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Abstract: Nicotine replacement therapy (NRT) is widely used to limit the withdrawal symptoms
associated with cigarette smoking cessation. However, the available NRT formulations are limited by
their short release profiles, requiring frequent administrations along with local side effects. Thus, the
objective of this study is to develop an NRT formulation that offers prolonged, sustained nicotine
release. Thermoresponsive in situ gelling systems containing nicotine were prepared using poloxamer
407 (P407) and poloxamer 188 (P188). The system was optimized using a three-factor, two-level full
factorial design (23). A formulation composed of P407 (20% w/w), P188 (5% w/w), and loaded with
nicotine (0.5% w/w) exhibited sol-to-gel transition at a suitable temperature close to physiological
temperature (30 ◦C). The rheological analysis demonstrated a Newtonian-like flow at room tem-
perature, suggesting ease of administration via injection, and semisolid gel status at physiological
temperature. The optimized formulation successfully sustained nicotine in vitro release over 5 days
following single administration. The findings suggest that poloxamer based in situ gelling systems
are promising platforms to sustain the release of nicotine.

Keywords: nicotine; sustained release; prolonged release; poloxamers; design expert; factorial design;
gelation temperature; rheological properties

1. Introduction

Cigarette smoking is a worldwide health issue responsible for seven million deaths
per year [1–3]. Cigarette smoke contains nicotine and a complex mixture of potential
toxic substances such as carbon monoxide, polycyclic aromatic hydrocarbons, and oxidant
gases [4]. Nicotine dependency is the major driving force towards excessive cigarette
consumption, which is linked to multiple local adverse effects such as increased salivation,
burning sensation in the mouth and throat, abdominal pain, nausea, and vomiting [5].
Additionally, cigarette smoking increases cardiotoxicity risk and can cause serious systemic
side effects such as tremors, cyanosis, prostration, dyspnea, convulsion, and even coma [5].

There is an increasing global interest in decreasing the number of cigarette smokers,
attributed to the health complications of smoking. Yet, smoking cessation is associated with
multiple withdrawal symptoms such as craving to smoke, restlessness, lower concentration,
and trouble sleeping. Nicotine replacement therapy (NRT) has been introduced to reduce
withdrawal symptoms and assist in smoking cessation. They also help in avoiding the side
effects caused by other chemicals present in the cigarette smoke [4,5]. Pharmacologically,
NRT acts by stimulating the nicotine receptors in the brain, thereby releasing dopamine in
the nucleus domain with a potential to reduce the withdrawal symptoms of nicotine and
minimize the urge to smoke [6]. Several NRT formulations are available in the market, such
as gum, sublingual tablets, lozenges, and nicotine patches. Yet, they are challenged by their
short release profile, requiring frequent administration. Therefore, a sustained delivery
option that could provide improved delivery for a longer period and minimize the local
side effects would be a valuable therapeutic option for smoking cessation.
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Thermoresponsive in situ gelling systems, such as poloxamers, undergo sol-to-gel
transition in response to temperature variations [7]. Poloxamers are Food and Drug Ad-
ministration (FDA) approved biocompatible and biodegradable polymers. They allow
easy administration via injection, as they are liquid at room temperature and form a gel
depot at body temperature (37 ◦C), thus enabling the slow release of the incorporated
drug. Poloxamers are non-ionic amphiphilic triblock copolymers of polyethylene oxide-
polypropylene oxide-polyethylene oxide (PEO-PPO-PEO) (Figure 1), and can encapsulate
both water-soluble and lipid-soluble drugs [8]. Modifying the ratio of hydrophobic (PPO)
to hydrophilic (PEO) components plays a significant role in altering the formulation rhe-
ological, mechanical, and drug release properties [9]. Hence, a poloxamer based in situ
gelling system is a potential delivery platform that can be utilized to overcome some of
the problems encountered with the current delivery systems. Another advantage of using
poloxamers over other delivery systems is the involvement of fewer manufacturing steps
and cost savings.
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Figure 1. Representation of chemical structure of poloxamer; P407 x = 100, y = 68 and P188 x = 76,
y = 29 (16).

Nicotine (Figure 2) is an alkaloid found in tobacco plants (Nicotiana tabacum). Nicotine
is highly hydrophilic and lipophilic, possessing two potential ionizable functional groups
in its chemical structure with pKa’s of 3.04 and 7.84, respectively [10]. Nicotine is widely
used as replacement therapy for smoking cessation to minimize addiction and side effects.
It easily crosses the mucosal membranes due to its freely available base form [10].
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Figure 2. Representation of chemical structure of nicotine with different charged species [10].

