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Abstract

Patterns of trait distribution among competing species can potentially reveal the processes

that allow them to coexist. It has been recently proposed that competition may drive the

spontaneous emergence of niches comprising clusters of similar species, in contrast with

the dominant paradigm of greater-than-chance species differences. However, current clus-

tering theory relies largely on heuristic rather than mechanistic models. Furthermore, stud-

ies of models incorporating demographic stochasticity and immigration, two key players in

community assembly, did not observe clusters. Here we demonstrate clustering under parti-

tioning of resources, partitioning of environmental gradients, and a competition-colonization

tradeoff. We show that clusters are robust to demographic stochasticity, and can persist

under immigration. While immigration may sustain clusters that are otherwise transient, too

much dilutes the pattern. In order to detect and quantify clusters in nature, we introduce and

validate metrics which have no free parameters nor require arbitrary trait binning, and weigh

species by their abundances rather than relying on a presence-absence count. By general-

izing beyond the circumstances where clusters have been observed, our study contributes

to establishing them as an update to classical trait patterning theory.

Author summary

Species traits determine how they compete with each other. As such, patterns in the

distributions of traits in a community of competing species may reveal the processes

responsible for coexistence. One central idea in theoretical ecology is that the strength of

competition relates to similarity in species needs and strategies, and therefore if competi-

tion plays out at short timescales, coexisting species should be more different than

expected by chance. However, recent theory suggests that competition may lead species to

temporarily self-organize into groups with similar traits. Here we show that this clustering

is a generic feature of competitive dynamics, which is robust to demographic stochasticity

and can be indefinitely maintained by immigration. We show that clustering arises

whether species coexist by partitioning resources, environmental preferences, or through

tradeoffs in life-history strategies. We introduce and validate metrics that, given species

traits and abundances, determine whether they are clustered, and if so, how many clusters

occur. By showing the generality of self-organized species clusters and providing tools
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for their detection, our study contributes to updating classical ideas about how competi-

tion shapes communities, and motivates searches for them in nature.

Introduction

Competition is a driving force in nature, and a central question in ecology is how it shapes

community structure. Species traits mediate their interactions with the environment and each

other, and therefore determine how they compete. As such, patterns of trait distribution

among co-occurring species can give insights into the underlying coexistence mechanisms [1–

5]. Theory shows that coexistence is only stable if species differ in their ecological needs and

impacts—i.e. they must display niche differences (see Glossary in S1 Text) [6, 7]. These differ-

ences reduce competition between species compared to competition within species, thus

allowing each species to grow from low abundance in the presence of the others. If species

are arranged on niche axes so that proximity on those axes indicates similarity in their niche

strategies, they are expected to display limiting similarity–greater-than-chance differences on

those axes [8]. Ecologists use trait axes as proxies for niche axes, and look for similar patterns

therein, usually in the form of overdispersion or even spacing between species on these axes

[9–17]. This classical idea remains the dominant paradigm, despite mixed empirical support

[2, 3, 5].

In contrast, recent studies suggest that competition causes the spontaneous emergence of

transient clusters of species with similar traits [18–20]. They find that limiting similarity results

only if competition plays out to the final stage, whereby all species are excluded except for

those with optimal niche strategies (see Glossary in S1 Text). Those species are niche-differen-

tiated enough from one another (i.e. have enough space between them on the niche axis) to all

stably coexist together, having emerged as dominant over other strategies through the compet-

itive process. When species outnumber optimal niches, e.g. phytoplankton communities with

more species than resources [21], competitive exclusion will ensue. However, species near the

optimal niche strategies are excluded more slowly than those further away from these optimal

strategies [22–24]. As a result, the community temporarily self-organizes into clusters of simi-

lar species near optimal strategies, with gaps in between.

Clustering has traditionally been associated with environmental filters [25], and more

recently with one-sided competition without a balancing tradeoff, such as competition for

light where taller is better [26]. However, those will tend to produce a single big cluster around

the favored trait, whereas partitioning of a niche axis will lead to multiple clusters, one per

optimal niche strategy. Patterns of multiple clusters have in fact been reported in empirical

studies of body size in phytoplankton communities and certain animal taxa [18, 27–29]. This

phenomenon has been interpreted to bridge coexistence through differences (niche theory)

and similarity (neutral theory) [30], and as such potentially represents a unification of classical

ideas and a generalization of limiting similarity.

Scheffer and van Nes [18] first demonstrated the emergence of transient clusters in Lotka-

Volterra dynamics. Later work further suggested that clusters are a generic outcome of Lotka-

Volterra dynamics [20] except for special shapes of the function connecting competition to

traits [31, 32]. Several mechanisms can make these transient clusters persist, such as specialist

enemies [18] and periodic environments [33, 34].

However, the generality of clusters as a signature of competition cannot be established with-

out showing that they emerge in communities subject to stochastic processes. In particular,

immigration and ecological drift are intrinsic to most communities, and have been amply
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demonstrated to be important players in nature [30, 35–37]. In fact, models ignoring all of

biology but drift and immigration successfully describe observed macroecological patterns

[38] (which of course does not mean deterministic forces are unimportant). Yet, clustering

remains unseen in competition models incorporating these processes [39–41]. In plankton

models where clustering occurs, immigration has as a negative impact [21].

