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Abstract

Medial entorhinal grid cells and hippocampal place cells provide neural correlates of spatial representation in the brain. A
place cell typically fires whenever an animal is present in one or more spatial regions, or places, of an environment. A grid
cell typically fires in multiple spatial regions that form a regular hexagonal grid structure extending throughout the
environment. Different grid and place cells prefer spatially offset regions, with their firing fields increasing in size along the
dorsoventral axes of the medial entorhinal cortex and hippocampus. The spacing between neighboring fields for a grid cell
also increases along the dorsoventral axis. This article presents a neural model whose spiking neurons operate in a hierarchy
of self-organizing maps, each obeying the same laws. This spiking GridPlaceMap model simulates how grid cells and place
cells may develop. It responds to realistic rat navigational trajectories by learning grid cells with hexagonal grid firing fields
of multiple spatial scales and place cells with one or more firing fields that match neurophysiological data about these cells
and their development in juvenile rats. The place cells represent much larger spaces than the grid cells, which enable them
to support navigational behaviors. Both self-organizing maps amplify and learn to categorize the most frequent and
energetic co-occurrences of their inputs. The current results build upon a previous rate-based model of grid and place cell
learning, and thus illustrate a general method for converting rate-based adaptive neural models, without the loss of any of
their analog properties, into models whose cells obey spiking dynamics. New properties of the spiking GridPlaceMap model
include the appearance of theta band modulation. The spiking model also opens a path for implementation in brain-
emulating nanochips comprised of networks of noisy spiking neurons with multiple-level adaptive weights for controlling
autonomous adaptive robots capable of spatial navigation.
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Introduction

How our brains acquire stable cognitive maps of the spatial

environments that we explore is not only an outstanding scientific

question, but also one with immense potential for technological

applications. For example, this knowledge can be applied in

designing autonomous agents that are capable of spatial cognition

and navigation in a GPS signal-impoverished environment

without the need for human teleoperation.

Lesion and pharmacological studies have revealed that hippo-

campus (HC) and medial entorhinal cortex (MEC) are critical

brain areas for spatial learning, memory, and behavior [1–3].

Place cells in HC fire whenever the rat is positioned in a specific

localized region, or ‘‘place’’, of an environment [4]. Place cells

have also been observed to exhibit multiple firing fields in large

spaces [5–7]. Different place cells prefer different regions, and the

place cell ensemble code enables the animal to localize itself in an

environment. Remarkably, grid cells in superficial layers of MEC

fire in multiple places that may form a regular hexagonal grid

across the navigable environment [8]. It should be noted that

although place cells can have multiple fields in a large space, they

do not exhibit any noticeable spatial periodicity in their responses

[5,7].

Since the time of the proposal of [9], research on place cells has

disclosed that they receive two kinds of inputs: one conveying

information about the sensory context experienced from a given

place, and the other from a navigational, or path integration,

system, which tracks relative position in the world by integrating

self-movement angular and linear velocity estimates for instanta-

neous rotation and translation, respectively; see below. An

important open problem is to explain how sensory context and

path integration information are combined in the control of

navigation.

Sensory context includes properties of the following kind: [10]

demonstrated that place cells active in a walled enclosure show
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selectivity to the distances of the preferred place from the wall in

various directions. [11] modeled the learning of place fields for

cells receiving adaptive inputs from hypothetical boundary vector

cells [12], which fire preferentially to the presence of a boundary

(e.g., wall, sheer drop) at a particular distance in a particular

world-centered direction. [13] reported that about 24% of

subicular cells have properties similar to those of predicted

boundary vector cells, even though most of these cells had tuning

to only shorter distances.

The primary determinants of grid cell firing are, however, path

integration-based inputs [14]. Indeed, the environmental signals

sensed at each of the various hexagonally-distributed spatial firing

positions of a single grid cell are different. Being one synapse

upstream of hippocampal CA1 and CA3 place cells, the ensemble

of entorhinal grid cells may represent the main processed output of

the path integration system. The spacing between neighboring

fields and the field sizes of grid cells increase, on average, from the

dorsal to the ventral end of the MEC [15–17]. Moreover, the

spatial fields of grid cells recorded from a given dorsovental

location in rat MEC exhibit different phases; i.e., they are offset

from each other [8]. These properties led to the suggestion that a

place cell with spatial selectivity for a given position can be derived

by selectively combining grid cells with multiple spatial phases and

scales that are co-active at that position, in such a way that the

grid-to-place transformation allows for the expansion of the scale

of spatial representation in the brain [14,18]. In other words, the

maximal size of the environment in which a place cell exhibits only

a single firing field can be much larger than the individual spatial

scales of grid cells that are combined to fire the place cell. Some

self-organizing implementations of this concept have been

proposed in which place fields in one-dimensional and two-

dimensional spaces are learned based on inputs from hard-wired

grid cells of multiple spatial scales and phases [19–22].

Along similar lines, [23] proposed the GRIDSmap model to

show that grid cells can themselves be self-organized as spatial

categories in response to inputs from hypothesized stripe cells

whose function is to integrate linear velocity inputs. Just as head

direction (HD) cells [24,25] have been conceptualized to integrate

angular head velocity signals using a ring attractor circuit (e.g.,

[26–28]), stripe cells were proposed to employ the same neural

design for linear velocity path integration. HD cells and stripe cells

are arranged in a ring within these circuits, and are activated as

the activity bump that represents integrated angular or linear

velocity signals passes over their positions in the ring; hence the

name ‘‘ring attractor’’ for this type of model. While only one ring

attractor is sufficient to model HD cells, several stripe cell ring

attractors are needed for integrating linear velocity along different

directions (i.e., not just forward and backward) and over different

finite spacings. The firing of stripe cells can thus be characterized

by four parameters; namely, stripe spacing, stripe field width,

spatial phase, and preferred direction. Stripe cells are so named

because their spatial firing patterns resemble parallel stripes that

cover the entire environment. The rate at which the activity bump

of a stripe cell ring attractor completes one revolution in response

to translational movement with a component along its preferred

direction is inversely proportional to the spacing of the constituent

stripe cells.

Why do grid cells learn to fire at hexagonally-located positions

as an animal navigates in an open field? [23] and [29] showed,

using simple trigonometry-based analysis, that self-organizing

entorhinal map cells are more likely to learn hexagonal grid fields

because, among all possible input combinations of stripe cells with

the same spacing, the ones that are most frequently and

energetically co-activated are sets consisting of three co-active

stripe cells whose preferred directions differ from each other by

60u, and these preferred stripe cell sets are activated at positions

that form a regular hexagonal grid across two-dimensional space.

The Discussion section reviews how hexagonal grid structures

can be learned in the brain even when stripe cells of multiple

spacings converge initially on entorhinal cells [30]. The predicted

existence of stripe cells has recently received experimental support

from a report of cells with such spatial firing properties in dorsal

parasubiculum [31], which projects directly to layer II of medial

entorhinal cortex [32,33].

Most computational models focused on learning of either

hippocampal place cells [19–22] or entorhinal grid cells [23]. [29]

were the first to model how both grid and place cells, despite the

different appearances of their receptive fields, can emerge during

development using the same network and synaptic laws. In

particular, they presented the unified GridPlaceMap model to

demonstrate that a hierarchy of self-organizing maps (SOMs),

each obeying the same laws, can concurrently learn characteristic

grid fields and place fields at its first and second stages,

respectively, in response to inputs from stripe cells. This occurs

as a natural result of how self-organizing map cells at either stage

gradually develop selectivities, or categories, for the most frequent

and energetic coactivation patterns occurring in their respective

input streams. The GridPlaceMap model is also able to

quantitatively simulate neurophysiological data from rat pups

regarding the development of grid and place cells during the third

and fourth weeks after birth (P15-P28) when they begin to explore

their environments for the first time [34,35]. Further, with regard

to grid cell learning, GridPlaceMap goes beyond the GRIDSmap

model by refining the explanation for the self-organized

emergence of hexagonal grid fields; and identifying minimal and

necessary mechanisms to learn grid fields with a higher hexagonal

gridness quality, in a larger population of map cells, and in

response to a greater variation in stripe cell parameters. The

assumption of developed, or perhaps hard-wired, stripe cells to

drive spatial learning in the entorhinal-hippocampal system is

consistent with the existence of adultlike HD cells in the

parahippocampal regions of juvenile rats already by P14 [34,35],

when spatial exploration first begins.

