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Identification of milk from different animal and plant sources
by desorption electrospray ionisation high-resolution mass
spectrometry (DESI-MS)
Yunhe Hong1,3✉, Nicholas Birse 1,3, Brian Quinn1, Holly Montgomery1, Di Wu 1, Gonçalo Rosas da Silva1, Saskia M. van Ruth2 and
Christopher T. Elliott1

This study used desorption electrospray ionisation mass spectrometry (DESI-MS) to analyse and detect and classify biomarkers in
five different animal and plant sources of milk for the first time. A range of differences in terms of features was observed in the
spectra of cow milk, goat milk, camel milk, soya milk, and oat milk. Chemometric modelling was then used to classify the mass
spectra data, enabling unique or significant markers for each milk source to be identified. The classification of different milk sources
was achieved with a cross-validation percentage rate of 100% through linear discriminate analysis (LDA) with high sensitivity to
adulteration (0.1–5% v/v). The DESI-MS results from the milk samples analysed show the methodology to have high classification
accuracy, and in the absence of complex sample clean-up which is often associated with authenticity testing, to be a rapid and
efficient approach for milk fraud control.
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INTRODUCTION
Milk and dairy products are nutrient-dense foods that are
relatively low in calorific content and provide high amounts of
essential nutrients1,2. Many western cultures have been encour-
aged to eat or drink several servings a day, with the 2015 Dietary
Guidelines for Americans recommending that adults consume
500–750mL of milk or equivalent dairy foods per day3. However,
avoidance of dairy products is found in some populations, a result
of medical conditions, lifestyle choices, ethical considerations, or
limited access to safe dairy products. Cow’s milk allergy (CMA) is
an example of a medical condition that results in the avoidance of
dairy products; CMA is the most common food allergy in young
children, with approximately 2–3% of young children living in the
developed world suffering from it4. Lactose intolerance is another
medical condition for which people will attempt to avoid dairy
products or find adequate replacements5. Evidence shows that
dairy products from goats and sheep not only maintain the key
nutritional features of cow milk, but are also easier to digest6,7.
This has been cited to support the use of goat milk and sheep milk
as more suitable alternatives to cow milk-based dairy produce8.
Camel milk is also described as an alternative to cow milk as it
lacks β-lactoglobulin, which is often responsible for cow milk
allergy, and lower levels of casomorphin present are thought to
assist in the metabolism of lactose, leading to lower intolerance in
consumers9,10. Plant-based milks, such as oat milk and soya milk
form a large part of the dairy-free products category. Vegetarians
and vegan consumers may find that plant-based milk products are
their only option. Lifestyle and ethical considerations have
resulted in dairy-free milk alternatives rapidly increasing in
popularity with consumers in recent years, resulting in an
increasingly diversified consumer market. These alternative dairy
products can no longer be considered niche products, indeed, in
the UK, non-dairy milk products have been used to track inflation
since 2017.

The UK milk market and wider grocery market has noticeably
changed as a result of the COVID-19 pandemic11. The difficulties in
managing yield variations in cow milk alternative products
together with the higher prices resulting from both increasing
demand and constrained supply risks the fraudulent use of cow
milk in milk from different animal and plant sources. Milk
adulteration has been a subject of concern for a number of years;
adulterants can range from low-cost cow milk being used to bulk
out high-price milk products to chemical additives such as
melamine. These adulterants can have serious adverse health
effects, yet due to the profitability, absence of adequate
monitoring, and lack of proper law enforcement, adulteration
fraud is thought to be highly prevalent within the sector12,13.
Inadvertent adulteration or contamination with potential

allergens can also occur when several animal species’ milks are
handled on the same manufacturing equipment14. CMA patients
or lactose intolerant consumers may suffer severe adverse health
effects after ingesting goat milk or plant-based milk which is
adulterated with cow milk, but the reason behind the adulteration,
whether deliberate or accidental is inconsequential to the health
effects to the consumer15. Montgomery et al collected safety and
fraud reports for milk and milk products from the online RASFF
portal, finding there were a total of 355 notifications relating to
milk and milk products over the last five years, they then provided
a summary of fraud relating to these products over the same
period. Their analyses indicate that although the number of fraud
incidents was smaller, they still pose a very significant risk to
human health16.
For milk to be sold, unfortunately, the processes behind milk