Moreover, clusters have not been widely demonstrated beyond Lotka-Volterra dynamics.

Lotka-Volterra competition equations are a heuristic description which does not specify a

niche mechanism. They are a special limit [42] of MacArthur’s consumer-resource dynamics

model [43], and cannot describe all types of competition [44]. While species clusters have been

shown to emerge in explicit consumer-resource dynamics [21, 34], these studies ignored the

possibility of resource depletion effects. The latter have been shown to greatly affect competi-

tive relations between consumers, for example by violating the assumption that competition

always decreases with trait differences [45]. It is also not clear that clustering should emerge

among species competing along environmental gradients; indeed, early studies of stochastic

niche dynamics [39–41] focused on competition of this type and found no clustering pattern

(although these studies, which predate [18], were not specifically looking for clustering).

Finally, it is not known whether clusters emerge in communities characterized by hierarchical

competition among species that coexist via life-history tradeoffs. These mechanisms, such as

the competition-colonization tradeoff [46] and the tolerance-fecundity tradeoff [47], have

been chiefly studied in terrestrial plants, but may enable coexistence among other sessile

organisms with a dispersive stage, such as coral, coral fishes, and microbes [47].

To determine whether clusters are a general outcome of competition as opposed to an arti-

fact of specific models, and to verify their robustness to stochastic forces, here we use a stochas-

tic niche simulation approach to investigate the emergence of clustering by traits in species

assemblages undergoing competitive dynamics and open to immigration.

We start with Lotka-Volterra dynamics, where clusters are known to emerge in the deter-

ministic model [18], to address the question of their robustness to stochastic forces. We test

this robustness with and without the confounding influence of environmental filters, which we

hypothesize might mask any clustering caused by niche partitioning. We then see how regional

diversity and immigration rate influence this robustness. Clustering intrinsically involves

many species, and should in principle be stronger, or at least more detectable, under a high

species-to-niches ratio. Therefore, we expect more clustering under higher regional diversity.

As for immigration, we expect that while it may contribute to the persistence of clusters by

keeping weak competitors from being excluded, too much immigration will drown any pattern

caused by competition.

Next, to determine whether clusters are a general outcome of competition, we analyze mod-

els spanning three key niche mechanisms: resource partitioning, habitat partitioning, and a

competition-colonization tradeoff. Under resource partitioning, we further explore the differ-

ences between scenarios with low and high resource depletion. Under competition for habitat,

we also examine the impact of dispersal limitation as opposed to global dispersal. We expect

that larger scale dispersal relative to the scale of the environmental gradient can influence

cluster emergence by lessening the dominance of emergent optimal strategies, since their

propagules often spread to locations with suboptimal habitat. If clusters are a signature of com-

petition and niche differentiation, we expect clustering to emerge generally under all scenarios

of all three niche mechanisms.

To determine whether communities are clustered beyond patterns that could arise by

chance, we present two metrics: the first uses the k-means algorithm [48], which assigns spe-

cies to clusters by minimizing trait differences within clusters. The second is based on Ripley’s

K [49], and quantifies clustering based on the sparseness of the regions between clusters. Both

Species clusters as a signature of competition
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metrics apply the gap statistic method for comparing data with null models [50]. These metrics

improve over existing tools to detect clustering [18, 27–29, 51] as they contain no free parame-

ters and do not arbitrarily bin traits. Furthermore, rather than reducing species to presence-

absence counts, our metrics weigh them by their abundance. We validate the metrics by con-

firming that they detect clusters in Lotka-Volterra communities but not in neutral

communities.

Results

All niche mechanisms (Fig 1) resulted in species clustering (Fig 2A–2G and Fig 3), demon-

strating both the robustness to stochasticity and generality of clustering emergence under

niche differentiation. In contrast, neutral communities (Fig 2H) were clustered only about as

often as expected by chance, and communities under no niche mechanism but subject to envi-

ronmental filters collapsed into a single cluster (S1 Fig). Our success at detecting clusters

under niche differentiation, combined with this lack of false detection when niche mechanisms

are absent, suggests our metrics are well-suited to quantifying the pattern arising from niche

differentiation.

Lotka-Volterra

We implemented a stochastic analogue of classical Lotka-Volterra competition, which assumes

species influence each other directly via competition coefficients. We tied those coefficients to

similarity in traits (Fig 1A), so that trait differences can enable stable coexistence (niche differ-

entiation). In its deterministic form, this type of model is known to produce clusters [18]

Fig 1. Schematic representation of niche models. Panel A illustrates Lotka-Volterra competition, while panels B-D

illustrate different niche mechanisms, with the niche axis represented on the abscissa. A. Lotka-Volterra: competition

coefficients are tied to traits, here beak size. Curve shows competitive impact by each species on the focal species,

increasing with trait similarity. B. Partitioning resources: We assume a continuum of resources (seeds), and species

traits (beak size) determine their use of the different resources. Depending on the degree of specialization, resource

depletion may occur (see text). C. Partitioning environment: species with different traits (seed size) are optimally

adapted to different environments. This model is spatially explicit, and we implement it both with and without

dispersal limitation; D. Competition-colonization tradeoff: species trade off fecundity (seed output) with ability to win

sites against other species (mediated by seed size). Seed icons adapted from design by Brgfx—Freepik.com.

https://doi.org/10.1371/journal.pcbi.1006688.g001
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(except for special cases where competition coefficients form a positive-definite matrix [32,

52]). We thus used this model to consider the robustness of clusters to stochastic forces. We

also used it to consider whether that robustness of clustering is influenced by the presence of

environmental filtering, and by regional diversity and immigration.