The original GridPlaceMap model uses neurons that interact

using rate coding; that is, they interact via signals based on spiking

frequency, rather than in terms of their individual spike trains. The

goals of the current model are threefold; namely, to test whether

the insights gained from the rate-based GridPlaceMap model can

be applied and extended to simulating and explaining the

development of spiking grid and place cells, as an instantiation

of a general method for converting rate-based adaptive neural

models, without the loss of any of their analog properties, into

models whose cells obey spiking dynamics; to develop a neural

system that makes it possible to address, for the first time, known

temporal coding properties of hippocampal place cells and medial

entorhinal layer II grid cells, such as theta band modulation

[34,35], as emergent properties of network interactions that

support grid and place cell learning; and to contribute towards

building a spiking implementation, in low-power high-density

neuromorphic hardware, of an architecture for spatial navigation,

goal-oriented search, and cognitive planning in future biologically-

inspired autonomous mobile robots.

Additional extensions of the GridPlaceMap and sGridPlaceMap

models will be needed to achieve a general-purpose neural

architecture for spatial navigation. It has, for example, been

proposed how top-down attentive matching processes from

hippocampal to entorhinal cortex may facilitate fast learning and

dynamic self-stabilization of learned spatial memories, provide a

Learning of Spiking Grid and Place Cells
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pathway whereby environmental cues may modulate properties of

grid and place cells that arise through path integration, and may

help to explain a wide range of additional data about modular grid

orientations, grid realignment, place remapping, and gamma and

beta oscillations (e.g., [29,36]).

Methods

The spiking GridPlaceMap model, called sGridPlaceMap (see

Figure 1), employs leaky integrate-and-fire neurons [37] whose

membrane potential dynamics are controlled by synaptic currents

mediated by NMDA and GABAA receptors, and whose synaptic

plasticity is governed by a spike timing-dependent variant of the

competitive instar learning law [38,39]. This is the first application

of spike-triggered competitive instar learning. Analog activity

dependence of the learned adaptive weights is realized by

temporally leaky trace variables that are reset to their full value

of one by spiking in the corresponding pre-synaptic neurons. Self-

normalized weights are learned due to competition among

synaptic sites as per the competitive instar learning law, which is

experimentally supported by data on the competition among

developing axons abutting a target neuron for limited target-

derived neurotrophic factor support in order to survive [40–42],

and the conservation of total synaptic weight [43].

Since the focus of the present study is to show how spiking

dynamics can drive learning of grid and place cell receptive fields,

with an eye towards implementation in neuromorphic hardware,

rather than fidelity to all biophysical subtleties, each neuron is

represented by a single compartment, which lumps together the

soma and its dendritic elements. In addition, voltage-gated fast

Na+ channels and delayed rectifier K+ channels that underlie the

generation of stereotypical spike waveforms in membrane poten-

tial dynamics, synaptic transmission delays, axonal conduction

latencies, and refractory periods are not considered. GABAA-gated

channel conductances are approximated by single exponentially

decaying traces because their rise times are typically negligible

(e.g., [44]). If a pre-synaptic spike arrives at the synaptic cleft

before the inhibitory ion channel closes, then its conductance is,

nonetheless, reset to its fully open state (i.e., maximal value).

NMDA-gated channel conductances are modeled using two

multiplicative terms, one that incorporates sensitivity to postsyn-

aptic membrane depolarization and the other that accounts for

glutamate binding kinetics. AMPA-gated channels, which regulate

the fast components of excitatory postsynaptic potentials (EPSPs),

are not explicitly included because there are no clear data on the

NMDA/AMPA receptor density ratios for entorhinal stellate cells

and hippocampal pyramidal cells before postnatal development of

the spatial representation maps begins. NMDA receptors are

included because they are widely accepted to be relatively more

Figure 1. sGridPlaceMap model diagram. sGridPlaceMap demonstrates the hierarchical self-organization of spiking grid cells of multiple spatial
scales and of spiking place cells in response to path integration-based inputs. Model simulations were conducted with 100 hippocampal map cells,
three populations comprising 100 map cells each at different locations along the dorsoventral axis of medial entorhinal cortex, and stripe cells with
three spacings, 18 direction preferences, and five spatial phases. [Figure reprinted with permission from [29].].
doi:10.1371/journal.pone.0060599.g001
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indispensable to long-term potentiation in general (e.g., [45,46])

and to spatial learning and memory in particular (e.g., [47]).

Further, the slow dynamics of NMDA receptor-mediated EPSPs

allow greater temporal summation of spikes from input neurons

that are not precisely coincident.

Our results suggest that this granularity of neuronal modeling,

which is at a finer level compared to GridPlaceMap simulations, is

sufficient for the purposes of studying the development of

functional spiking grid and place cells, and also minimal enough

for very large-scale incorporation in neuromorphic hardware.

MATLAB code to implement the model is available at the

following link: https://senselab.med.yale.edu/modeldb/

ShowModel.asp?model = 148035.

sGridPlaceMap model description
Stripe cells. As noted above, stripe cells for linear path

integration and head direction cells for angular path integration

are both proposed to be realized by ring attractor circuits. Several

authors have earlier proposed that head direction cells may be

modeled as ring attractors in which angular head velocity signals

are integrated through time into displacements of an activity bump

along the ring [26–28]. In like manner, the GRIDSmap,

GridPlaceMap, and spiking GridPlaceMap models all assume

that linear velocity along different prescribed directions are

integrated in different ring attractors into displacements of activity

bumps along the corresponding rings. Stripe cells are the

individual cells within each such ring attractor circuit and are

thus activated at different spatial phases as the activity bump

moves across their ring locations. They may be activated

periodically as the activity bump moves around the ring attractor

more than once in response to the navigational movements of the

animal. The outputs of head direction cells modulate the linear

velocity signal for driving the various directionally-selective stripe

cell ring attractor circuits.

The stripe cell ring attractors are modeled algorithmically, for

simplicity. They generate probabilistically determined spike trains

to the self-organizing map hierarchy of spiking entorhinal and

hippocampal cells in the following way.

Suppose that at time t the animal is heading along allocentric

direction Q tð Þ with linear velocity v(t). Then the velocity vd tð Þ
along direction d is:

vd tð Þ~ cos d{w tð Þð Þv tð Þ: ð1Þ

The displacement Dd tð Þ that is traveled along direction d with

respect to the initial position is calculated by integrating the

corresponding velocity:

Dd tð Þ~
ðt
0

vd tð Þdt: ð2Þ

This directional displacement variable is converted into

activities of various stripe cells that prefer direction d . In

particular, the firing rate Sdps of the stripe cell with phase p along

a ring attractor corresponding to direction dand spacing s is

maximal at periodic positions nszp along its preferred direction,

for all integer values of n. In other words, Sdps will be maximal

whenever (Dd modulo s) = p. Defining the spatial phase difference

vdps between Dd and p with respect to the orbit of the activity

bump for the corresponding ring attractor by:

vdps tð Þ~ Dd tð Þ{pð Þ modulo s, ð3Þ

the firing rate Sdps of the stripe cell is then modeled by a Gaussian

tuning function:

Sdps tð Þ~As
: exp {

min vdps tð Þ,s{vdps tð Þ
� �� �2

2ss
2

 !
, ð4Þ

where As is the peak firing rate (in Hz) and ss is the standard

deviation describing the width of each of its individual stripe fields

along preferred direction d .