Hence, the main focus of this study is to explore the potential of poloxamer based in
situ gelling systems for sustained delivery of nicotine for prolonged duration.

2. Results and Discussion
2.1. Screening of Poloxamer Concentrations

A three-factor, two-level (23) full factorial experimental design (Design-Expert 11
software) was used to study the effect of the formulation components on the sol-to-gel
transition (gelation) temperature. In the first screening, various concentrations of P407 alone
and in combination with P188 were studied (Table 1). In line with the literature, formulation
containing P407 below 15% did not show sol-to-gel transition, even when subjected to
temperatures above 50 ◦C [11–13]. On the other hand, P407 alone at 20% concentration has
shown sol-to-gel transition at room temperature (<25 ◦C), suggesting its unsuitability for
the intended purpose [13]. Of note, a combination of P407 and P188 demonstrated sol-to-gel
transition within the desired temperature range of 28–35 ◦C suitable for intramuscular
applications.
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Table 1. First screening design showing variables (in coded values) and responses.

Variable 1 Variable 2 Variable 3 Response 1

Std Run A: P407 (%) B: P188 (%) C: Nicotine
(%)

Experimentally Determined
Gelation Temperature (◦C)

9 1 −1 −1 +1 >50
7 2 +1 +1 −1 33
20 3 0 0 0 42
2 4 −1 −1 −1 >50
13 5 −1 +1 +1 >50
8 6 +1 +1 −1 30
12 7 +1 −1 +1 24
17 8 0 0 0 43
10 9 −1 −1 +1 >50
16 10 +1 +1 +1 30
14 11 −1 +1 +1 >50
11 12 +1 −1 +1 21
4 13 +1 −1 −1 21
19 14 0 0 0 43
6 15 −1 +1 −1 >50
18 16 0 0 0 >50
15 17 +1 +1 +1 31
3 18 +1 −1 −1 24
1 19 −1 −1 −1 >50
5 20 −1 +1 −1 >50

(A) P407 concentration (%); Low (−1) 10%, Centre (0) 15%, High (+1) 20%, (B) P188 concentration; Low (−1) 0%,
Centre (0) 5%, High (+1) 15% (%), (C) Nicotine concentration (%); Low (−1) 0%, Centre (0) 0.25%, High (+1) 0.5%.

In the second screening test, the concentration range of P407 was readjusted to 15–
20% w/w (Table 2). An inverse relationship was observed between the P407 concentration
and gelation temperature [12–14], while a direct relationship was observed between the
P188 concentration and the sol-to-gel transition temperature. This may be due to the
relatively hydrophobic nature of P407 and the relatively hydrophilic nature of P188 [8,12].
Of note, both blank and nicotine loaded formulations demonstrated comparable gelation
temperatures, suggesting a minor effect of nicotine presence on the thermoresponsive
properties of poloxamer gels. Therefore, nicotine concentration was omitted in the further
optimization study.

Furthermore, it was revealed that the variables A (P407%) and B (P188%) had greater
influence on the gelation temperature, with a standardized effect of 11.88 and 13.63, and
percentage contribution of 35.75 and 47.07, respectively (Table 3). This implies that variable
B had greater influence on increasing the gelation temperature than variable A, whereas
nicotine concentration or interactions between variables had a limited effect on the gelation
temperature. The main effect and percentage contributions of the formulation variables are
shown in Table 3.

Table 2. Second screening design showing variables (in coded values) and responses.

Std Run Variable 1
A: P407 (%)

Variable 2
B: P188 (%)

Variable 3
C: Nicotine

(%)

Response 1
Experimentally Determined
Gelation Temperature (◦C)

11 1 +1 −1 +1 20
17 2 0 0 0 37.5
14 3 −1 +1 +1 48
15 4 +1 +1 +1 26
7 5 +1 +1 −1 29
13 6 −1 +1 +1 42
5 7 −1 +1 −1 46
9 8 −1 −1 +1 26
6 9 −1 +1 −1 46
18 10 0 0 0 34
10 11 −1 −1 +1 26
20 12 0 0 0 32
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Table 2. Cont.