Clustering was strong enough in the Lotka-Volterra communities to be easily distinguish-

able by eye (Fig 2A and 2B), with over 80% of all 100 replicates testing significant at the

p< 0.05 level by either metric (Fig 3). We note that the transient clusters produced by deter-

ministic Lotka-Volterra competition are being maintained in our stochastic model by immi-

gration; when immigration is turned off, communities begin to lose species and tend towards

a limiting similarity pattern [23].

Fig 2. Abundance-by-trait pattern across niche mechanisms. For each scenario (A-H) we show one representative replicate. All communities with a niche

mechanism (A-G) are clustered at the p< 0.05 level, while the neutral community (H) is not (p = 0.1). Alternating black and red colors highlight the clusters. We

truncate the y-axis in the competition-colonization tradeoff scenario (G) to better show abundance structure among rare species. (Immigration rate m = 0.08, regional

diversity c. 400 species. All communities had 21,000 individuals, except in the partitioning environment scenario, which had 1,000 individuals. Parameters of niche

models were tuned so that without stochasticity and immigration they would produce about 13 transient clusters, and eventually 13 species stably coexisting at

equilibrium).

https://doi.org/10.1371/journal.pcbi.1006688.g002
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Environmental filtering. Environmental filters [25] or physiological constraints may

cause some species to grow faster than others in the absence of competitors. For example, spe-

cies with intermediate traits may grow faster because extreme trait values may have metabolic

costs or are maladapted to the local environment, regardless of competitive interactions. This

will affect abundances, and might interfere with the emergence of niche-driven clusters. In our

simulations, environmental filters against extreme traits caused species near the center of the

trait axis to be more abundant than their counterparts near the edges, as expected (Fig 2B), but

this had minimal impact on clustering relative to no filtering (compare average z-scores, Fig

3). However, as we increased the strength of environmental filters, they ultimately eclipsed

niche partitioning as a driver of pattern, and the community appeared as a single cluster (S2

Fig), consistent with results from environmental filters acting alone.

Regional diversity. Clustering increased with regional diversity. As we increased the

number of species in the regional pool while keeping the number of clusters fixed, the z-score

of the clustering metric rose monotonically (Fig 4). This reflects the fact that clustered patterns

in general are increasingly distinguishable from randomness as the number of items per cluster

increases (S3 Fig).

Immigration rates. Clustering had a modal relationship with immigration pressure: as we

increased the immigration rate from low values, the clustering z-score first rose, then peaked

and fell (Fig 4). This indicates that while immigration sustains the clusters by replenishing

populations that would otherwise be excluded, too much immigration dilutes the effects of

Fig 3. Clustering across niche mechanisms. Bars show percentage of replicates that were significantly clustered at

level p< 0.05 according to the k-means metric (blue) and the Ripley’s K metric (orange), out of 100 replicates.

Numbers next to bars show average z-score. For comparison, 8% of neutral communities were clustered by the k-

means metric (Z ¼ 0:07), and 7% by the Ripley’s K metric (Z ¼ � 0:12), thus close to the 5% background detection

expected from a null model (z-scores and p-values were obtained by comparing each replicate against 100 null

communities. m = 0.08, c. 400 regional species across scenarios).

https://doi.org/10.1371/journal.pcbi.1006688.g003
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local dynamics and adds noise to the pattern (S3 Fig). While this modal shape is arguably gen-

eral, the position of the mode is specific to the niche mechanism and other factors such as envi-

ronmental filters. Communities in the other niche models under immigration rate m = 0.01 as

opposed to 0.08 generally showed a similar number of clusters but fewer species per cluster,

and gaps between clusters were more rarified (S4 Fig). In some cases, this increased clustering

(S5 Fig), suggesting that m = 0.08 falls to the right of the mode in those niche models.

Resource partitioning

Assuming fast resource dynamics relative to consumers, one can derive the Lotka-Volterra

model from resource-consumer dynamics [42, 53], with trait similarity indicating similar

resource preferences [8, 43] (Fig 1B). However, this approach ignores the effects of stochastic

fluctuations in resource availability, and particularly resource depletion. The latter has been

shown to impact coexistence outcomes [54] and even competition-similarity relationships

[45]. These relationships are drivers of pattern [31], and we therefore tested whether incorpo-

rating stochastic resource dynamics and depletion affected the emergence of clusters.