All directional displacement variables Dd are initialized to 0 at

the start of each learning trial. The navigated trajectory hereby

determines the firing rates of all stripe cells via Equations 1–4,

which in turn control the generation of their non-homogenous

Poisson spike trains using the method of infinitesimal increments.

Briefly, a cell with an instantaneous firing rate of l fires a spike

within an infinitesimal duration (Dt) if p spikeð Þ~ e{lDt lDtð Þ1
1! &lDt

is greater than a random number sampled from a uniform

distribution between 0 and 1.

The remainder of the model description describes the SOM

equations for the development of entorhinal grid cells (Equations

5–11) and hippocampal place cells (Equations 12–18):

Medial entorhinal cortex (MEC) map cells. The mem-

brane potential V
g
js of the jth MEC map cell of scale s is defined by

a membrane equation that obeys shunting integrate-and-fire

dynamics within a recurrent competitive network:

Cm

dV
g
js

dt
~gLEAK ELEAK{V

g
js

� �
z

X
dp

gNMDAB V
g
js

� �
xs

dpsw
g
dpsj ENMDA{V

g
js

� �
z

X
J=j

gGABAx
g
Js EGABA{V

g
js

� �
,

ð5Þ

where Cm is membrane capacitance; gLEAK is the constant

conductance of the leak Cl2 channel; ELEAK is the reversal

potential of the leak Cl2 channel; gNMDA is the maximal

conductance of each excitatory NMDA receptor-mediated chan-

nel; ENMDA is the corresponding reversal potential; gGABA is the

maximal conductance of each inhibitory, GABAA receptor-

mediated channel; EGABA is the corresponding reversal potential;

B Vð Þ~ 3:708

1ze{0:0174V defines the voltage-dependent removal of the

Mg2+ block in the NMDA channel [48]; xs
dps is the NMDA

channel gating variable that is controlled by the spiking of the

stripe cell that codes direction d , phase p, and scale s; w
g
dpsj is the

synaptic weight of the projection from this stripe cell to the jth

MEC map cell of scale s; and x
g
Js is the GABAA channel

conductance gate, modeled as a single exponential wave, that is

opened by the spiking of the Jth MEC map cell of scale s in the off-

surround. The dynamics of the NMDA channel gating variable

xs
dps obey a mass action law [49]:

dxs
dps

dt
~{

xs
dps

tNMDA
decay

za 1{xs
dps

� �
as

dps, ð6Þ

where the secondary gating variable as
dps obeys:
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das
dps

dt
~{

as
dps

tNMDA
rise

, and as
dps?1 whenever thestripe cell that

codes direction phase and scale s spikes:

ð7Þ

The secondary gates as
dps may be interpreted as AMPA

channels, which help to kick start the activation of NMDA

channels. Consistent with this view, the value of the time constant

tNMDA
rise is relatively short similar to the typically reported time

constants of AMPA channels. All gates are initialized to zero, and

all membrane potentials are initialized to Vrest at the start of each

learning trial. Whenever the membrane potential V
g
js reaches the

spiking threshold Vth, it is reset to Vreset, and the map cell triggers

an output spike. The dynamics of the GABAA channel conduc-

tance gate x
g
Js obey:

dx
g
Js

dt
~{

x
g
Js

tGABA
, and x

g
js?1 whenever the

Jth MEC map cell of scale s spikes,

ð8Þ

The adaptive weights, w
g
dpsj , of the synaptic connections from

stripe cells to MEC cells are modified using a spike timing-

dependent variant of the competitive instar learning law, as

follows:

dw
g
dpsj

dt
~lwy

g
js ys

dps 1{w
g
dpsj

� �
{w

g
dpsj

X
DP=dp

ys
DPs

" #
, ð9Þ

where lw scales the rate of learning; y
g
js is a learning gate that is

opened transiently by the spiking of the post-synaptic map cell V
g
js;

and ys
dps is an exponentially decaying trace variable that tracks the

spiking activity of the stripe cell that codes direction d , phase p,

and scale s. The learning gate y
g
js and the trace variable ys

dps may

be interpreted as a transient [Ca2+] increase in dendritic spines

that is caused by a backpropagating action potential (bAP) via

voltage-dependent Ca2+ channels, and an EPSP mediated by

NMDA receptors, respectively [50]. Their dynamics obey:

dy
g
js

dt
~{

y
g
js

t
, and y

g
js?whenever the 1 jth

MEC map cell of scale s spikes:

ð10Þ

dys
dps

dt
~{

ys
dps

t
, and ys

dps?1 whenever the stripe cell

that codes direction d, phase p, and scale s spikes:

ð11Þ

These variables are initialized to zero at the start of each trial.

The weights are only initialized once, at the start of the first trial,

by sampling from a uniform distribution between 0 and 0.1. The

learning law in Equation 9 ensures that only a map cell that has

recently spiked can trigger learning within its afferent synaptic

weights; that is, learning can only occur when the gating signal y
g
js

is positive. During this learning episode, each adaptive weight w
g
dpsj

has a maximum value of 1 towards which its pre-synaptic input

trace ys
dps drives it, while all the other input traces ys

DPs together

compete against it as they attempt to augment their own weights.

This cooperative-competitive process has the effect of normalizing

the learned weights. In other words, the weights approach the

ratio of the time-averaged inputs converging on the cell while the

learning gate is open.

Hippocampal cortex (HC) maps cells. The membrane

potential V
p
k of the kth HC map cell is also governed by shunting

integrate-and-fire dynamics within a recurrent competitive

network:

Cm

dV
p
k

dt
~gLEAK ELEAK{V

p
k

� �
zX

js

gNMDAB V
p
k

� �
x

g
jsw

p
jsk ENMDA{V

p
k

� �
z

X
K=k

gGABAx
p
K EGABA{V

p
k

� �
,

ð12Þ

where the parameters are the same as in Equation 5, x
g
js is the

gating variable that is controlled by the spiking of the jth MEC

map cell of scale s; w
p
jsk is the synaptic weight of the projection

from this MEC map cell to the kth HC map cell; and x
p
K is the

GABAA channel conductance gate that is opened by the spiking of

the Kth HC map cell in the off surround. As in Equation 5, the

dynamics of the NMDA channel gating variable x
g
js obey a mass

action law [49]:

dx
g
js

dt
~{

x
g
js

tNMDA
decay

za 1{x
g
js

� �
a

g
js, ð13Þ

where the secondary gating variable a
g
js obeys:

da
g
js

dt
~{

a
g
js

tNMDA
rise

, and a
g
js?1 whenever the jth

MEC map cell of scale s spikes:

ð14Þ

For this stage too, all gates are initialized to zero, and all

membrane potentials are initialized to Vrest at the start of each

trial. The dynamics of the GABAA channel conductance gate x
p
K

obey:

dx
p
K

dt
~{

x
p
K

tGABA
, and x

p
k?1 whenever the kth

HC map cell spikes:

ð15Þ

The adaptive weights, w
p
jsk, of the synaptic connections from

MEC cells to HC cells are also modified using the spike timing-

dependent competitive instar learning law, as follows:

dw
p
jsk

dt
~lwy

p
k y

g
js 1{w

p
jsk

� �
{w

p
jsk

X
JS=js

y
g
JS

" #
, ð16Þ

where y
p
k is a learning gate that is opened transiently by the

spiking of the kth HC map cell; and y
g
js is an exponentially

decaying trace variable that tracks the spiking activity of the jth

Learning of Spiking Grid and Place Cells
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MEC map cell of scale s. As in Equation 9, the dynamics of the

learning gate y
p
k and trace variable y

g
js obey:

dy
p
k

dt
~{

y
p
k

t
, and y

p
k?1 whenever the kth

HC map cell spikes:

ð17Þ

dy
g
js

dt
~{

y
g
js

t
, and y

g
js?1 whenever the jth

MEC map cell of scale s spikes:

ð18Þ

These variables are also initialized to zero at the start of each

trial. The pre-learning weights are sampled from a uniform

distribution between 0 and 0.03. The initial weights of projections

from stripe cells to MEC cells have a higher individual mean to

compensate for the relatively lower number of input cells; see

below.