adulteration have become sufficiently sophisticated and wide-
spread that regulatory bodies may find adulteration detection
difficult or impossible16,17. Focusing on milk adulteration, it is easy
to find the maximum residue limits (MRLs) and tolerable daily
intake (TDI) for known chemical contaminants, such as
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melamine18, as well as plasticizers, preservatives, and antimicro-
bials, all of which are of significant concern for their impacts on
human health19,20 and to adulterate or dilute samples down in
such a way as to defeat existing testing techniques. The weakest
link in milk fraud identification is arguably the lack of methods for
detecting and analysing adulteration from different species. There
are relatively few government regulations and reference methods
relating to milk species adulteration. The current European
Community reference method for cow milk identification is based
on isoelectric focusing (IEF) of β- and γ-caseins, since both
β-casein and γ-casein from bovine milk contain immunoglobulin E
(IgE)-binding epitopes21. This technique requires complex sample
preparation and lengthy assay times, which are far from ideal in a
commodity such as milk with a short shelf-life and rapid
distribution from farm to retailer. Further studies have also shown
that there are several limitations to the current EU official milk
adulteration evaluating method, such as false-positive results
when it is performed on water buffalo β-CN (f100-207)22.
A variety of different methods have been trialled as alternatives

to the European reference method for milk species differentiation,
with DNA-based techniques favoured for species identification.
Applications of PCR were used to investigate the adulteration of
goat milk produced by smallholders with bovine milk as an
adulterant23. Several studies have confirmed the potential of DNA-
based methods for detecting the fraudulent admixture of milk
from different species in milk and milk products24,25. Nevertheless,
each sample must undergo complex and time-consuming
preparation procedures, such as DNA isolation and quantification,
and the design of species-specific primers26. Moreover, PCR is an
indirect method and can suffer from DNA contamination due to
the amplification of minor components27.
Recent studies have presented detection methods based

around high resolution mass spectrometry which can undertake
speciation, a capability that is potentially valuable when attempt-
ing to detect the presence of cow milk in putatively other milk
species28–30 or plant proteins in raw milk31,32. Wei Jia et al.
reported that high-resolution mass spectrometry can provide an
efficient approach for the discrimination of milk from different
mammalian species by untargeted analysis of small molecules
found within the sample, an approach known as ‘Foodomics’33.
Innovation in new ionisation sources, and the ongoing develop-
ment of existing technologies provide ever more possibilities for
the identification of milk fraud. Matrix-assisted laser desorption/
ionisation-time of flight mass spectrometry (MALDI–TOF MS) has
been adapted to profile differences in milk chemical compounds
from different mammalian species34–36 and for the discrimination
of plant-based milk from cow milk. However, sample pre-
treatment and MALDI matrix chromophore preparation proce-
dures are complex, which is an issue when attempting to develop
rapid MALDI screening workflows.
The focus on food security research in recent years has been to

detect issues when they occur, whilst simultaneously improving
processes to try and eliminate issues from occurring in the first
place37. Nascimento et al. evaluated the assay methods used by
regulatory agencies throughout the World, and upon observing
the limited access to mass spectrometry that exists, predicted that
the development of inexpensive alternatives to mass spectro-
metry would continue, resulting in ever faster and more
environmentally friendly in situ tests38.
Ambient mass spectrometry is a small but growing area, and

has been widely used in food research in recent years39,40.
Ambient mass spectrometry is designed to remove much of the
complexity inherent in existing mass spectrometry techniques,
such as eliminating chromatography, reducing or eliminating the
need for the ion source to operate under complex vacuum or
temperature conditions, and enabling direct sampling in close
proximity to the instrument. This enables the use of smaller, less
expensive, and potentially portable mass spectrometers, features

which make the technique particularly well suited to in-situ or on-
site testing in the agri-food sector41. DART, a well-known AMS ion
source, is a strong tool for milk fraud analysis. Zhang et al.42

demonstrated a technique for fast detection of dicyandiamide
(DCD) in powdered milk using DART/Q-TOF. Hrbek et al.43 devised
a DART–HRMS approach for authenticating milk and milk-based
goods, which permitted differentiating milk mixes manufactured
at a 50% (v/v) adulteration level. However, pre-treatment
procedures such as organic solvent extraction and centrifugation
are utilised in many experiments, lowering the method’s
throughput, and expensive consumables were still used, which
can be avoided with DESI, making the total cost per sample lower
with DESI.
There are a wide number of different ambient mass spectro-

metry techniques which have been developed since the initial
techniques of desorption electrospray ionisation (DESI) were first
commercialised in 200544,45. DESI-MS, which is aimed at the
analysis of sample surfaces and tissues, is undertaken at ambient
atmospheric pressures46,47. The electrical charge is contained in an
electrospray solvent mist (primary ionisation) which causes
secondary ionisation to occur at atmospheric pressures47. DESI is
a minimally destructive ionisation technique and typically known
for the ionisation of small molecules in singly charged forms,
although it has also been demonstrated in protein and amino acid
analysis39,46–49. The utilisation of DESI-MS for the detection of
protein and peptides directly from a tissue section, a process
known as mass spectrometry imaging (MSI), can be seen as an
avenue of investigation complimentary to MALDI and other MSI
techniques48,50.
DESI is a soft ionisation technique, causing little or no