In the case of low resource depletion, we found weak clustering (Fig 3). This is because

when resource depletion is low, consumers undergo approximate Lotka-Volterra dynamics

with competition coefficients following a Gaussian function of trait separation [8]. This func-

tion is positive-definite, a property that has been shown to lead to weak or no pattern (see Fig

S8 in [23] and [32, 52]). Species sorting under Gaussian competition is slow (see Fig S8 in

Fig 4. Impact of immigration and regional diversity. Clustering increases with regional diversity (black), and has a

modal relationship with immigration pressure (red). Bottom axis: number of species in the pool divided by the number

of clusters in the community. Top axis: immigration rate. Points show the mean z-score of the Ripley’s K metric across

10 replicates. Error bars show 1.96 standard errors of the mean. (m = 0.08 when varying regional diversity, and the

latter is fixed at c. 400 regional species when varying immigration).

https://doi.org/10.1371/journal.pcbi.1006688.g004
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[23]), and therefore easily overpowered by immigration. Indeed, clustering was stronger under

lower immigration pressure (S4B and S5 Figs).

Resource depletion breaks the link to Gaussian Lotka-Volterra dynamics, thereby funda-

mentally changing the competitive interactions between consumers [45, 54]. That strength-

ened clustering in our model (compare low- and high-depletion scenarios in Fig 3). As

resources were extirpated, species ended up clustering based on specialization to the remaining

ones (S6 Fig). Resource depletion thus sets the optimal niche strategies (i.e. specialization onto

remaining resources), thereby strengthening the pattern.

Habitat partitioning

Habitat is a critical resource for which species compete, and as such the environment is

thought of as a key axis of niche differentiation [55–57]. Traits reflect adaptations to different

environments, and hence competition for habitat must shape trait distribution.

To test whether niche-differentiation based on environmental preference leads to cluster-

ing, we used the model introduced by [40]. We assume a linear landscape on a habitat gradi-

ent, e.g. an elevation gradient. Different species are optimally adapted to different habitats, and

competition arises from overlap in environmental preference (Fig 1C). Competition occurs at

the recruitment stage, where the probability of recruiting is based on tolerance to the local

environment. Because dispersal can play a central role in competition for space [57, 58], we

consider two scenarios: global and local dispersal, which differ by whether individuals are

more likely to disperse shorter distances from their parents. Since this is an individual-based

model, we used a smaller community size (1,000 individuals rather than 21,000) for computa-

tional expedience.

We found that clusters also emerge under competition for habitat. Switching dispersal from

global to local had a strong impact on cluster shape, and reduced the number of species per

cluster (compare Fig 2E and 2F). This occurred as dispersal limitation effectively decreases

immigration. Moreover, the attending reduction of the diluting effects of immigration sub-

stantially strengthened clustering (Fig 3).

Competition-colonization tradeoff

All models examined so far describe symmetric competition, whereby the competitive impact

of species A on B is similar to that of B on A. Competitive hierarchies stand in contrast to this.

That is the case of the competition-colonization tradeoff [46, 59], where propagule production,

or colonization ability, trades off with the ability to displace individuals of other species, or

competitive ability (Fig 1D). Even though in this case some species are better competitors than

others, the tradeoff is a niche mechanism because it allows for the stable coexistence of multi-

ple species (see Glossary in S1 Text, S7 Fig). In fact, the model can be cast in Lotka-Volterra

form, and one can show that the net competitive impact, while asymmetric, is stronger

between more similar species (S7 Fig).

Clusters also emerged under this niche mechanism. The asymmetry in species interactions

was reflected in its asymmetric clusters (Fig 2G). The k-means metric picked up on just three

clusters in most replicates, even though without stochasticity and immigration the model pro-

duces about 13 transient clusters (S7 Fig). This is perhaps because species in the first cluster so

strongly dominated the community (e.g., the most abundant species in the first cluster in Fig

2G had 4,798 individuals, compared with 395 in the second and 392 in the third). This indi-

cates that species adopting the high-competitiveness strategy (left side of the trait axis) outper-

form both those who invest in high fecundity and the intermediate group. Dispersal limitation

could reduce the asymmetry by augmenting the benefits of high fecundity. We hypothesize

Species clusters as a signature of competition
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that a spatially explicit formulation of this mechanism would produce more similarly sized

clusters.

Metric performance

While our metrics performed equally well in the Lotka-Volterra communities, they differed in

the other niche mechanisms. Our Ripley’s K metric fared better than the k-means metric in

scenarios where species partition resources and habitat (Fig 3) (though performance was simi-

lar for resource partitioning under low immigration, see S5 Fig). The Ripley’s K metric focuses

on identifying a scale of interspecific trait difference with particularly low representation (i.e.

by which very few species pairs are separated). As such, it relies on regular spacing between

clusters and intercluster gaps. Ripley’s K is good at identifying clusters when that spacing is

regular, even in cases where the overall pattern is noisy (the resource partitioning cases), or

involves low-occupancy clusters (the habitat partitioning cases). On the other hand, the k-

means metric found the clusters in the competition-colonization tradeoff while Ripley’s K

missed them (Fig 3). This is because the k-means algorithm is less sensitive to strong asymme-

tries between the clusters. In these cases, the k-means metric is a better choice.

Discussion

Ecologists have long sought to understand how competition shapes community structure.