Simulation settings
The parameter values used in the simulations were Cm~

1mF
�

cm2; gLEAK~0:0005mS
�

cm2; ELEAK~{65mV ; gNMDA~

0:025mS
�

cm2; ENMDA~0mV ; gGABA~0:0125mS
�

cm2;

EGABA~{70mV ; tNMDA
rise ~5ms; tNMDA

decay ~50ms; a~1000;

tGABA~10ms; t~50ms; Vrest~{65mV ; Vth~{50mV ;

Vreset~{60mV ; and lw~0:001. Note that the values for most

of the parameters are the ones that are typically used in

biophysically realistic simulations; namely, Cm, ELEAK , ENMDA,

EGABA, tNMDA
rise , tNMDA

decay ; a~1000, tGABA, Vrest, Vth, and Vreset.

The differential equations, governing membrane potential and

synaptic weight dynamics, were numerically integrated using

Euler’s forward method with a fixed time step Dt~2ms. Input

stripe cells were assumed with three spacings (s1~20 cm,

s2~35 cm, and s3~50 cm), 18 direction preferences (d :290u to

80u in steps of 10u), and five spatial phases (p = [0, s=5, 2s=5, 3s=5,

4s=5] for the stripe spacing s) per direction. The values for the

stripe spacings were chosen to match the observed constant ratio

(1:,1.7:,2.5) of the smallest three grid spacings across rats [51].

The peak firing rate of stripe cells was assumed to be inversely

proportional to stripe spacing, similar to how the peak rate of grid

cells decreases with spatial scale [16]. In particular, the values used

were A1~50 Hz, A2~28:57 Hz, and A3~20 Hz. Stripe field

width varied in proportion to stripe spacing, with the standard

deviation ss of each stripe field along its preferred direction set to

7% of the stripe spacing.

The model was run with 100 HC map cells receiving adaptive

inputs from three distinct populations of 100 MEC map cells,

each of which was driven by adaptive inputs from stripe cells of

one of three spacings. Stripe cells were activated in response to

linear velocity estimates derived from realistic rat trajectories of

,10 min in a 100 cm6100 cm environment (primary data:

[15]). 30 learning trials were employed, with each trial

comprising one run of the animat across the environment. A

novel trajectory was created for each trial by rotating the

original rat trajectory by a random angle about the midpoint. In

order to ensure that such derived trajectories go beyond the

square environment only minimally, the original trajectory was

prefixed by a short linear trajectory from the midpoint to the

actual starting position at a running speed of 15 cm/s. The

remaining minimal outer excursions were bounded by the

environment’s limits.

Post-processing
The 100 cm6100 cm environment was divided into

2.5 cm62.5 cm bins. During each trial, the amount of time spent

by the animat in the various spatial bins was tracked. Also, for

each map cell the number of spikes generated in the various bins

was tracked. At the end of each trial, the resulting occupancy and

spike count maps were smoothed using a 565 Gaussian kernel

with standard deviation equal to one. Smoothed and unsmoothed

spatial rate maps for each map cell were obtained by dividing the

corresponding spike count variable by corresponding occupancy

variable across the bins. For each MEC map cell, six local maxima

with rw0:3 and closest to the central peak in the spatial

autocorrelogram of its smoothed rate map were identified. Grid

spacing was obtained as the median of their distances from the

central peak [8], and grid score, which measures how hexagonal

and periodic a grid pattern is, was computed using the method

described in [35]. Grid orientation was defined as the smallest

positive angle with the horizontal axis (0u direction) made by line

segments connecting the central peak to each of these local

maxima [8]. For each HC map cell, spatial information, which

measures how predictive of the animal’s spatial position a cell’s

firing rate is, was computed using adaptively smoothed rate maps

[52,53]. Inter-trial stability of a cell in a given trial was defined as

the correlation coefficient between its smoothed rate maps from

that trial and the immediately preceding one, considering only

those bins with rate greater than zero in at least one of the trials

[35]. Grid cells were defined as those MEC map cells whose grid

score .0.3, and place cells as those HC map cells whose spatial

information .0.5 [34,35]. For each spatial scale, learned grid cells

were clustered into different unique groups using the criterion that

two grid firing patterns are similar if their spatial correlation

coefficient r§0:7 and their orientation difference v50 [29].

Similarly, learned place cells were grouped using the definition

that two spatial firing patterns are similar if their spatial correlation

coefficient r§0:7 [29].

For each hippocampal cell, the spatial fields expressed over the

course of a given trial were characterized with respect to their

number, sizes, and nearest neighbor spacings (in case of multiple

fields) from its adaptively smoothed firing rate map. Distinct fields

were indentified from circular templates around local peaks based

on the criteria that the maximal rate within a field is at least more

than 50% of the overall peak rate [34], and the field has a

minimum diameter of 3 bins (bin width = 2.5 cm) with the

average activity of the circumferential bins being equal to or less

than 10% of the overall peak rate [16]. Further, if any pair of local

peaks was connected by a straight segment of active bins whose

activity was at least more than 20% of the overall peak rate, then

the lower of the two peaks was not considered for the identification

of distinct fields [54].

Temporal modulation in the spiking responses of cells was

assessed by computing the power spectra of the corresponding

spike trains, with a temporal resolution of 2 ms, using a standard

procedure [34]. First, the autocorrelation of a given spike train is

computed, which is truncated at a lag of 500 ms. Second, the

signal is zero-mean normalized to remove the power at zero

frequency. Third, it is tapered with a Hamming window to

minimize spectral leakage. Finally, a discrete Fourier transform is

applied (with 216 points) whose amplitude response is squared, and

normalized to the maximal value, to yield the power spectrum

between 0 Hz and 250 Hz.

Learning of Spiking Grid and Place Cells
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Results

Development of grid cells and place cells during spatial
navigation

This section shows that all the results of the rate-based

GridPlaceMap model [29] are replicated by the spiking adaptive

dynamics of sGridPlaceMap, in addition to accounting for theta

band modulation and multiple place fields. Figure 2 illustrates

model examples of spiking stripe, grid, and place cells during

traversal of the animat along a realistic trajectory in two-

dimensional space. The grid and place cell properties emerge

through hierarchical self-organized learning. Table 1 summarizes

the number and proportion of learned grid and place cells in the

entorhinal and hippocampal maps, respectively. In particular, the

model learned 78 unique grid fields (out of 100 map cells) for the

input stripe spacing of 20 cm, 80 grid fields for 35 cm, 84 grid

fields for 50 cm, and 56 unique place fields (out of 100 map cells).

Figure 3 presents the spatial responses of five representative

learned grid and place cells in the last learning trial. Spatial

autocorrelograms of the rate maps are also shown for the grid cells,

which in this case were learned from a stripe spacing of 35 cm.

These grid and place cells were selected based on uniform

sampling of the population distributions of grid score (ranging

from 20.46 to 1.38) and spatial information (ranging from 1 to

Figure 2. Spiking stripe, grid, and place cells. Spatial responses of representative (a) stripe, (b) grid, and (c) place cells. The first column shows
the spike locations (red dots) of the cells superimposed on the trajectory of the animat during a trial. The second and third columns show the
unsmoothed and smoothed spatial rate maps, respectively, of the cells. See Methods section for how spike recordings are converted into rate maps.
Color coding from blue (min.) to red (max.) is used for each rate map.
doi:10.1371/journal.pone.0060599.g002
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6.6), respectively. Note the distributed spatial phases of the learned

fields at either level in the model hierarchy; namely, the spatially

offset firing fields of entorhinal map cells (Figure 3a) and

hippocampal map cells (Figure 3b).