fragmentation of the target analyte. This makes the technique a
strong candidate for samples with labile analytes, such as milk,
and is one key reason why it has found such widespread usage.
The advantages of using DESI-MS for rapid accurate classifica-

tion of milk samples are: (a) no need for organic solvent use
during sample treatment, with water-diluted milk samples being
directly loaded onto the glass slide sample plate, keeping
components in milk as unaltered as possible; (b) soft, non-
destructive ionisation similarly contributes to the structural
integrity of the analytes, and samples can thus be run
repeatedly;51 (c) no need for sample clean-up, since satisfactory
spectral data can be obtained from diluted samples; d) the
analysis time is approximately 10 s. In addition, the considerably
reduced consumption of organic solvent in analyses demon-
strated that DESI-MS is a much more environmentally friendly
assay method, whilst the use of DESI-MS in combination with a
high-resolution time of flight instrument can potentially allow a
virtually instant change from using the system for rapid screening
to using the system for detailed, in-depth analysis of samples of
concern.
The objective of this study was to develop a reliable, sensitive,

and rapid assay method capable of the identification of milk from
different animal and plant sources. A DESI source was coupled
with a quadrupole-time of flight (Q-ToF) system for milk
classification and biomarker identification. The classification/
prediction models based on principal component analysis (PCA)/
LDA were built to identify milk species adulteration. This research
focused on using DESI-MS to identify stable lipids used as
biomarkers for cow milk in types of non-cow-milk claiming, with a
detection limit of cow milk content of 0.1–5%. The adulteration of
different milk species can be identified by using non-destructive
testing whilst keeping the milk samples as close to retail
conditions as possible during the whole assay procedure. The
proposed method is simple, accurate, time-saving, and environ-
mentally-friendly, providing a reliable and fast method for
investigating the prevalence of mislabelling.
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RESULTS AND DISCUSSION
Method development
The sample treatment procedure was optimised in order to obtain
a suitable MS intensity. Three different scenarios were considered
at this stage: (1) direct analysis, (2) milk diluted with methanol, (3)
milk diluted with deionised water. The natural thickness and
density of milk could potentially cause several problems by direct
analysis. A thick sample cannot remain on the glass slide sample
plate due to surface tension. It is also difficult to evaporate
aqueous matrixes at room temperature. Thus, direct analysis was
not considered for this study. The use of methanol or acetonitrile
for milk sample pre-treatment is a common method for mass
analysis.
The main purpose of using organic solvents during sample

treatment is to dilute or clean-up samples for targeted analysis,
diluting potential contaminants which may interfere with the
analytes of interest or the analysis itself. However, this can cause
unsatisfactory results in untargeted analysis by diluting or
removing compounds that may later prove to be useful as
biomarkers or have some other utility in assessing the quality or
safety of the sample. The solvent addition can also increase
ionisation potentials for many compounds in the milk matrix,
potentially increasing the fragmentation of compounds at the
time of initial ionisation, and reducing the formation of water
clusters, which will further change the ionisation behaviour of
lipids. As can be seen from the binary comparison diagram in Fig.
1, the content of compounds with smaller molecular weight is
more abundant when use methanol. This situation may also
because milk precipitation caused by methanol is removed by
centrifugation, caused big loss of features. The results of the
chemical compound difference between using methanol and
water as sample treatment solvent are shown in Fig. 1. From the
mass spectra of different sample treatment procedures, most lipid
groups in cow milk were removed by using an organic solvent
(methanol), which means a large number of biomarkers are lost
before instrument data acquire. Thus, the use of water as a solvent
was considered as the best method for this study.
The procedure was optimised by the use of different dilution

ratios of water/milk. The TIC intensity increases as the ratio of
water rises. Milk: water= 1:4 (v: v) was found to be the dilution
that gave the greatest sensitivity. This was consistent with the
results reported in the prior literature34. A 2 µL aliquot of sample
solution (0.4 µL milk:1.6 µL water) was directly loaded onto the
glass slide sample plate and evaporated to dryness at room
temperature for DESI-MS analysis.
The analysis time per sample was similarly assessed experi-

mentally and an optimal time of 15 s acquisition time per sample
was determined, giving a total time to analyse 96 samples of
approximately 25 min. This compares very favourably with LC-MS
where rapid methods of 5 min per sample would only enable five
samples within the same timeframe. The sample preparation and