While competing species are usually expected to be more different than predicted by chance

[25, 60], recent studies suggest that competition may cause species to cluster by traits, such

that the community self-organizes into groups of similar species [18], a phenomenon which

has been interpreted to bridge coexistence through differences–niche theory–and similarity–

neutral theory. Our study verified that clustering transcends Lotka-Volterra dynamics, occur-

ring under a number of niche mechanisms. Further, we showed that clustering is robust to sto-

chastic drift, an intrinsic property of real-life communities. Immigration maintains clusters

that are otherwise transient, and the strength of clustering has a modal relationship with immi-

gration pressure. We showed that clustering may be detectable under the confounding influ-

ence of environmental filters, and is enhanced by regional diversity. Finally, we provided

metrics for detecting and quantifying clusters in nature.

Why do clusters arise? Different niche mechanisms share the common property that com-

petition is stronger between species with more similar strategies. It thus seems paradoxical that

clusters should emerge. However, it is precisely because species with similar niches compete

more strongly that clusters appear [61]. While similar pairs compete more strongly, they expe-

rience similar competitive pressure (or relief) from the rest of the community. If a given niche

strategy is favored because it minimizes competition with the rest of the community or capital-

izes on greater resource supplies, then similar strategies are similarly favored. This hilly fitness

landscape causes exclusion to be slower near the center of the niches than in the gaps between

them, making it easy for immigration to permanently maintain the clusters [23].

Modern coexistence theory [7] splits coexistence-promoting processes into those that

reduce competition among species relative to competition within species (stabilizing mecha-

nisms, here referred to as niche mechanisms), and those that reduce differences in average fit-

ness between species (equalizing mechanisms). It is thus tempting to interpret clusters as

reflecting a harmonious combination of stabilizing and equalizing forces: species within a clus-

ter are equalized, while those in different clusters are stabilized. However, this interpretation is

problematic. The equalization-stabilization dichotomy is based on applying invasibility criteria

to closed communities regulated by a small number of limiting factors [62], an approach

which does not extend easily to multispecies communities under immigration and a

Species clusters as a signature of competition
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continuum of resources. In diverse communities with complex competitive interactions, it is

difficult to calculate equalizing and stabilizing terms and tie them to trait differences, let alone

interpret how specific patterns such as clustering connect with equalization and stabilization

forces [62]. One approach is to assume all pairs of species compete with equal intensity [7, 63],

but this assumption is strongly violated in all models where clustering has been observed so

far.

While competition is responsible for clusters’ emergence, immigration is responsible for

their persistence. Immigration joins other mechanisms that have been previously shown to

sustain clusters, namely specialist enemies [18, 64] and environmental fluctuations [33, 34].

We found that clustering appears generally under different immigration regimes, especially if

the number of species far exceeds the number of available niches. Studies of stochastic compet-

itive preceding Scheffer and van Nes 2006 found little impact of immigration on resulting trait

pattern [39], [40]. However, successful immigration was highly infrequent in those models. In

[39], resources made available through deaths were assumed to be redistributed broadly, so

that resource supply remained low everywhere, making recruitment of new individuals highly

unlikely. In [40], immigration took the form of a single immigrant seed being added to a large

pool of local seeds competing for the site. As such, immigration rates were effectively much

lower than ours. [41] tested both very high and very low immigration, and also saw no clusters

(in no small part because the authors were not looking for them!). This could be due to their

use of a Gaussian competition kernel (i.e. competition coefficients are a Gaussian function of

trait difference), which leads to weak niche sorting dynamics, easily overwhelmed under high

immigration [32].

The fact that immigration maintains clusters seemingly defers the question of coexistence

to the regional scale. The problem dissipates by considering mass effects in the metacommu-

nity framework [65]. The regional pool is a combination of local communities, and species are

selected for different traits at different sites due to their own local niche dynamics. Therefore,

each community receives immigrants which may be dominant elsewhere despite being disfa-

vored locally. However, this does not mean that pattern is expected regionally, as the sum total

of heterogeneous communities, each with a different trait pattern, may result in no discernible

pattern at a regional scale.

Clusters caused by partitioning of a niche axis are often distinct from clustering due to

other processes. Environmental filters favoring a single best trait and one-sided competitive

dynamics where a particular trait outperforms all others without a balancing tradeoff [26] will

produce a single cluster as opposed to multiple clusters. Where evolutionary rates are com-

mensurate with ecological dynamics, small mutations and sympatric speciation may also gen-

erate species or genotype clusters without niche differentiation [66, 67]. Ruling out these

alternative sources of clustering could require sampling at a larger scale than applicable to the

niche mechanism [5, 60], or directly verifying competitive effects and frequency dependence

[4]. While clusters may have more than one source, observation of multiple clusters in specific

functional traits can help identify potential drivers of niche differentiation in a community.

We presented and validated two nonparametric abundance-weighted tools for detecting

and quantifying clusters. Our metrics successfully distinguished clustering in niche-differenti-

ated communities from no clustering in neutral communities and a single cluster in communi-

ties under environmental filters without a niche mechanism. We note that none of these

results would appear without considering species abundances, as presence-absence counts do

not reveal clustering in our communities. Also, our metrics did not require arbitrarily binning

traits, nor fitting parameters to the data.