Std Run Variable 1
A: P407 (%)

Variable 2
B: P188 (%)

Variable 3
C: Nicotine

(%)

Response 1
Experimentally Determined
Gelation Temperature (◦C)

1 13 −1 −1 −1 25
2 14 −1 −1 −1 27
8 15 +1 +1 −1 30
16 16 +1 +1 +1 26
3 17 +1 −1 −1 20
19 18 0 0 0 36
12 19 +1 −1 +1 20
4 20 +1 −1 −1 20

(A) P407 concentration (%); Low (−1) 15%, Centre (0) 17.5%, High (+1) 20%„ (B) P188 concentration (%); Low
(−1) 0%, Centre (0) 5%, High (+1) 15%„ (C) Nicotine concentration (%); Low (−1) 0%, Centre (0) 0.25%, High
(+1) 0.5%.

Table 3. Effects of each single variable and its interactions in variable screening.

Response (Gelation Temperature)

Variable Standardized Effect Contribution (%)

A 11.88 35.75
B 13.63 47.07
C −1.13 0.32

AB −5.88 8.75
AC −0.63 0.10
BC −1.13 0.32

ABC −0.63 0.10
Curvature 4.53 5.20

(A) P407 concentration (%), (B) P188 concentration (%), (C) Nicotine concentration (%).

A normal plot of parameters was utilized to screen for the significant variables, as
illustrated in Figure 3A. From the three tested independent variables, the factors and
interactions deviating from the straight line were considered to have a significant effect
on the gelation temperature. It is demonstrated on the plot that the concentrations of
P407 (A), P188 (B), and the combinations of poloxamers (AB) were implicated as greatly
influencing the response (gelation temperature). In addition, the Pareto chart also illustrates
the statistical significance of each variable (Figure 3B). The Pareto chart represents the value
by outlining the two limits, namely the Bonferroni limit line (t value of effect = 3.236) and
the t limit line (t value of effect = 2.179). The variables and interactions of components with
a t value above the Bonferroni line are identified as highly significant. Those between the
Bonferroni line and the t limit line are thought to have significantly affected the response.
In contrast, the variables and interactions with a t value of effect below the t limit line are
considered as statistically insignificant and can be omitted for further analysis.

After determining the main effects on the response, ANOVA was then performed to
identify the significant factors, with a p-value less than 0.05. The results showed that the
model passed the significance test with a probability of less than 0.05 (>95% confidence).
The two factors, namely P407 (A) and P188 (B), demonstrated a p-value less than 0.05
and significantly affected the sol-to-gel transition temperature. Moreover, the interaction
between A and B was also observed to significantly affect the response. Thus, from this
analysis, the non-significant variable, nicotine concentration (C), was not included in the
optimization study. Furthermore, in this analysis, the model curvature appeared to be
statistically significant with an F-value and p-value of 23.94 and 0.0005, respectively. With
this outcome, a central composite design was employed for the further optimization of
response.
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Optimization and Evaluation

After the screening phase, a central composite design was employed to optimize and
evaluate the results as suggested by the factorial design. The formulation variables selected
were based on the results obtained from the factorial design. The poloxamer concentration
range was selected based on the gelation temperature from the second screening. The
software generated 13 runs of preparations, as shown in Table 4, with gelation temperature
obtained from the experiments conducted. From the final analysis, the program suggested
some formulations and predicted their responses containing a probability factor named
“desirability” that ranged between 0 and 1. ANOVA was applied to estimate the significance
of the model (p < 0.05), and the model F-value (<100) implies that the model is significant.
Similarly, the fit statistics predicted the R2 value to be in reasonable agreement with the
adjusted R2 value (i.e., the difference is less than 2). The adequate precision measuring the
signal to noise ratio was also desirable, and thus, the model can be used to navigate the
design space between formulation variables.

