cycle [66]. From

Figure 6A, we can see that M239 is relatively exposed at the

surface of the protein, while E193K and I96T are relatively

buried in the structure. Table S6 also indicates that disease-

associated variants are located in buried area. The neutral

variant M239 has a fewer number of interacting residues, while

the disease-associated variants E193K and I96T have more

densely connected edges with other neighboring residues in

residue-contact network (Fig. 6E). Hence, mutations at these

positions tend to disrupt the local residue-contact network and

thus are more likely to cause disease.

Figure 5. The ROC curves of nine classifiers based on 5-fold cross-validation tests. Results are evaluated based on the benchmark dataset
(A) and independent test dataset (B).
doi:10.1371/journal.pone.0043847.g005
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The second example is the human plasma platelet-activating

factor (PAF) acetylhydrolase (PAF-AH) [67]. It reduces PAF levels

by functioning as a general anti-inflammatory scavenger and is

linked to anaphylactic shock, asthma, and allergic reactions. The

variants (V279F: dbSNP: rs16874954 and Q281R) will result in a

loss of plasma PAF-AH activity that accounts for 4% of the

Japanese population. The polymorphic site R92H is a neutral

variant, which upon mutation is more likely to exhibit phenotypic

differences through interactions with lipoproteins or other binding

partners [67]. Similar to the variants in the above example, the

Figure 6. Prediction examples of the functional effect of SAVs in two proteins by FunSAV. (A) and (B) the all-atom; (C) and (D) surface; (E)
and (F) network representations of proteins hATR (PDB ID: 2IDX, chain A) and PAF-AH (PDB ID: 3D59, chain A), respectively. Red color denotes disease-
associated variants while green color represents neutral variants. 3D structures were rendered using PyMol [71] and network graphs were drawn
using Cytoscape [72].
doi:10.1371/journal.pone.0043847.g006
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variant R92H is also solvent-exposed and located in the outer

layer of the structure (Fig. 6B), with fewer interactions with other

residues compared with the other two disease-associated variants

V279F and Q281R. The latter two variants are deeply buried in

the inner layer of the structure and accordingly form highly

connected residue-interacting networks. These case studies suggest

that FunSAV is an effective tool for identifying functional impacts

of SAVs.

The third example is the Noggin whose primary physiological

role is to antagonize the action of bone morphogenetic proteins

(BMP) [68]. The antagonist Noggin can bind to BMP and inhibit

BMP signaling by blocking the molecular interfaces of the binding

epitopes. The residue R204 of Noggin can form ion pairs with E48

of BMP. The variant R204L will cause tarsal/carpsal coalition

syndrome (TCC), because it disrupts the ion pair with E48 of

BMP. From Figure 7, it can be seen that the variant R204L was

located at the surface of Noggin, and the values of some important

features selected in the final feature set are more close to the mean

of neutral SAVs (listed in Table S2) than that of disease-associated

SAVs, for example, the exposure features (See Table S6 for more

detail). In such cases, it would be more difficult for FunSAV to

correctly predict its functional effect, while other software such as

Figure 7. Prediction example of the false negative of the functional effect of SAVs by FunSAV for the Noggin protein. (A) The all-
atom; (B) surface; (C) network representations of the Noggin protein. Red color denotes the disease-associated variant. 3D structures were rendered
using PyMol [71] and network graphs were drawn using Cytoscape [72].
doi:10.1371/journal.pone.0043847.g007
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SIFT, SNAP, PolyPhen2, nsSNPAnalyzer, PANTHER and PhD-

SNP could correctly predict the functional impact of this variant.

Therefore, inclusion of more relevant features that describe the

interactions of the protein of interest with other interaction

partners may prove to be an effective way to further improve the

performance of FunSAV.

Conclusions
We developed FunSAV, a new bioinformatics tool based on the

random forest algorithm to predict the functional effect of SAVs.

Extensive 5-fold cross-validation and independent tests demonstrate

that FunSAV has achieved a better performance compared with six

other competitive tools. The performance improvement of FunSAV

can be attributed to the combination of four critical factors: (i) use of

high-quality balanced structural dataset; (ii) classifier trained based

on a large feature set with a variety of important and complementary

features, including sequence, structure, network and other types of

features thatdescribethe localenvironmentsproximal to thecentered

variant and neighboring residues; (iii) efficient feature selection to

remove noisy and redundant features to prevent overfitting and (iv)

training of robust two-stage RF classifiers in combination with scores

by other tools. We show that it is especially useful to build better

classifiers with improved performance through efficient feature

selection from a large initial set of various features, and integration

with scores by other tools. To make an accurate prediction, FunSAV

requires the 3D structure of the protein where SAVs were located,

whichmaylimit itsbroaderapplication.However,withtheincreasing

availability of target structures solved by structural genomics

initiatives, genome-wide protein 3D modeling projects [69] and

predicted 3D structures [70], it is expected that FunSAV can be used

asapowerful tool toprioritize thedisease-associatedvariantsandhelp

towards the functional annotation of these targets.
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