Although our study focused on one-dimensional trait axes, competitive interactions may

often be mediated by variation in multiple traits [68]. Theoretical work on simple models
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indicates that multidimensional niche space leads to multidimensional clustering [20]. Our

metrics can quantify clusters in any dimension, using generalized measures of niche separa-

tion. The main challenge is to connect multidimensional phenotypes to competitive relations,

in order to define the correct measure of distance in high-dimensional trait space [61]. How-

ever, even if species cannot be arranged on linear trait axes, our Ripley’s K metric can still

detect clustering by similarity as long as a measure of species differences can be defined, e.g.

Hamming distance in genetic sequences [66].

Clustering as a signature of coexistence under competition is an update to the still domi-

nant paradigm that competing species will display greater-than-chance differences [3–5, 16,

17]. Our finding that clusters appear under various niche mechanisms and can be easily main-

tained by immigration, even when confounding forces are at play, suggests that clusters are a

likely feature of nature beyond the instances where it is currently known to occur [18, 28, 29].

For example in tropical forests, where both competition and dispersal are recognized as key

drivers of community assembly [69, 70], clustering could help explain the high diversity and

seemingly continuous phenotypic variation.

Methods

Models and simulation design

We used a lottery model framework [71] to implement stochastic niche dynamics in a fixed-

size community open to immigration from a regional pool. We start with a random draw of

offspring from the regional pool, and then alternate death and recruitment events until species

abundance distributions are stationary. A proportion m of deaths are replaced by immigrants,

and the remainder by local offspring. This is analogous to Hubbell’s neutral model [38], except

here the niche mechanism sets the probabilities of birth and death across different species.

Schematic illustrations of our niche models are shown in Fig 1.

We used the 50-hectare plot of tropical forest on Barro Colorado Island, Panama, as a refer-

ence point for our community size (21,000 individuals >10 cm dbh [38]) and immigration

rate (0.08 immigrant recruits per recruitment event [72]). Our regional pool is a fixed neutral

metacommunity with biodiversity parameter θ = 50 [38] and 150,000 individuals, leading to c.

400 species (bigger metacommunities did not change results).

All simulations and statistical analyses were done in R [73].

Lotka-Volterra. The probability that species i is selected for a death event is ∑j AijNiNj/

∑k∑l AklNkNl, where Ni is the abundance of species i and the competition coefficient Aij quanti-

fies the competition caused on species i by species j. The sums are over all species present in

the local community, and the denominator normalizes the probabilities to 1. The probability

that species i is chosen at the subsequent recruitment stage is mqi + (1 −m) riNi/∑jrjNj, where

qi is the relative abundance of species i in the regional pool, and ri is its intrinsic growth rate.

(We are placing competitive interactions on mortality, but results are unchanged when we

place them on births instead).

We link competition to traits by setting Aij = exp[−(|xi − xj|/w)4], where xi, xj 2 [0, 1] are

the trait values of species i and j. Thus competition peaks at xi = xj (intraspecific competi-

tion), and declines with increasing trait difference (Fig 1A). This is a generic unimodal

function commonly used in competition models [31]. Other unimodal shapes bring no qual-

itative changes (with a few exceptions, see [32]). The scaling parameter w sets the width of

niche overlap, and therefore the number of niches available to species. We set w = 0.063,

leading to c. 13 clusters. Where possible, we set parameters to keep the number of clusters

consistent.
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In the scenario with environmental filtering we set intrinsic growth rates ri = xi(1 − xi),
such that species with intermediate traits grow faster than those with extreme traits. In all

other Lotka-Volterra scenarios, we set all ri = 1 identical across species.

We set default values m = 0.08 for immigration rate, and S’ 400 for regional diversity (via

θ = 50 in the regional pool). When examining the impact of immigration pressure, we used

m = 0.005, 0.01, 0.05, 0.08, 0.15. When examining regional diversity, we used S’ 50, 100, 180,

250, 400 by setting θ = 5, 10, 20, 30, 50.

Partitioning resources. Let Xa and Ni be the abundances of resource a and species i. We

assume resource consumption affects species reproduction, and all species have equal mortal-

ity. As such, the probability that species i is chosen for a death event is simply Ni/∑j Nj, and the

probability that it is chosen for a recruitment event is mqi + (1 −m) ∑a CaiXaNi/∑j∑b CbjXbNj,

where Cai quantifies the preference of species i for resource a.

Resources simultaneously follow their own stochastic birth-death process. Consumption

lowers resource populations, which would otherwise grow logistically. Therefore, resource a is

selected for a death event with probability ∑i CaiXaNi/∑b∑j CbjXbNj, and for a birth event with

probability (1 − Xa/K)Xa/∑b(1 − Xb/K)Xb, where K is the resource carrying capacity, set equal

across all resources for simplicity. There is no resource immigration; if a resource population

is depleted to zero, the resource is extirpated and cannot be replenished.