As shown in Table 5, the F-value of 39.75 implies that the model is significant. There is
only a 0.01% chance that an F-value this large could occur due to noise. The p-values less
than 0.05 indicated that the model terms are significant. In this case, A and B are significant
model terms, as shown in Table 5. The predicted R2 of 0.7748 is in reasonable agreement
with the adjusted R2 of 0.8659 (i.e., the difference is less than 0.2). Adequate precision
measures the signal to noise ratio. A ratio greater than four is desirable. Thus, this model
can be used to navigate the design space to accommodate variabilities. The model can also
be represented graphically as a contour plot or a three-dimensional surface plot describing
the response as a function of the two factors, A: P407 and B: P188 concentrations, as shown
in Figure 4A,B, respectively. It can be seen from the graphs that the desired response can be
achieved with a high concentration of P407 (20%) and a low concentration of P188 (5%).
This could be the reason why a curvature is not observed in the surface plot, even though
it was detected in the design models. It implies that if both variables were required in
high concentration to achieve the desired response, a curvature could be observed in the
surface plot [14]. Additionally, the two-dimensional contour plots relating to variables A
and B (interaction between P407 and P188) were found to be linear, indicating the absence
of interactions between these two variables [14]. From several solutions derived from
numerical optimization, few formulations were selected with an ideal desirability.
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Table 4. Optimization design showing variables (in coded values) and responses.

Std Run Variable 1
A: P407 (%)

Variable 2
B: P188 (%)

Response 1
Experimentally Determined
Gelation Temperature (◦C)

7 1 0 −2.04 37
5 2 −2.04 0 49
2 3 +1 −1 30
4 4 +1 +1 32
10 5 0 0 42
12 6 0 0 42
11 7 0 0 43
9 8 0 0 43
8 9 0 +2.04 48
13 10 0 0 40
3 11 −1 +1 49
6 12 +2.04 0 33
1 13 −1 −1 46

Table 5. ANOVA for the response optimization.

Source Sum of Squares Df ** Mean
Square F-Value p-Value

Model 439.62 2 219.81 39.75 <0.0001 *
A 386.8 1 386.8 69.94 <0.0001 *
B 52.82 1 52.82 9.55 0.0114 *

Lack of fit 49.05 5 9.81 6.54 0.0464 *
Pure Error 6 4 1.5
Cor Total 494.92 12

(A) P407 concentration (%), (B) P188 concentration (%). * statistically significant p < 0.05, R2 = 0.8883, Adjusted
R2 = 0.8659, Predicted R2 = 0.7748, ** degree of freedom.
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2.2. Thermoresponsive Gel Preparation

The composition and gelation temperatures of the selected formulations prepared
are shown in Table 6. As presented, the obtained gelation temperatures were in line with
those predicted by the model. The inclusion of various nicotine concentrations in this study
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had a minor influence on the gelation temperature, probably due to the presence of two
ionizable functional groups in its structure [10]. Ionizable aqueous soluble drugs tend to
stay in the interconnected aqueous channels within the gel matrix, with minimal effect on
micellar assembly and entanglement [9]. As shown, all formulations exhibited sol-to-gel
transition at a temperature range of 28 to 35 ◦C, suggesting their suitability for the intended
purpose. Formulations F1 to F3 showed gelation between 32 and 34 ◦C (Table 6), whereas
formulation F4 demonstrated sol-to-gel transition at 30 ◦C. The developed formulation
could ultimately find clinical application following administration via injection into a
peripheral limb. As peripheral limbs can be considerably cooler than core temperature
(37 ◦C), we selected 30 ◦C as the lowest sol-to-gel transition temperature that would be
acceptable. Sol-to-gel transition temperatures higher than this would risk the formulation
not gelling, or only gelling slowly, in the body with much faster release and a loss of any
sustained release. Hence, we selected formulation F4, loaded with nicotine (0.5%) (F6), for
further in vitro characterization involving mechanical and in vitro drug release studies.

Table 6. Gelation temperatures for the optimized formulation.

Formulations Factor 1
A: P407 (%w/w)

Factor 2
B: P188 (%w/w)

Factor 2
C: Nicotine

(%w/w)

Response 1
Experimentally

Determined Gelation
Temperature (◦C)