Figure 4 summarizes the distributed spatial encoding by the

learned grid cells in the last trial. The firing fields of any two grid

cells with the same spacing are formally defined to have different

spatial phases if the cross-correlogram of their rate maps does not

yield a local maximum at the origin. Moreover, the cross-

correlogram exhibits a hexagonal grid pattern if the grid fields of

the two cells share nearly the same orientation. In this regard,

model simulation results shown in Figures 4b-d, for each of the

three spatial scales, closely match characteristic data from grid

cells in the adult rat MEC [8] shown in Figure 4a.

Figure 5 shows the gradual evolution of grid firing fields across

trials for two entorhinal map cells with the highest grid score in the

last trial, one corresponding to the input stripe spacing of 20 cm

(Figure 5a) and the other to that of 50 cm (Figure 5b). Comparing

the rate maps or autocorrelograms in any trial for these two cells, it

can be seen that both the grid field width and spacing increase

with the spatial scale of input stripe cells. The time course of

hexagonal grid emergence for a given entorhinal cell depends on

the pattern of its pre-development weights from stripe cells, the

recurrent competitive dynamics within its local entorhinal map,

and the amount of time spent by the animat in various regions

across space during initial exploration.

Table 1. Tabulation of the learned grid and place cells.

(in last trial)

No. of grid cells (20 cm) 93 of 100

No. of grid cells (35 cm) 83 of 100

No. of grid cells (50 cm) 92 of 100

No. of unique grid groups (20 cm) 78

No. of unique grid groups (35 cm) 80

No. of unique grid groups (50 cm) 84

Average grid group size (20 cm) 1.19

Average grid group size (35 cm) 1.04

Average grid group size (50 cm) 1.10

No. of place cells 100 of 100

No. of unique place groups 56

Average place group size 1.79

doi:10.1371/journal.pone.0060599.t001

Figure 3. Spatial responses of learned entorhinal cells. (a) Spatial rate maps and autocorrelograms of representative learned entorhinal cells
corresponding to the stripe spacing of 35 cm (ranging from lowest to highest grid score). For each of these entorhinal cells, grid score and grid
orientation are indicated on top of corresponding rate maps and autocorrelograms, respectively. For example, the values in the rightmost column of
panel (a) correspond to grid score of 1.38 and grid orientation of 7.13u. (b) Spatial rate maps of representative learned hippocampal cells (ranging
from lowest to highest spatial information) in the last trial. For each of these hippocampal cells, spatial information is indicated on top of
corresponding rate map. Color coding from blue (min.) to red (max.) is used in each panel.
doi:10.1371/journal.pone.0060599.g003
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Figure 6 presents the gradual evolution of spatial firing fields

across trials for four representative hippocampal map cells. As for

entorhinal cells, the time course of place field emergence for a

given hippocampal cell depends on the pattern of pre-develop-

ment weights from its input cells (namely, the entorhinal cells), the

recurrent competitive dynamics within the hippocampal map, and

the rate at which spatial firing fields of entorhinal cells are

incrementally learned. In rat pups, the development of some place

cells precedes that of grid cells [34,35]. These early place cells

could result, for example, from learning in response to environ-

mental inputs, such as geometric boundaries and visual landmarks,

whose processing may develop sufficiently before that of path

integration-based inputs, but they would not be able to represent

the large spaces as place cells learned from grid cells. As entorhinal

cells mature into those with grid firing fields, downstream

hippocampal cells, including those that already have developed

some degree of selectivity for different places, are proposed to

benefit from integrating these emerging processed spatial signals to

enhance the information about the animal’s position that their

firing carries.

Development of multimodal place fields
Figure 7 regards the emergence of multimodal place fields

(Data: Figure 7a; Model: Figure 7b). A subset of the hippocampal

cells do learn more than one place field in the 100 cm6100 cm

square box, consistent with data that place cells can have multiple

firing fields in larger environments ([5]: 150 cm6140 cm rectan-

gular box; [6]: 200 cm wide circular box; [7]: 180 cm6140 cm

rectangular box). In particular, 34% of the hippocampal cells

develop with two fields, and 10% with three fields. Figure 7c

presents the spatial responses in the last trial of three representative

learned place cells with two fields, and Figure 7d similarly presents

examples of three fields. Figures 7e and 7f summarize the

distribution of the inter-field spacings for all hippocampal map

cells with two fields and three fields, respectively. The distribution

of standard deviation of nearest field spacings across hippocampal

cells with three fields, shown in Figure 7f, reveals that the

individual fields are not arranged across space with any particular

periodicity, in conformity with similar observations in the

pertinent experimental studies [5,7].

Figure 4. Distributed spatial encoding of learned grid cells. Data (a) and model simulations (b-c) regarding the distributed spatial encoding of
grid cells. (a) Cross-correlogram of rate maps of two anatomically nearby grid cells recorded from the rat MEC. (b) Cross-correlogram of rate maps
from the last trial of two randomly selected model grid cells (cell #8, cell #24) corresponding to input stripe spacing of 20 cm, similar to (a). (c) Same
as in (b) but for input stripe spacing of 35 cm. (d) Same as in (b) but for input stripe spacing of 50 cm. Color coding from blue (21) to red (1) is used
in each panel. [Data reprinted with permission from [8].].
doi:10.1371/journal.pone.0060599.g004
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Learned weights from stripe cells to grid cells
Figure 8 shows the bottom-up learned weights from stripe cells

to model grid cells with the highest grid score in the three

entorhinal maps, for input stripe spacings of 20 cm (Figure 8a),

35 cm (Figure 8b), and 50 cm (Figure 8c), at the end of the last

trial. The bars representing weights are grouped by direction with

the different colors coding the five spatial phases in each group.

These results illustrate that learned grid cells become tuned to

selectively respond to coactivations of stripe cells whose preferred

directions differ from each other by 60u. In particular, the grid

score for a given entorhinal cell correlates with how close the

average separation between the local peaks in the distribution of

maximal weights from various directional groups is to 60u. For

example, these local peaks for the cell shown in Figure 8b, which

has a grid score of 1.38, have preferred directions of 250u, 10u,
and 70u, which differ from each other by 60u. Figure 9 presents the

spatial rate maps in the last trial of stripe cells that correspond to

these local peaks, and how their combined rate map accounts for

the grid cell’s hexagonal grid firing fields. The grid orientation can

also be extracted from the set of learned weights from stripe cells.

In particular, given the 10u resolution in direction preferences of

stripe cells, the grid orientation can be predicted with a +5u
margin of error as the direction midway between the above

defined local peaks that lies in the range between 0u and 60u. For

example, the grid orientation for the cell shown in Figure 8a,

namely 48.43u, is near midway between the local peaks at 20u and

80u.

Figure 5. Gradual development of learned grid cells. Evolution of grid firing fields, evident in the rate map and the corresponding
autocorrelogram, across learning trials for model grid cells with the highest grid score in the last trial for two of the three input stripe spacings: (a)
20 cm and (b) 50 cm. Note trial number and grid score on top of each rate map, and grid orientation on top of the corresponding autocorrelogram.
For example, the values on top of the rate map and autocorrelogram in the first column of panel (a) correspond to first trial (T1), grid score of 20.12,
and grid orientation of 18.44u. Color coding from blue (min.) to red (max.) is used for each rate map, and from blue (21) to red (1) for each
autocorrelogram.
doi:10.1371/journal.pone.0060599.g005
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Learned projections from grid cells to place cells
Figure 10 shows the spatial rate maps in the last trial of learned

grid cells from each of the three entorhinal maps, for the input

stripe spacings of 20 cm (Figure 10a), 35 cm (Figure 10b), and

50 cm (Figure 10c), with maximal weights to one of the 56% of

model place cells with single place fields, and how their combined

rate map (Figure 10d) highlights the spatial region where the

learned grid fields are in phase to account for the place cell’s

unimodal firing field (Figure 10e). Similarly, Figure 11 shows the

spatial rate maps in the last trial of learned grid cells from each of

the three entorhinal maps, for the input stripe spacings of 20 cm

(Figure 11a), 35 cm (Figure 11b), and 50 cm (Figure 11c), with

maximal weights to one of the 10% of model place cells with three

place fields, and how their combined rate map (Figure 11d)

highlights the three spatial regions where the learned grid fields

overlap sufficiently enough to support the place cell’s multimodal

firing fields (Figure 11e). Multiple place fields for a model place cell

can be understood as instances where the activity-dependent

competitive selection among entorhinal projections of partial co-

activations is sustained. Indeed the average peak rate of place cells

with single fields in the last trial is 14.71+0.3 Hz (mean+s.e.m.),

while that of place cells with multiple fields is 11.37+0.45 Hz

(right-tailed two-sample t-test: p~0). While the mechanisms by

which a particular ensemble of place cells are recruited to

participate in the representation of a given environment are not

clear, our model makes the proposal that if a fixed set of

hippocampal cells were to encode space in ever larger environ-

ments, there will be greater number of opportunities for partial co-

activations of entorhinal inputs to survive the competitive process

in causing the firing of hippocampal cells in additional places.