drying time was comparable to preparing samples for a dilute and
shoot LC-MS method and considerably faster than many more
complicated sample preparation steps52.
To evaluate the”within-group” milk difference and validate the

milk species models, the production process and farm location
were considered as the main factors53,54. To maximise the
validation coverage, cow milk samples were sourced from a total
of 30 different farms and production systems, including a mixture
of UHT and pasteurised milks (totalling 103 number of cow’s milk
samples). Cow milk was used to indicate the stability and reliability
of lipids as biomarkers of cow milk presence in alternative cow
milk products. Goat milk was sourced from two different farms
(five semi-skim milk samples and 22 whole milk samples). Thirty-
six camel milk samples were sourced from two online distributors
and had five different production dates. Oat milk samples were
sourced from four different factory suppliers (totalling 34 number
of samples); both of these are original oat milk, finally, soya milk
samples were sourced from five different suppliers (comprising
eight no sugars, six unsweetened, and 59 unsweetened).
The unsupervised PCA model clearly shows separation between

all five classes of milk products, albeit with only limited separation
between cow milk and goat milk. Other types of milk, including
the plant-based products show much clearer separation (Fig. 2a).
The supervised LDA model shows clearer separation between all
five classes, albeit still with cow milk and goat milk in close
proximity to each other (Fig. 2b).
R (version 4.0.5; ggplot2 and tidyverse package) was used to

plot data distribution. The distribution of values is shown in Fig.
2c. Each box-plot is surrounded by a violin plot representing data
density, which is centred at the mean value. The accuracy is
assessed for within-group differences of complex models in the
validation set. Horizontal blue lines represent median values. The
diamond box indicates the mean values for each group.
Compared with different milk species, the difference within cow
milk samples was minor. Yet, the differences between each milk
species group were highly significant.

Identification of cow milk in non-dairy milk
Figure 3 shows the mass spectra of five different species of milk
samples by using DESI-MS. The analysis of cow milk and goat milk
was found to yield spectra dominated by fatty acids, glyceropho-
spholipids (GP), and sphingolipids (SP). There are significant
differences in the spectral features for cow milk and goat milk, as
expected when reviewing the PCA and LDA plots, but upon
further investigation, characteristic differences can be observed as
well. This is in contrast to cow milk, which shows significant
differences in spectral features to those observed in camel milk,
oat milk, and soya milk spectra. Glycerolipid (GL) groups were also
found to differ between cow milk and camel milk, oat milk, and
soya milk samples. GP group (GP1501) was found in camel milk,
and SP group (SP0303) was found in oat milk. A small number of

Fig. 1 The comparison of sample treatment differences. Coefficients for different sample treatment procedures, milk treated with methanol
=−1, milk treated with pure water = 1.
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Fig. 3 Mass spectra. a cow milk, b goat milk, c camel milk, d oat milk, and e soya milk samples with DESI-MS.

Fig. 2 Main effects of within-group differences on milk species identification. a PCA score plot and b LDA plot of DESI-MS spectral data (m/
z 100–20,00) obtained from five milk species (different production procedure and farm location inside each group). c Violin and box plots for
the distribution of validation scores. There was no statistical significance among the measurements of all the five milk species (p < 0.01).
Symbols indicate outliers, which show the discrete degree of data.
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protein groups were also found in oat milk and soya milk,
potentially serving as biomarkers.
Unsupervised PCA and Orthogonal Partial Least Squares (OPLS-

DA) algorithms for dimensionality reduction were used to analyse
the features of each milk type (Fig. 4). The lipid groups of milk
samples from the five different types were acquired in positive
mode. The PCA score plot shows the chemical compounds of each
milk type, suggesting that there are significant biochemical
differences between them (Fig. 4a). R2X and Q2 values of 0.898
and 0.867 were obtained suggesting that the PCA model was both
robust and had good predictive ability towards additional data
points. The classification performance resulted in 100% separation
between cow milk and other milk species.
An OPLS-DA model was employed to sharpen the established

separation. As expected, superior separation of cow milk and
other milk species was observed in the score plot of OPLS-DA (Fig.
4b). Goat milk was somewhat more difficult to differentiate from
cow milk, but by using a binary model, it was also clearly
recognisable (Fig. 4d). 103 cow milk, 36 camel milk, 27 goat milk,
34 oat milk, and 73 soya milk samples were obtained (6–9 parallel
repeat data acquisition for each sample). A multivariate model was
built from all sampling points, a total of 2225 spectra including
940 spectra from the cow milk group, 516 spectra from the camel
milk group, 96 spectra from the goat milk group, 230 spectra from
the oat milk group, and 443 spectra from the soya milk group. In
order to evaluate the credibility of this OPLS-DA supervised
analysis, a permutations plot was used to assess the integrity of
OPLS-DA model. Validation of the accuracy and reliability of the
model was performed with the parameters of R2Y and Q2. Q2 was
used to evaluate the statistical quality of the model, and
determine the fraction of Y variation that could be predicted,
while R2Y was used to assess the degree of adjustment from the Y
variance explained by the model. The more R2Y and Q2 values
approach 1, the higher the model’s predictive power. When the
R2Y and Q2 are above 0.5, the model is considered to have strong
predictive properties55.
The plot in Fig. 4c shows that Q2-values to the left all lower than

the original Y level. Meanwhile, R2-values also show promise.