F1 19.83 5.95 0 34
F2 19.83 5.95 0.25 32
F3 19.83 5.95 0.5 32
F4 20 5 0 30
F5 20 5 0.25 30
F6 20 5 0.5 30

2.3. Rheological Studies

The rheological properties of the developed formulations help predict their ease of
injectability (ability to be administered using a syringe and needle) at room temperature,
and the in vivo performance after being injected into the body [15]. The viscosity of the
formulation was measured as a function of shear rate against different shear stresses to
determine the flowability at 20 ◦C (Figure 5A) and 37 ◦C (Figure 5B). A linear relationship
between shear stress and shear rate was obtained at 20 ◦C, suggesting a Newtonian flow. On
the other hand, a pseudoplastic flow was demonstrated at 37 ◦C, indicating the gel status
at test conditions. This is desirable as it enables ease of syringeability (withdrawal from
vial to syringe) and injectability at room temperature [16]. The solid-like status at 37 ◦C
suggests the formation of a drug gel depot with a potential to sustain drug release. Of note,
there was no significant difference in the flow behaviour between F4 and F6, indicating that
the nicotine has a limited effect on the rheological properties, which could be attributed to
its high aqueous solubility as explained above. Figure 5C shows the viscoelastic behaviour
of the blank formulation (F4) and formulation loaded with nicotine (F6) over a range of
angular frequencies at 37 ◦C. As presented, both formulations exhibited significantly higher
storage modulus (G′) as compared to their loss modulus (G′′) at all tested frequencies,
suggesting their gel status at that temperature [17]. The greater elasticity of the gel could
retard gel erosion, leading to a sustained release profile.
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Figure 5. Rheological properties, showing (A) Flowability at 20 ◦C indicating a Newtonian flow
behaviour, (B) Flowability at 37 ◦C indicating a pseudoplastic flow behaviour for both formulations:
blank (F4) and nicotine loaded (F6), and (C)Viscoelasticity measurements at 37 ◦C demonstrating an
elasticity with loss modulus having dominancy over the storage modulus for both formulations.

2.4. Measurement of Mechanical Properties
2.4.1. Gel Strength

Gel strength and hardness of the formulations (F4 and F6) were examined to deter-
mine the gel mechanical properties at 37 ◦C. As presented in Table 7, both formulations
demonstrated comparable mechanical properties, suggesting a limited effect of nicotine on
gel microstructure.

2.4.2. Injectability

The injectability of the formulations was investigated to ensure the suitability of the
developed formulations for intramuscular administration. As presented in Table 7, a
slight variation in injectability was observed between the blank (F4) and nicotine loaded
(F6) formulations. It was observed that once the formulation started to flow through the
needle, the force remained almost steady for the blank formulation until the plateau force
was reached, followed by a reduction in the end constrain force. The nicotine loaded
formulation indicated a rather lower expelling force than the blank formulation, consistent
with its lower gel strength and hardness properties. This observation is similar to previous
studies where a stronger gel required a greater injectability force than a weaker gel [18].

Formulations consisting of in situ gelling systems are often highly viscous and require
large needles, such as an 18-gauge, to be easily administered, causing pain and discomfort
to the patient [15,19,20]. As demonstrated, the optimized formulation was easily injected
through a 21-gauge needle, suggesting less pain during administration.
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Table 7. Mechanical properties of the optimized formulations.

Formulation

Hardness
(gf)

Gel Strength
(gf.s)

Injectability

Stiction
Force (gf)

Plateau
Force (gf)

End
Constraint

(gf)

(Mean ± SD)

Blank (F4) 28.5 ± 3.4 113.6 ± 0.9 557.7 ± 50.6 557.9 ± 50.4 534.5 ± 133.5
Nicotine

loaded (F6) 27.9 ± 3.2 112.6 ± 1.8 535.2 ± 143.8 521.7 ± 220.8 517.5 ± 98.1

2.5. Calibration Curve of Nicotine

As shown in Figure 6, the response between the nicotine concentration and absorbance
was linear in the concentration range of 10 to 100 µg/mL. The standard deviation of the
slope and intercept obtained were low, with the determination coefficient (R2) exceeding
0.99, suggesting the validity of the developed method for intended purpose [21].
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2.6. In Vitro Release Studies

As shown in Figure 7, the optimized formulation demonstrated a sustained release of
nicotine over a week with an initial burst release of ~30% within the first hour. This could
be explained by a lag time between injection and gel formation [22]. This was followed by
a slower and sustained release of nicotine attributed to the formation of a highly entangled
matrix, hindering the diffusion of nicotine to the external environment [7,23–25]. Of note,
the drug release rate was linear over a period of 5 days and reached a plateau beyond
5 days. The findings suggest the potential of poloxamers for sustaining nicotine release.
Yet, further studies are required to fully understand the release mechanism and to study
the in vivo performance of the developed formulation.