Net occupancy map and place cell learning
Figure 12 demonstrates that the various learned place fields of

hippocampal cells can together encode the dynamic spatial

position of the animat in the environment. The net occupancy

map, which is obtained by tracking the amount of time spent by

the animat in each spatial bin of the environment across all trials,

correlates strongly with the ensemble rate map in the last trial of all

hippocampal cells (linear correlation: r(1598)~0:75,p~0), there-

by showing that the learned hippocampal code represents various

spatial regions depending on the total amount of time spent in

them.

Grid cell development in juvenile rats
Figure 13 shows that the model can replicate data from juvenile

rats regarding the development of entorhinal grid cells during

postnatal weeks three and four, as two-dimensional space is

explored and experienced for the first time [34,35]. In particular,

Figure 6. Gradual development of learned place cells. Evolution of spatial firing fields, evident in the rate map, across learning trials for four
representative model place cells (a–d). Note trial number and spatial information on top of each rate map. For example, the values on top of the first
rate map of panel (a) correspond to first trial (T1) and spatial information of 0.42. Color coding from blue (min.) to red (max.) is used in each panel.
doi:10.1371/journal.pone.0060599.g006
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Figure 7. Multimodal firing fields of place cells in large spaces. (a) Data showing a histogram of the number of place fields, in a circular box
with a diameter of 200 cm, for dorsal cells in proximal CA1 [6]. (b) Corresponding model simulations for the number of learned place fields, in a
square box of 100 cm6100 cm. (c) Smoothed rate maps in the last trial of three representative model place cells expressing two place fields. (d)
Smoothed rate maps in the last trial of three representative model place cells expressing three place fields. Note mean (m) and peak (p) firing rates of
the cells along the left side of the corresponding rate maps. (e) Histogram of the field spacing for the model place cells with two place fields. (f)
Histograms of the mean and standard deviation of the nearest field spacing for the model place cells with three place fields. [Data reprinted with
permission from [6].].
doi:10.1371/journal.pone.0060599.g007
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the model simulates how the average grid score of emerging grid

cells gradually improves with learning trial (input stripe spacing of

20 cm: r(28)~0:91,p~0; 35 cm: r(28)~0:78,p~0; 50 cm:

r(28)~0:77,p~0), while the average grid spacing does not change

significantly (Data: Figures 13a, 13b, and 13c; Model: Figures 13d

and 13e). Both are explained together as a reflection of how inputs

from stripe cells with the same spacing are gradually modified,

across direction preferences and spatial phases.

Place cell development in juvenile rats
Figure 14 shows that the model can also account for the data

about place cell development in the juvenile rat brain [35]. In

particular, the model simulates how the average spatial informa-

tion of emerging place cells tends to improves with learning trial

(r(28)~0:72,p~0), while that of grid cells does not increase as

much and is relatively lower (Data: Figure 14a; Model: Figure 14c).

While the former reflects gradual self-organization of inputs from

entorhinal cells, the latter is the result of multimodal firing fields

that grid cells learn. The model also qualitatively simulates the

small gradual improvement in the inter-trial stability for place cells

during the development period (Data: Figure 14b; Model:

Figure 14d [r(28)~0:54,pv0:005]), which results from the

gradual stabilization of the weights of projections from developing

entorhinal cells.

Though model place cells develop gradually, it can be noticed

that their average spatial information content sometimes exhibits

marked fluctuations from trial to trial (Figure 14c: red curve with

dots). This is due to the particular set of navigational trajectories

that were used for the simulation. It may be recalled how a realistic

rat trajectory in a square box of 100 cm6100 cm (data: [15]) was

rotated about the midpoint (origin), which is also the starting

position, by random angles to generate the different trajectories.

As each new trajectory was bounded by the walls of the box, the

animat would spend proportionally more time at particular

segments along the four walls depending on the rotation angle.

This allowed for potentially wide variations in the time spent

by the animat in the various place fields along the walls be-

tween the trials. Note that spatial information is defined byP
i

pi
li

l
log2

li

l

� �
, where pi is the proportion of total time spent in

a given spatial bin i (or, the probability of occupying the bin), li is

the firing rate of the cell in bin i, and l is the mean firing rate

across all bins [52]. Given this, other things being equal, the spatial

information of a place cell is sensitive to pi’s that correspond to its

firing positions. To test this intuition, our model was rerun with a

new set of novel trajectories based on a realistic rat trajectory in a

100 cm wide circular box (data: [15]). As expected, place cells in

this case show a steadier improvement in their spatial information

content across the trials; see red curve with squares in Figure 14c.

Theta modulation
A subset of learned entorhinal and hippocampal cells in the

model exhibit theta band modulation [34,35] as another emergent

property of network dynamics, even though model design and

Figure 8. Tuned synaptic weights of learned grid cells. Distribution of adapted weights from stripe cells, grouped by direction, to the model
grid cell with the highest grid score in the last trial for each input stripe spacing: (a) 20 cm, (b) 35 cm, and (c) 50 cm. The different colored bars
represent different spatial phases of the stripe cells. The dashed line in each panel traces the maximal weights from the various directional groups of
stripe cells. Note corresponding grid score and grid orientation on top of each panel.
doi:10.1371/journal.pone.0060599.g008
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parameter values were not geared towards achieving such a

temporal coding property. In particular, 62.37% of grid cells for

the input stripe spacing of 20 cm (58/93), 24.1% for 35 cm (20/

83), and 8.7% for 50 cm (8/92); and 11% of place cells (11/100)

are theta-modulated in the last trial; i.e., the mean power within

1 Hz of the peak that is in the theta band (4–12 Hz) of the spike

train power spectrum is at least five times greater than the mean

power across the 0–125 Hz band [34]. The peak frequency is

9.64+0.063 Hz (mean+s.e.m.) for theta-modulated grid cells

corresponding to input stripe spacing of 20 cm, 10.89+0.16 Hz

for 35 cm, and 11.06+0.15 Hz for 50 cm; and 10.7+0.24 Hz for

theta-modulated place cells. These results are consistent with

recent studies showing that theta modulation is not a compulsory

signature of the expression of hexagonal grid fields [31,55,56].

Figures 15a and 15d display representative membrane potential

dynamics of a theta-modulated model place cell and grid cell,

respectively, in response to traversals through their respective

spatial fields. Figure 15 also provides the histograms of inter-spike

intervals (ISIs) for these cells (Figures 15b and 15e), which help to

account for the intrinsic theta firing frequencies in their

corresponding spike train-based power spectra (Figures 15c and

15f). Figure 15g shows typical spiking patterns in a raster plot of

input stripe cells of different spatial phases belonging to a ring

attractor that integrates linear velocity along a particular direction

(d~290u) and spacing (s1~20 cm). Figures 15h and 15i provide

the ISI histogram and spike train power spectrum of one of the

stripe cells, which highlight the lack of modulation in the theta

band. This is true for all the stripe cells in the model. It must be

noted, however, they are currently implemented algorithmically as

realizations of non-homogenous Poisson processes. The dynamic

characterization of stripe cell ring attractors is a topic for future

research.