Resources are arranged on a line between 0 and 1. We define Cai = exp[−(dai/σ)2], where dai
is the difference between resource a and the preferred resource of consumer i (Fig 1B). The

width parameter σ controls degree of resource overlap and thus number of niches. We set σ =

0.03 as it leads to about 13 clusters, for consistency with the Lokta-Volterra scenarios. We con-

trol resource depletion via the resource carrying capacity. When K = 100, most resources are

never severely depleted by consumption, whereas when K = 400 resource depletion is severe

and many resources are extirpated. Both scenarios start with 500 resources drawn from a stan-

dard uniform distribution.

Partitioning habitat. We used the model introduced by [40]. We assume a linear array of

sites forming a habitat gradient. Different species are optimally adapted to different environ-

ments, and competition arises from overlap in environmental preference (Fig 1C). Here, a

death event is followed by a lottery in the local seed bank, which is formed via dispersal from

all individuals in the community, plus a proportion of immigrants. A seed’s probability to win

the lottery is given by its tolerance to the local environment, which declines with differences

from the optimal environment of that species.

All individuals have the same probability of dying. The probability that species i fills the

vacancy is then mqi þ ð1 � mÞ
P

b6¼aTaiDab=
PS

j¼1

P
c6¼aTajDac, where Dab is the probability of

dispersal between an individual at site b and the vacated site a, and Tai is species i’s tolerance

to site a. We set Tai = exp[−(Δai/σ)2], where Δai is the difference between the local environment

a and the niche optimum of species i. The width parameter σ controls niche overlap, and

hence the number of niches. We set σ = 0.07 as it gives us c. 13 clusters.

We use a Gaussian dispersal kernel, Dab = exp[−0.5(dab/ddisp)2], where dab is the distance

between vacated site a and a parent individual at site b. We use 1,000 sites on a line, with adja-

cent sites one unit distance apart (da, a+1 = 1), leading to a fixed community size of 1,000 indi-

viduals. The reduced size relative to 21,000 individuals in the other models was used to keep

this agent-based model computationally expedient. We explore a scenario with local dispersal

(ddisp = 50), and one global dispersal (ddisp = 105), i.e. where the probability of arrival is inde-

pendent of distance to the parent.

Competition-colonization tradeoff. Under this mechanism, changes to a population

result from gains through recruitment and losses via death and displacement. Collecting the
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density-dependent and density-independent factors separately, one can show (see Supplemen-

tary Information) that the deterministic dynamics follow the equation

1

Ni

dNi

dt
¼ ðfi � mÞ �

XS

j¼1

ðfi þ fjÞGijNj

where fi is the fecundity of species i, μ is a constant, and Γij is the ability of a propagule of spe-

cies j to displace an individual of species i.
The equation above is in Lotka-Volterra form. Therefore in parallel with our Lotka-Volterra

scenarios, we place the density dependence on mortality. We thus set the probability that spe-

cies i is chosen to die as ∑j(fi + fj)ΓijNiNj/∑k∑l(fk + fl)ΓklNkNl, while the probability it is chosen

to recruit is mfiqi/∑j fjqj + (1 −m)(fi − μ)Ni/∑j(fj − μ)Nj. Notice that high-fecundity species

immigrate more frequently. The difference fi − μ is an intrinsic growth rate, i.e. the net rate at

which species grow in the absence of competition. Fecundities are log-uniform distributed

between 1 and 6.2. We set μ = 1.

The tradeoff between fecundity and ability to displace is encoded in the displacement

matrix Γij. If we arrange species in order of fecundity, Γij will be approximately bottom-trian-

gular, with Γij� 0 if i< j and Γij� 1 if i> j. That is, species with higher fecundity rarely dis-

place those with lower fecundity, while low-fecundity species commonly displace high-

fecundity ones. In the limit of an absolute tradeoff, lower-ranking species never displace and

are always displaced by higher-ranking species. This limit has been shown to drastically inflate

coexistence under this mechanism, despite the fact that such absolute tradeoffs are unlikely to

occur in nature [74–76]. As such, here we use a probabilistic tradeoff: Γij = 0.5 (1 − tanh[s(fj −
fi)]), which has a sigmoidal shape, is equal to 0.5 when fi = fj, and asymptotes to 1 and 0 when

fi� fj and fi� fj, respectively. Parameter s controls the steepness of the transition, and hence

the number of clusters. We set s = 0.15, which in the absence of immigration and stochasticity

leads to c. 13 coexisting species (S7 Fig).

Clustering metrics: The gap statistic

We apply a variation of the gap statistic method [50], using two different clustering measures:

k-means dispersion [48] and Ripley’s K function [77]. In general terms, the metric takes in the

list of species traits and abundances, and returns the number of clusters (k-means) or average

trait separation between them (Ripley’s K), as well as a z-score and a p-value. In S1 Box we

summarize the k-means version and give a step-by-step recipe for its implementation, and

illustrate it at work on two example communities. Both versions are described in detail in S1

Appendix. The code for the k-means version is available on GitHub [78].

We assess statistical significance and degree of clustering by comparing a community

against 100 null communities where we randomly shuffle local abundances across all species

in the regional pool. This allows us to test specifically for a nonrandom association between

traits and abundances, while keeping the observed abundance distribution fixed. One alterna-

tive null model is neutrality, whereby abundances follow a characteristic dispersal-limited mul-

tinomial distribution [79].