In comparison to the available NRT formulation, a sustained release intramuscular
formulation is of advantage as it will improve patient compliance by reducing frequent
administration, as well as improving bioavailability. Moreover, the initial burst release
observed in this study could be beneficial, as it will provide a rapid systemic absorption of
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nicotine comparable to cigarette smoking [26], thus providing patient satisfaction and alle-
viating the urge for frequent nicotine intake from cigarettes to supply the immediate feeling
of satisfaction. In addition, the formulation could give sustained release over a longer
period to maintain nicotine systemic concentration, and minimize nicotine dependency
and side effects from smoking cigarettes.
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3. Future Perspectives

The present study investigated the potential of poloxamers for sustaining the release
of nicotine in NRT. Future studies might consider the physical blending of the optimized
formulation with additives, such as sodium chloride, sodium alginate, and methylcellulose,
to modulate the initial burst release of nicotine [9]. A high-performance liquid chromatog-
raphy might be used in analyzing the release samples, as it offers higher sensitivity and
specificity compared to UV spectrophotometry [27]. Finally, the in vitro data from this
study could be the basis for further in vivo investigation of a sustained release formulation
for nicotine delivery.

4. Conclusions

This study is the first to employ poloxamer based in situ gelling systems for sustaining
nicotine delivery as an NRT option. A quality by design approach was successfully used
in developing an optimized poloxamer based in situ gelling system, with the ability to
provide sustained release of nicotine over a period of 5 days. The study demonstrated that
the gelation temperature can be adjusted by modifying the matrix composition. Mechanical
studies showed the suitability of the optimized formulation for parenteral administration.
This is the first poloxamer-based formulation to offer a sustained nicotine release, with
potential clinical benefits in NRT.

5. Materials and Methods
5.1. Materials

Nicotine (≥99%) used in this study was obtained from Thermo Fisher Scientific New
Zealand. Poloxamer 407 (P407) (Molecular weight ~12,600 g/mol), Kolliphor (P188)

(Molecular weight ~7680–9510 g/mol) and phosphate-buffered saline (PBS) tablets
were purchased from Sigma-Aldrich (St. Louis, MO, USA). Water was obtained from a
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CFOF 01205 Milli-Q water purification system (Millipore, Burlington MA, USA). All other
reagents and solvents used were of analytical grade.

5.2. Methods
5.2.1. Experimental Design for Screening and Optimization Study

The design of experiments (DoE) in this study was constructed using Design-Expert®

software (version 11, Stat-Ease, Inc., Minneapolis, MN, USA). A two-level, three-factorial
(23) design approach was adopted to screen the poloxamer and drug concentration for the
preparations of in situ gels. In the screening phase, the independent parameters screened
were concentration of P407, concentration of P188, and concentration of nicotine drug. The
level for each formulation variable was set based on the studies done in the past [12,22].
The selected response for this study design was sol-to-gel transition temperature (gela-
tion temperature). The variables were screened at two levels: high and low, which are
represented by transform codes −1 and +1, respectively (Table 8). The 23 factorial design
statistical software generated various compositions of P407, P188, and nicotine drug con-
centrations comprising of 20 experimental runs of in situ gel formulations. The number of
runs included duplicates at centre points to minimize experimental errors and check for
the response curvature.

The experiments were carried out in triplicate in a random order as suggested by the
software. As shown in Table 8, each variable employed in the design was given a high-level
and low-level value with the generation of centre point values by the software. Based on
the results (responses) obtained from the first screening, P407 concentration was readjusted
for the second screening (Table 8).

Table 8. Factorial design variables and experimental conditions.

Factors

1st Screening 2nd Screening

Level Used, Actual (Coded) Level Used, Actual (Coded)

Low (−1) Centre (0) High (+1) Low (−1) Centre (0) High (+1)

P407 (%) 10% 15% 20% 15% 17.5% 20%
P188 (%) 0% 5% 15% 0% 5% 15%

Nicotine (%) 0% 0.25% 0.5% 0% 0.25% 0.5%

5.2.2. Optimization of Poloxamer Concentrations

A central composite response surface design was employed for the optimization study.
The critical variables that greatly influenced gelation temperature, as identified in the
screening phase, were further optimized using the central composite design. In this study,
the variables P407 and P188 were selected as independent variables and examined at five
different concentrations. The main effects of the variables on the response were derived
from the Pareto chart. The percentage contribution towards the response was obtained
from the standardized effect and by minimizing the sum of square values. A total number
of 13 runs of experiments was done with five replicates at the centre points. Statistical
parameters, such as Fisher F-value using F-test, determination coefficient (R2), adjusted
R2 (R2 adj), and the R2 of prediction (R2 pred), were utilised to select the best regression
model among the linear, two-factor interaction model and quadratic model, and the data
analysis was performed using ANOVA by testing for significance. Contour plots were used
to display the relationship and interactions between the variables and the responses, and
the optimal levels were derived from the plots.