This indicates that the model has a high capability to explain the
sample differences (R2Y= 0.965 and Q2Y= 0.964 in positive
ion mode).

Candidate biomarkers
Under PCA, the individual principal component composition was
elucidated by generating loading plots. For mass spectrometric
data, the loading functions show what the contribution of
individual mass spectrometric peaks is to the given principal
component (PC) (Fig. 5). The loading function responsible for the
separation of the lipidomic profiles of cow milk and other milk
species shows clear differences between those two classes. The
separation of the DESI lipidomic profiles of cow milk, goat milk,
camel milk, soya milk, and oat milk, again shows clear differences
between those classes.
The first principal component (PC1) contributed to 63.78% of

the total explained variations (Fig. 5a), and the second principal
component has 11.87% contribution in the total explained
variations (Fig. 5b). Cow milk and goat milk contain more lipid
types, like glycerophospholipids (GP1001 and GP1002 lipid group)
and sphingolipids (SP0303). Whereas camel milk, oat milk, and
soya milk tend to produce glycerolipids groups, for example, TG
(55:6), TG(56:8), TG(56:11), TG(57:8), and TG(58:14). A small number
of Fatty acids (FA(18:4;O2), FA(18:4;O3)) and sterol lipids (ST(21:2;
O5), ST(22:1;O5)) are also abundant, as revealed by the loading
plot and MS/MS fragmentation of the corresponding ions.
Differential lipidomics made it possible to identify several

candidate biomarkers for different milk groups. Results showed
9501 components in total belonging to these 5 milk species, with
the mass bin set in 0.2 Da in order to make data sizes manageable
while accurately separating metabolites. The differential compo-
nents of cow milk and other milk species are displayed in Fig. 6.
The corresponding S-plot values and t-tests were used to assay
the statistical significance between different milk species (Fig. 6b),
with the ions with high variable importance being responsible for
discriminating cow milk and non-dairy milk (Fig. 6a). The red
points are the candidate biomarkers from the cow milk alternative
group (positive quadrant), blue points are the candidate

Fig. 4 Differentially component analysis between different milk species. a PCA of five milk species; b OPLS-DA between cow’s milk and
other milk species; c Permutations plot of OPLS-DA model; d OPLS-DA between cow’s milk and goat’s milk.
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biomarkers from the cow milk group (negative quadrant). Both
sets were selected due to their high reliability [|p(corr)| > 0.5], and
high influence on the model (|p| > 0.05). The lipid groups match
clearly in the coefficient plot (Fig. 6b).
As shown in the S-plot, a total of 28 known robust candidate

markers (Table 1) enabled the differentiation between different
milk species (23 from cow milk, five from other milk species).

The lipids were identified by MS scan data for the lipids and
searched against lipid groups available from the LipidMaps
database. Lipid marker candidates were then evaluated using
MS/MS data for chemical structure confirmation. The lipid
composition varies between different milk species, with glycer-
ophospholipids (GP), and sphingolipids (SP) being more abundant
in the cow milk components. Biomarkers of cow milk all belong to

Fig. 6 a Coefficients for different milk groups. Cow milk= -1, other milk species= 1; b Candidate biomarkers marked in OPLS-DA/S-plot of
ions responsible for the cow milk classification found at the bottom of the plot, whereas ions responsible for dairy-free samples were located
at the top.

Fig. 5 The principal component loading plot shows the separation between different milk species. a First principal component loading
plot, b second principal component loading plot.
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GP1001, GP1003, SP0203, and SP0303 lipid groups. Most of the
assigned lipid identifications from other milk species are
glycerolipid (GL) species, belonging to the triacylglycerols
[GL0301] sub/class.
The process for characterising biomarkers from different milk

species is displayed in Fig. 7. for example, the peak at m/z 1314.7
when fragmented at a collision energy of 20 V produced daughter
(fragment) ions at m/z 677.5, 703.5, 649.5 that correspond to PA
(32:0), PA(34:0), PA(34:0), and further components from the
GP1001 group, due to the obvious fracture site of the compound.
This finding was confirmed with GP1001 compositions presenting
at higher levels of mass intensity. Fatty acid compositions were
found in most of these biomarker MS/MS mass spectra, due to the
chemical structure of these FA compositions.
Thus, lipids specific to cow milk were identified through

high-resolution mass analysis using a DESI-MS system
approach. The possible molecular formula and structures of
the markers were calculated by high-accuracy quasi-molecular
ions. GP1001, GP1003, and SP0202 lipid groups can be set as
dairy milk biomarkers for identifying mislabelled non-cow milk
samples.