Implementing sGridPlaceMap in neuromorphic hardware
A principled way to achieve unprecedented levels of natural

intelligence in future mobile robots is to design their controllers to

emulate the as-yet unrivaled abilities for learning flexible, adaptive

behaviors that are exhibited by advanced biological brains in

response to unexpected challenges in ever-changing environments.

It has been broadly acknowledged that Moore’s law, which

predicted the doubling of transistor density on computer chips

every two years, and corresponding speed-ups in chip perfor-

mance, will breakdown within the next 10 years due to physical

limitations. In particular, at very high densities, the resulting nano-

scale chips will be noisy and unreliable, thereby catastrophically

degrading the functioning of digital computers. Denser chips also

generate more heat that can cause meltdown. One biologically-

inspired way to generate less heat is to use temporally discrete

signals, or spikes, for information transmission, and at lower rates

if possible. Further, the processing power of computers is limited

by the finite bandwidth of communication between the physically-

separated central processing unit and main memory. This von

Neumann bottleneck can become increasingly problematic with very

high density chips.

Figure 9. Stripe cell bases of a learned grid cell’s receptive fields. Smoothed rate maps in the last trial of (a–c) three stripe cells with a spacing
of 35 cm and across directions separated by 60u that project maximally to the model grid cell with the highest grid score in the corresponding
entorhinal population. Panel (d) shows the ensemble smoothed rate map of these cells, and panel (e) shows the smoothed rate map of the grid cell
under consideration. Color coding from blue (min.) to red (max.) is used in each panel.
doi:10.1371/journal.pone.0060599.g009
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In sharp contrast to the serial architecture employed in present-

day computing machines, biological brains have a massively

parallel architecture in which learning and memory processes are

distributed across local circuits that are composed of noisy spiking

neurons. Despite a high density of neurons and their connections

(one million neurons and ten billion synapses per sq. cm.), each

human brain consumes just about 20 W of power. This power

budget contrasts dramatically with that required (,300,000 times

more) to run the most advanced supercomputer in the world;

namely, the Blue Gene/Q at the Lawrence Livermore National

Laboratory in Livermore, CA. Moreover, such advanced super-

computers occupy a lot of physical space, and need to be explicitly

programmed for each specific task that they are supposed to

perform. Aggressive efforts are currently underway across the

world to develop a fundamentally new class of computer chips that

closely mirror biological brains to herald the arrival of a

transformative new technological field of natural intelligence.

With respect to sGridPlaceMap model computations, the spiking

competitive instar learning law described in Equations 9 and 16

can be rewritten in a form that facilitates better, more local

implementation in neuromorphic hardware as follows:
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This form reveals a single inhibitory term (
P
DP

ys
DPs in Equation

19, and
P
JS

y
g
JS in Equation 20), which can be computed at a non-

specific inhibitory interneuron that broadcasts the same value to

all bottom-up synapses.

Also, the minimum number of bits to represent synaptic weights

that can support the learning of spiking grid cells was determined.

New simulations of grid cell learning, in response to stripe cells

with a spacing of 20 cm, were run with synaptic weights at each

time step being rounded off to one of a finite number of discrete

levels 2Nð Þ between 0 and 1, which are dependent on the available

number of bits Nð Þ. Different values of N were tested; namely,

N~1, 2, 4, 8, 12, 16, 20, 24, 28, 32, and 64. The initial weights

were sampled from a uniform distribution between 0 and 1.

Quality of learning for each map cell was assessed by computing

the standard grid score and inter-trial stability at the end of 10

learning trials. Results shown in Figure 16 reveal that in order for

the slow weight changes at each time step to be registered, at least

20 bits are needed. And for non-trivial grid cells to be learned, at

least 21 bits are needed. Interestingly, more than 21 bits do not

seem to bring any additional benefit with regard to grid score,

Figure 10. Grid cell bases of a learned unimodal place field. Smoothed rate maps in the last trial of learned grid cells with maximal weights to
a representative learned place cell with a unimodal place field, for each input stripe spacing separately (a–c) and across spatial scales (d), and of the
place cell (e). Color coding from blue (min.) to red (max.) is used in each panel.
doi:10.1371/journal.pone.0060599.g010
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inter-trial stability, and proportion of learned grid cells. These

results help to differentiate neuromorphic approaches employing

artificial synaptic components that are capable of multilevel

storage (e.g., [57]) from those that only allow binary storage (e.g.,

[58]), for the purpose of matching the hardware and software

specifications and constraints of the brain.

Discussion

Understanding how the entorhinal-hippocampal system learns

grid and place cells is needed as a foundation for developing a

comprehensive theory of how spatial cognition works in humans

and higher animals, as well as for developing controllers of

autonomous adaptive mobile robots that use only locally available

Figure 11. Grid cell bases of multimodal fields of a learned place cell. Smoothed rate maps in the last trial of learned grid cells with maximal
weights to a representative learned place cell with multimodal place fields, for each input stripe spacing separately (a–c) and across spatial scales (d),
and of the place cell (e). Color coding from blue (min.) to red (max.) is used in each panel.
doi:10.1371/journal.pone.0060599.g011

Figure 12. Spatial experience-dependent learning. (a) Environment occupancy map based on the trajectories traveled across the learning
trials, and (b) ensemble rate map of all model hippocampal cells in the last trial. Color coding from blue (min.) to red (max.) is used in either panel.
doi:10.1371/journal.pone.0060599.g012
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signals to navigate to remembered locations of valued goal objects.

The current article builds upon insights gained from our prior

rate-based modeling of grid and place cell development [29] to

simulate how spiking hippocampal place cells can be learned based

on most frequent and energetic co-excitatory inputs from spiking

medial entorhinal cells that are concurrently self-organizing into

grid cells in response to most frequent and energetic co-excitatory

inputs from spiking stripe cells during navigation along realistic

trajectories. This stripe-to-grid-to-place adaptive transformation of

linear velocity estimates, as a young animal freely explores open

space beyond its nest for the first time (P15-P28), allows the

hippocampus to greatly expand the scale of its representation of

space, thereby enabling efficient (around P28: [34]) and behav-

iorally-useful navigation. The current article also demonstrates the

appearance of theta band modulation, thereby paving a way for

mechanistically studying temporal coding in the entorhinal-

hippocampal system, and the emergence of multimodal place

fields as emergent effects of the model dynamics.

Predictions about spatial learning in piecewise linear
environments

The sGridPlaceMap model makes testable experimental pre-

dictions. For example, rats that have early spatial experience in

only piecewise linear underground tunnels, as happens in nature,

are predicted to learn a fewer proportion of hexagonal grid cells

than rats that navigate in open fields. This is because the resultant

sparser coverage of two-dimensional space allows only a subset of

hexagonal grid exemplars to be experienced by the would-be grid

cells. Note that for a grid exemplar to be learned, the animal, or

animat, needs to traverse through at least three places that are part

of the grid template. Also, the grid cells that may develop during

piecewise linear navigation are predicted to have a lower

hexagonal gridness quality. This is because in a one-dimensional

environment, such as a linear track, sets of co-active stripe cells

that are most frequent and energetic turn out not to be the ones

that generate hexagonal grid structures, but those that comprise

two stripe cells whose preferred directions differ by 90u with the

linear space coincident with a spatial field of one of them.