5.2.3. Thermoresponsive In Situ Gel Preparation

Thermoresponsive in situ gels were prepared by the cold method as previously de-
scribed [16]. Briefly, a predetermined weight of P407, P188, and nicotine, as suggested by
the DoE design, were added in PBS (pH 7.4) and stirred at 150 rpm overnight under 4 ◦C
until a clear homogenous solution was obtained.
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5.2.4. Sol-to-Gel Transition (Gelation) Temperature

The gelation temperature of the prepared formulations was determined using a Dis-
covery HR-2 rheometer (TA instruments, Melbourne, Australia), equipped with a 40 mm
stainless steel parallel plate and temperature-controlled Peltier plate. The temperature
ramp (20–50 ◦C) was performed at a heating rate of 2 ◦C/min to measure the sample
viscosity as a function of temperature. The sample was considered gelled at the mid-point
of the increasing viscosity between the liquid and gel state [28]. The experiments were
conducted in triplicate.

5.2.5. Rheological Studies

The rheology experiments (involving viscoelasticity and flow behaviour) were per-
formed using the HR-2 rheometer. The frequency sweeps were carried out to observe the
viscoelastic properties of the gel. An angular frequency range of 1–65 rad/s was selected,
and the samples were studied at 37 ◦C. All the experiments were performed in the linear
viscoelastic region of the gels (applied stress 0.02 Pa) [22]. The flowability measurements
were determined as a function of shear stress (Pa) against shear rate (1/s) in the range of
2–200 s−1 at both 20 ◦C and 37 ◦C [23].

5.2.6. Measurement of Gel Mechanical Properties

• Gel strength

The gel strength (compressibility) and hardness (firmness) were determined using a
texture analyser (Stable Microsystems, UK) with a cylinder probe (10 mm). The formulation
(15 mL) was transferred into vials and maintained at 37 ◦C for 20 min to ensure gel
formation. The developed gel was then compressed to a depth of 10 mm with a trigger
force of 2 gf at a rate of 2 mm/s, and the force required for penetrating the gel was measured.
Each formulation was tested in triplicate. Hardness and gel strength were derived from the
resultant force-time plot using the Exponent 32 software [22].

• Injectability

The prepared formulations were tested for injectability using a universal syringe rig
(A/USR) attachment (Stable Microsystems, Surrey, UK), a 10-mL syringe, and a 21-gauge
(G) needle at a speed of 5 mm/s with a contact force of 50 gf, return speed of 20 mm/s,
and return distance of 50 mm. The parameters measured were (i) stiction force, the force
required to overcome the resistance force of the syringe’s plunger, (ii) plateau force, the
force required to maintain plunger movement to expel the content from the syringe, and
(iii) the end constraint, which is the syringe plunger compression against the end of the
syringe body [18]. The study was performed in triplicate.

5.2.7. Preparation of Calibration Curve for Nicotine

Nicotine was quantified using a UV-Vis spectrophotometric method. Initially, the
nicotine stock solution (1 mg/mL) was prepared in PBS (pH 7.4). The serial dilution (5, 10,
20, 40, 80 and 100 µg/mL) of the stock solution was prepared in the same diluent, and the
absorbance of the prepared solutions was measured at 258 nm. The absorbance was plotted
against the concentration, and the linear regression method was applied to determine
the linearity and the determination coefficient (R2). For the absorbance greater than 1,
the samples were diluted and measured again, and the dilution factor was considered
when plotting the calibration curve. The experiment was performed in triplicate to get the
standard deviation for the nicotine concentrations.

5.2.8. In Vitro Drug Release Study

In vitro drug release was carried out using falcon tubes in PBS medium (pH 7.4) at
37 ◦C. Specified amounts (2 mL) of formulation were injected into the prewarmed (37 ◦C)
PBS (10 mL) contained in the falcon tube. Tubes of gelled formulation were then placed
in the shaking water bath at 35 rpm and maintained at 37 ◦C. At predetermined time
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points, 1 mL of samples was withdrawn for analysis and the volume was replaced with
pre-warmed PBS solution.
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