Adulteration analysis of milk samples
The supervised LDA model, following PCA, was built to
discriminate the concentration of adulterated milk and assess
the level of adulteration. The correct classification rate was tested
with leave-20%-out cross-validation and calculated on the basis of
the number of spectra classified correctly compared to all spectra
in the full data set. The adulteration levels identified when
analysing adulterated each milk groups were; goat milk (5%),
camel milk (0.5%), oat milk (0.5%), and soya milk (0.1%) of cow
milk content. The LDA model can be used as a straightforward
testing model for cow milk adulteration levels in other milk
species samples, shown in Fig. 8: (a) goat milk (5–50%), (b) camel
milk (0.5–50%), (c) soya milk (0.1–50%), (d) oat milk (0.5–50%). A
linear tendency was observed in relation to the adulteration levels
in goat-cow, camel-cow, soya-cow, and oat-cow milk adulteration
cases.
The camel-cow milk adulteration model (Fig. 8b) has excellent

discriminating ability, shown clearly by the level of separation in
the LDA model. The detection of 0.5% adulteration level was not
feasible, but this is a highly unlikely level of adulteration in

Table 1. List of ions identified based on the contribution of each ion to the variance of the observations and their reliability.

Milk type Mass
bin [m/z]

S-plot p
[1] value

S-plot p
(corr) value

Representative
mass [m/z]

Accurate
mass [m/z]

Formula Lipid
identifier

LM ID

Cow milk 537.3 −0.066 −0.854 537.3516 537.3551 C27H53O8P PA(24:0) LMGP10010030

565.3 −0.070 −0.853 565.3904 565.3864 C29H57O8P PA(26:0) LMGP10010933

577.5 −0.055 −0.836 577.4272 577.4228 C31H61O7P PA(P-28:0) LMGP10030001

593.5 −0.086 −0.898 593.4140 593.4177 C31H61O8P PA(28:0) LMGP10010944

605.5 −0.061 −0.892 605.4564 605.4541 C33H65O7P PA(P-30:0) LMGP10030003

619.5 −0.068 −0.903 619.4680 619.4697 C34H67O7P PA(P-31:0) LMGP10030005

621.5 −0.103 −0.895 621.4513 621.4490 C33H65O8P PA(30:0) LMGP10010943

628.5 −0.065 −0.656 628.5848 628.5874 C38H77NO5 Cer(38:0;O4) LMSP02030017

633.5 −0.075 −0.854 633.4876 633.4854 C35H69O7P PA(P-32:0) LMGP10030007

647.5 −0.082 −0.915 647.5047 647.5010 C36H71O7P PA(P-33:0) LMGP10030009

656.5 −0.054 −0.621 656.5998 656.6187 C40H81NO5 Cer(40:0;O4) LMSP02030018

661.5 −0.073 −0.779 661.5192 661.5167 C37H73O7P PA(P-34:0) LMGP10030012

677.5 −0.122 −0.803 677.5127 677.5116 C37H73O8P PA(34:0) LMGP10010940

687.5 −0.061 −0.793 687.5358 687.5323 C39H75O7P PA(P-36:1) LMGP10030019

703.5 −0.114 −0.835 703.5297 703.5272 C39H75O8P PA(36:1) LMGP10010214

731.5 −0.066 −0.705 731.5517 731.5585 C41H79O8P PA(38:1) LMGP10010220

1146.5 −0.057 −0.840 1146.5184 1146.5087 C47H86N7O17P3S CoA(26:0) LMFA07050327

1174.5 −0.052 −0.844 1174.5574 1174.5400 C49H90N7O17P3S CoA(28:0) LMFA07050351

1202.7 −0.059 −0.856 1202.6506 1202.6211 C52H101NO25P2 M(IP)2C
(34:0;O3)

LMSP03030108

1232.7 −0.061 −0.845 1230.6704 1230.6524 C54H105NO25P2 M(IP)2C
(36:0;O3)

LMSP03030109

1286.7 −0.058 −0.875 1286.7344 1286.7150 C58H113NO25P2 M(IP)2C
(40:0;O3)