Figure 13. Grid cell development in juvenile rats. (a–c) Data from juvenile rats and (d,e) model simulations regarding the changes in grid cell
properties, namely grid score (a: [35]; b: [34]; d: Model) and grid spacing (c: [34]; e: Model), during the postnatal development period. Panels (d) and
(e) show simulation results for each input stripe spacing; see legend in panel (d). The error bars correspond to standard error of mean. [Data reprinted
with permission from [34,35].].
doi:10.1371/journal.pone.0060599.g013
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Theta phase precession in grid cells and place cells
The phenomenon of theta phase precession is exhibited by

place cells in hippocampal areas CA1 and CA3 [59], and grid cells

in layer II of MEC [60]. Phase precession occurs when the phase

of the theta rhythm at which a space-encoding cell fires tends to

gradually move to earlier values in subsequent theta cycles during

traversal of the animal through the cell’s spatial receptive field

[59]. The theta phase precesses from about 355u coinciding with

entry into the spatial field to about 100u during exit, on average

across trials and cells. For grid cells, phase precession is seen for

movement through each grid field [60] that is independent across

fields [61]. For place cells, the rate of phase precession has been

shown to increase with running speed [62] and to be greater for

smaller place fields [63]. While whether neural information is

encoded in the frequency or timing of spikes is still an open

question in the field, proponents of temporal coding for spatial

navigation rely on analyses that show the amount of spatial

information carried by a cell’s firing rate is greatly enhanced, and

thereby the accuracy of spatial position decoding based on the

ensemble code, when firing phase is also considered (place cells:

[64]; grid cells: [61]). Existing models of phase precession [53,65–

68] assume the local field potential (LFP) signal to be a given.

While some researchers propose that the hippocampal theta

rhythm arises from the theta pacemaker cells in the medial septum

(e.g., [69–71]), others invoke local network interactions (e.g.,

[72,73]). Buzsaki and colleagues have presented a computational

model to demonstrate both the network theta rhythm and its

slower frequency compared to phase precessing place cells may

emerge naturally as the population output of different place cells,

with offset place fields, that fire inherently at frequencies faster

than that of the theta rhythm [74]. Along this line, our future work

will include enhancing the sGridPlaceMap model with a way to

explicitly model the LFP signal to contribute towards a more

complete mechanistic explanation of theta phase precession.

Scale selection problem
How multiple-scale spatial representations across the dorsoven-

tral axis in layer II of MEC [16], [17] are self-organized is an

Figure 14. Place cell development in juvenile rats. (a,b) Data from juvenile rats [35] and (c,d) model simulations regarding the changes in place
cell properties, namely (a,c) spatial information and (b,d) inter-trial stability, during the postnatal development period. The legend for all panels is in
(b). The two red curves, one with dots and the other with squares, correspond to simulations of place cell spatial information during development in
response to spatial experience in a 100 cm6100 cm square box and a 100 cm wide circular box, respectively; see Simulation settings section for
how realistic trajectories for the different trials were generated. The panels also show how corresponding grid cell properties change through rat age/
experience (a,b) and learning trials (c,d), respectively. The results for model grid cells shown in (c) and (d) are averaged across the three input stripe
spacings. The error bars correspond to standard error of mean. [Data reprinted with permission from [35].].
doi:10.1371/journal.pone.0060599.g014
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important question because multiple spatial scales of grid cells are

needed for the ensemble of hippocampal pyramidal cells to learn

to function as a self-localization system. This is also a difficult

problem because, before development begins, grid cells may

receive inputs from stripe cells of several spatial scales. The

simulations of the current model and those of GRIDSmap [23]

and GridPlaceMap [29] assumed that the grid cells of a given

spatial scale are learned directly from stripe cells of the

corresponding scale. [75] reported a decreasing dorsoventral

gradient in the average frequency of subthreshold membrane

potential oscillations (MPOs) in response to steady current inputs

for MEC layer II stellate cells, while [16] observed decreasing

average peak and mean firing rates. [76] found a dorsoventral

gradient in the average rate of temporal integration for these cells.

In particular, they showed that both the rise and fall times of

EPSPs tend to increase along the dorsoventral axis, even though

the underlying synaptic currents are the same. Moreover, [77]

reported that spike afterhyperpolarization potential (AHP) kinetics

also vary systematically, with the AHP decay time constant (and

thereby duration) increasing, on average, from the dorsal to the

ventral end. In other words, the relative refractory period tends to

be shorter for dorsal cells and longer for ventral cells.

Figure 15. Temporal coding aspects of the various cell types in the model. Representative results are shown for a learned theta-modulated
place cell (a–c), a learned theta-modulated grid cell (d–f), and stripe cells (g–i). (a) Membrane potential dynamics of a model place cell in the last trial
over a duration of 2 s, with the spiking events highlighted in red. (b) Histogram of the inter-spike intervals (ISIs) for the cell depicted in (a) over the
course of the entire last trial (,9.98 min). (c) Normalized power spectrum computed from the spike train of the cell depicted in (a) over the course of
the entire last trial, whose peak frequency of 10.47 Hz falls within the theta band (4–12 Hz). Along the same lines, panels (d–f) show membrane
potential dynamics, ISI histogram, and spike train normalized power spectrum of a model grid cell for the input stripe spacing of 35 cm. (g) Raster
plot of spikes from input stripe cells Sdps of different spatial phases belonging to a ring attractor with a spatial scale of 20 cm and a preferred
direction of 290u, over a duration of 2 s in the last trial. Panels (h) and (i) show the ISI histogram and normalized power spectrum for the stripe cell
highlighted in (g) with a dashed round rectangle.
doi:10.1371/journal.pone.0060599.g015
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Theoretically integrating all these data in a rate-based model,

[30] demonstrated that the gradient in grid spatial scales can be

learned by SOM cells that respond with monotonically decreasing

response rates along the dorsoventral extent of MEC. It is the

variable-rate refractory dynamics that directly help to select the

spatial scale of stripe cells to which the grid cells learn to respond.

Said in another way, dorsal cells with shorter refractory periods

prefer input coactivations that reoccur, on average, with a smaller

temporal interval for most frequent and energetic activation, and

ventral cells prefer those that reoccur with a larger temporal

interval.

This gradient of cell response rates also enabled the model to

simulate the observed gradients in MPO frequencies, firing rates,

and refractory periods as emergent properties of SOM learning

mechanisms. Among the several input variations that were

simulated, it was found that only a response rate gradient

combined with input stripe cells that have normalized receptive

fields across scales can provide an account for the dorsoventral

variations in all above mentioned spatial and temporal properties

of entorhinal grid cells.

These results show that the anatomical gradient in the temporal

frequency of intrinsic oscillations [75,78] can occur in the absence

of an oscillatory interference-based mechanism for grid cell firing

(compare with [68,75,79], etc.). Consistently, an investigation of

grid cells in mice with knockout of subunit 1 in the hyperpolar-

ization-activated cyclic nucleotide-gated (HCN1) channels [80]

concluded that the development of the grid scale spectrum is more

dependent on the gradient in the rate of temporal integration,

which occurs due to dorsal-to-ventral decreases in the amplitudes

of leak K+ and HCN1 channel conductances ([76]: mouse), than

Figure 16. Towards neuromorphic implementation of sGridPlaceMap model. Quality of spiking grid cell learning, in response to stripe cells
with a spacing of 20 cm, as a function of number of bits available to store synaptic weights with regard to (a) grid score, (b) inter-trial stability, and (c)
percentage of learned grid cells at the end of 10 trials. Panel (d) shows the absolute relative change in weights from input stripe cells, as a
percentage, through the tenth trial as a function of number of bits.
doi:10.1371/journal.pone.0060599.g016
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the gradient in resonant properties such as MPO frequency, due to

dorsal-to-ventral increases in the time constants of the HCN1

channel conductance ([81]: rat).

The spiking grid and place model developed in this article

makes it feasible to ascertain more directly the relative contribu-

tions of and interactions among different synaptic currents in

setting up the spatial scale topography of grid cells, and to probe

them further computationally; namely, the AHP, leak K+, and

hyperpolarization-activated cation (Ih) currents mentioned above,

and the m-current [82], among others. For instance, the

membrane potential recovery from afterhyperpolarization in

MEC layer II stellate cells is known to be quickened in proportion

to the action of Ih [83]. Also, the fast and slow-medium currents

that determine AHP in stellate cells [84] may have potentially

different effects [85]. Moreover, the role of the persistent sodium

(NaP) current, whose interplay with Ih is known to generate

subthreshold MPOs [86], is not fully clear.
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