Because our models are stochastic, we run 100 replicates to account for variation within the

same scenario. For each niche scenario we report the average z-score across 100 replicates, as

well the percentage of replicates that were significantly clustered at level p< 0.05. To assess if a

given run is significantly clustered we compared with the distribution across 100 nulls.

We check for false positives by testing our metric on neutral communities and communities

where differences in species performance are due strictly to environmental filtering. From the

former we expect significant clustering in circa 5% of runs when using a p = 0.05 cutoff, and
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from the latter we expect that species will cluster around the favored trait. Thus we distinguish

niche differentiation from neutrality and pure environmental filtering by the presence of mul-

tiple clusters as opposed to none or a single one.

Supporting information

S1 Text. Glossary.

(PDF)

S1 Box. Detecting clusters with k-means and the gap statistic.

(PDF)

S1 Appendix. Mathematical formulation of the competition-colonization model.

(PDF)

S2 Appendix. Detailed description of the clustering metrics.

(PDF)

S1 Fig. Community under environmental filters but no niche mechanism shows a single

cluster. A: Example simulation outcome of Lotka-Volterra stochastic dynamics with neutral

competition coefficients, αij = 1, such that there is no niche mechanism, and intrinsic growth

rates given by ri = xi(1 − xi), where xi is the trait of species i. The latter represents environmen-

tal filtering for species with intermediate traits. B: Corresponding gap curve, showing gap

index for each number of clusters between 1 and 20, has a clear maximum at 1 cluster. The

estimated number of clusters is therefore K = 1. The gap statistic is well above the 95% quantile

of the null distribution (red line), indicating significance at P< 0.05. All 100 replicates of this

scenario were clustered, with a single cluster detected by the k-means metric in all cases.

(TIF)

S2 Fig. Lotka-Volterra niche scenarios with environmental filtering. A: We implemented

environmental filters via a modal relationship between intrinsic growth rate r and species traits

xi as follows: r = 0.5 (no filtering, black); ri = xi(1 − xi) (red); ri = exp(−(xi − 0.5)2/σ2) with σ =

0.5 (green), 0.2 (blue), 0.1 (magenta). B: Under no filtering, the community shows no over-

arching abundance trend. C-F: Under increasing filter intensity, communities show increas-

ingly steeper abundance trends. Our metrics detected multiple clusters in 10/10 replicates of

B-D, but only 2/10 in E and 1/10 in F, with the remaining replicates having a single cluster.

When no niche mechanism is at play, such that species compete neutrally but still differ by

intrinsic growth rates, all replicates result in a single cluster centered on the species with the

highest intrinsic growth rate.

(TIF)

S3 Fig. Effects of immigration rates and regional diversity. Example Lokta-Volterra com-

munities with increasing immigration rate m (left) and regional diversity parameter θ (right).

(TIF)

S4 Fig. Lotka-Volterra and other niche communities under lower immigration, m = 0.01.

Comparing panels A-F against their respective m = 0.08 counterparts in Fig 2 (panels A, C-G

with matching titles), we see that communities show a similar number of clusters but fewer

species per cluster, and gaps between clusters are more rarified.

(TIF)

S5 Fig. Clustering results under lower immigration, m = 0.01. Results are similar to

m = 0.08 (compare with Fig 3), although z-scores and significance are often higher, particularly

for resource-partitioning communities, and habitat-partitioning communities under global
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dispersal. This indicates that higher immigration is drowning the pattern in these niche sce-

narios.

(TIF)

S6 Fig. Effects of resource depletion. Example communities where consumers partition

resources, under low and high resource depletion (left and right columns, respectively).

Resources are shown on top, consumers at the bottom. Under high resource depletion, gaps

left by resource extirpation cause corresponding gaps among consumer species. These gaps

strengthen the clustering pattern relative to the low depletion scenario. (m = 0.08, c. 400

regional species).

(TIF)

S7 Fig. Competition-colonization tradeoff, deterministic implementation without immi-

gration. A. Transient state shows visible clustering. B. Equilibrium state, showing abundances

of the coexisting species, which are those that dominate their respective clusters in the tran-

sient state (marked with red dots in A). Legend shows maximum eigenvalue of the Jacobian of

the equilibrium, indicating dynamical stability of the equilibrium. C. Competition kernel

shows the strongest competitors on focal species, whose traits are shown in legend, are species

with similar traits, despite the competitive hierarchy. This contributes to stabilization of the

community. D. For each species (traits plotted on x-axis), the position of the peak of the com-

petition kernel (i.e. the species with the strongest net competitive impact on it) is plotted on

the y-axis. The proximity of the curve to the one-to-one line (dotted line) throughout the trait

axis shows that the competition-colonization tradeoff stabilizes the community, thus acting as

a niche mechanism. The kernel maxima plotted here also explain the absence of coexisting spe-

cies below trait’ 0.2, as the strongest competitors of those species have higher fecundity than

themselves (solid curve is above dotted line), thus being both more competitive and more

fecund. The wide gap between the first cluster and the other clusters is also reflected in the rel-

atively larger distance from the one-to-one curve in that region of the trait axis.

(TIF)
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