LMSP03030111

1314.7 −0.065 −0.854 1314.7518 1314.7463 C60H117NO25P2 M(IP)2C
(42:0;O3)

LMSP03030112

1342.7 −0.059 −0.807 1342.7896 1342.7776 C62H121NO25P2 M(IP)2C
(44:0;O3)

LMSP03030113

Oat milk 872.7 0.056 0.711 872.7094 872.7103 C50H98NO8P PC(42:1) LMGP01012161

903.7 0.072 0.544 903.7435 903.7436 C59H98O6 TG(56:8) LMGL03016229

Oat milk
Soya milk

917.7 0.136 0.671 917.7568 917.7593 C60H100O6 TG(57:8) LMGL03016407

Soya milk 893.7 0.095 0.692 893.7489 893.7593 C58H100O6 TG(55:6) LMGL03015620

Camel milk 881.7 0.050 0.654 881.7578 881.7593 C57H100O6 TG(54:5) LMGL03010352

Identities confirmed by MS/MS ion fragmentation analyses.
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commercial fraud as not of economic benefit. The cross-validation
of this model gives a correct classification rate of 93.9%. The LDA
model for soya milk adulteration with cow milk is shown in Fig. 8c.
It can be seen that even soya milk adulterated with 0.1% cow milk
can be distinguished from the pure sample. The correct classifica-
tion rate for this model was 92.2%. A detection limit of 0.5% cow
milk adulteration is also clearly revealed in the dairy-free oat milk
adulteration model (Fig. 8d), with an 84.3% correct classification
rate. The goat milk adulteration model shown in Fig. 8a. Worth

noticed that semi-skim goat-cow milk model does not show
performance or separation comparable to whole milk model but
still can be identified when adulterated with 5% cow milk. That
may because most spectrometric features are identical between
semi-skim cowmilk and goat milk. The correct classification rate for
whole goat-cow milk was 82.35% and for semi-skim goat-cow milk
was 60.7%. The individual Correct Classification Rate was 100%
excluding outliers (standard deviation multiplier-5 σ) and 97.6%
when including outliers for five species milk samples. The results

Fig. 7 Fragmentation spectra of M(IP)2C(42:0;O3) (m/z 1314.7463).

Fig. 8 LDA analysis of different milk species adulterated with different milk species. Goat milk (a), camel milk (b), soya milk (c), and oat milk
(d) in different levels.
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indicated the detection of cow milk in milk from different animal
and plant sources is feasible using the DESI-MS system.

CONCLUSION
Using Desorption Electrospray Ionisation ambient mass for lipids
standards characterisation46 presents the advantage of analysing
many different lipid species directly from samples in one
ionisation mode. Moreover, more than 9500 components were
found in 5 milk species with DESI-MS. Combined with multivariate
analysis, 28 lipids were identified as biomarkers with multivariate
analysis. It was observed that the relative abundance of lipid
groups in milk from different animal and plant sources appears to
be lower than in cow milk; quantification of lipids using a triple-
quadrupole instrument would be a logical next step when
determining further work to undertake. The discovered milk
species-specific biomarkers can be used as presence/absence
markers for a given species in trace detection.
In this study, the application of DESI for the rapid lipidomic

profiling of milk samples was successfully demonstrated for the
first time. This approach has the advantage of providing
simultaneous information for milk species identification and can
permit the accurate selection of the adulteration levels of
screened fraudulent non-cow claimed milk. The profiles show
strong specificity in species and in adulteration level identification.
Cow milk could be easily distinguished from the dairy-free milk
samples (oat milk, soya milk) and milk from different animal
sources (camel milk). Goats milk was marginally more challenging
but by creating a binary model, it was also easily distinguishable
from cow’s milk. The detection limit of these models ranged from
0.1 to ~5% in different milk groups.
In addition to its potential in milk fraud detection, it is an

effective quality control method for production factories that may
use the same production line for different milk species. The high-
level of reproducibility demonstrated by DESI here suggests that if
the source can be developed for a simpler, cheaper, and more
robust mass spectrometer, such as a single-quadrupole instru-
ment, the technique could be utilised by individuals who have no
prior expertise with mass spectrometry. DESI on a more basic
instrument is likely to result in a technique that is simple, quick,
environmentally responsible, and highly user-friendly.

METHODS
Samples and reagents
A proof-of-concept study was based on different species of plant milk (oat
milk, soya milk) and animal milk (cow milk, goat milk, camel milk). The
reproducibility and authenticity studies were performed on 90 cow milk
samples. All cow milk samples were purchased from local UK markets and
farms, and were directly used without further treatment. For sample
measurements, each sample was transferred to a 50mL headspace vial.
Prior to analysis, the samples were stored in the dark at 4 °C in screw cap
jars for no longer than 3 days, representative of typical consumer fridge
storage conditions.
Cow milk and other species of milk samples were paired randomly and

mixed in different proportions [0, 5, 10, 20, 50, 100% (v/v) of cow milk
mixed with goat milk, 0, 0.5, 1, 2, 5, 10, 20, 50, 100% (v/v) of cow milk
mixed with camel milk; 0, 0.5, 5, 10, 20, 50, 100% (v/v) of cow milk mixed
with oat milk, and 0, 0.1, 1, 2, 5, 10, 20, 50, 100% (v/v) of cow milk mixed
with soya milk, respectively] to simulate adulterated samples.
Afterward, each sample was diluted with water before testing, milk:

water= 1:4 (v: v). The sample solution was directly loaded onto a glass
slide sample plate (volume 2 μL, diameter 3 mm) and evaporated to
dryness at room temperature (approx. 10 min) for DESI-MS analyses.
LC-MS grade acetonitrile and formic acid (99%) were purchased from

Honeywell Riedel-de Haën (Seelze, Germany). Ultra-pure deionised water
(18.2 MΩ/cm) was obtained from a Millipore Milli-Q system (Billerica, MA,
USA). Micro-24™ slides and Micro-96™ slides were obtained from Prosolia
(Indianapolis, IN, USA).

Instrumentation
Experiments were performed on a Waters G2-XS Q-Tof mass spectrometer
(Waters Corporation, Wilmslow, Manchester, UK) fitted with a Prosolia 2D
Omni-Spray ion source (Prosolia, Indianapolis, IN, USA) for DESI-MS
analysis. Initial setup of the DESI source was performed by the analysis
of cow milk using a solvent flow rate of 2 µL/min with N2 as a nebulising
gas set at 0.7 MPa; the spray solvent was composed of 98% acetonitrile-
water (0.2% formic acid included). The spray voltage was set of 4.0 kV and
the spray angle of 65°. Prior to analysis, the mass spectrometer was
calibrated with 0.5 mM sodium formate solution (90% IPA) infusion flow
rate of 5 µL/min, at a mass resolution of 15,000 full width at half maximum
(FWHM) at m/z 600. The cone voltage was set at 50 V and the source
temperature at 50 °C. Mass spectrometric analysis was performed in
positive ion polarity and sensitivity mode over a mass range of
100–2000m/z with a scan time of 0.5 s/scan. The acquisition time for
each sample was 10 s.

Multivariate data analysis
Mass spectra were collected using MassLynx v4.1 (SCN959) (Waters,
Wilmslow, Manchester, UK). The recorded scans for each sample were
combined to give an average spectrum and thus one spectrum for each
sample was used to build the chemometric models. Raw datasets were
analysed with Abstract Model Builder (AMX) v 1.0.1563.0 (Waters
Research Centre, Budapest, Hungary). AMX was used to create PCA
models, and linear discriminant analysis (LDA) models. All chemometric
models were calculated using the mass region of m/z 100–2000, a
spectral intensity limit of 1.00E6 counts, and a mass bin width of 0.2 Da.
The validation of each model was assessed by the software’s built in
“20% out” bootstrapping option. The model was calculated using 80% of
the samples and data files left out were classified using the
training model.
The multi-variate statistical software package AMX Recognition (Version

0.9.2092.0; Waters Research Centre, Budapest, Hungary) was used to
validate and rapidly recognise unknown samples. Four partitions (80%) of
the data set were used to build a training model. An outlier threshold
(standard deviation) of 5 σ was used for class assignments. A sample will
be considered as an “outlier” and excluded from further analysis if the
variability exceeds the outlier threshold.
The processed matrix generated within the prototype modelling

software was exported to SIMCA 14.1 (Umetrics, Umea, Sweden) allowing
the data to be exposed to further chemometric functions such as
orthogonal partial least squares-discriminant analysis (OPLS-DA) with the
data being mean centred and Pareto scaled. OPLS-DA predictive results
visualisation were provided as S-plots and Coefficients vs. VIP. The
difference between classes will be shown initially as differences in mass
bins, from which the accurate mass of analytes (biomarkers) found within
each mass bin can be obtained.
Biomarkers were identified using Lipid Map databases. The instrument

was run in MS/MS mode to obtain daughter ions for the identification or
confirmation of the chemical structures of biomarkers. Data were acquired
in the m/z range of 100–2000 for comparison with the characteristic MS
fragmentation patterns from online databases.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The author declared that the datasets generated during the current study are
available from the corresponding author on reasonable request.
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