
Analysis of Genome-Wide Copy Number Variations in
Chinese Indigenous and Western Pig Breeds by 60 K SNP
Genotyping Arrays
Yanan Wang1., Zhonglin Tang2., Yaqi Sun1, Hongyang Wang1, Chao Wang1, Shaobo Yu1, Jing Liu1,

Yu Zhang1, Bin Fan1, Kui Li2*, Bang Liu1*

1 Lab of Molecular Biology and Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong

Agricultural University, Wuhan, PR China, 2 Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal

Science, Chinese Academy of Agricultural Sciences, Beijing, PR China

Abstract

Copy number variations (CNVs) represent a substantial source of structural variants in mammals and contribute to both
normal phenotypic variability and disease susceptibility. Although low-resolution CNV maps are produced in many
domestic animals, and several reports have been published about the CNVs of porcine genome, the differences between
Chinese and western pigs still remain to be elucidated. In this study, we used Porcine SNP60 BeadChip and PennCNV
algorithm to perform a genome-wide CNV detection in 302 individuals from six Chinese indigenous breeds (Tongcheng,
Laiwu, Luchuan, Bama, Wuzhishan and Ningxiang pigs), three western breeds (Yorkshire, Landrace and Duroc) and one
hybrid (Tongcheng6Duroc). A total of 348 CNV Regions (CNVRs) across genome were identified, covering 150.49 Mb of the
pig genome or 6.14% of the autosomal genome sequence. In these CNVRs, 213 CNVRs were found to exist only in the six
Chinese indigenous breeds, and 60 CNVRs only in the three western breeds. The characters of CNVs in four Chinese normal
size breeds (Luchuan, Tongcheng and Laiwu pigs) and two minipig breeds (Bama and Wuzhishan pigs) were also analyzed
in this study. Functional annotation suggested that these CNVRs possess a great variety of molecular function and may play
important roles in phenotypic and production traits between Chinese and western breeds. Our results are important
complementary to the CNV map in pig genome, which provide new information about the diversity of Chinese and western
pig breeds, and facilitate further research on porcine genome CNVs.
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Introduction

Copy number variations (CNVs) refer to the structurally

genomic variations from hundreds of bases to several kilo-bases

and the relevant complex mutations in the construction of

chromosomes. Since the duplication of Bar gene in Drosophila

melanogaster was first reported by Bridge to cause the Bar eye

phenotype, more and more scientists focused on such DNA

structural duplication [1]. In 2004, Iafrate firstly illustrated

numerous structural variations in human genome, and then

Redon et al. defined the copy number variations in human

genome [2,3].

Compared with the most frequent SNP marker, CNVs cover

wider genomic regions and have potentially larger effects to

change gene structure and dosage, exposing recessive alleles, and

alternating gene regulation and other mechanisms. In humans,

most studies on CNVs are shown to associate with Mendelian

diseases and complex genetic disorders, such as major depressive

disorder [4], schizophrenia [5], cancer [6,7], body mass index

[8,9], and various congenital defects [10]. Besides disorders, CNVs

are also important to maintain the normal phenotypic variability.

Many studies were conducted on the influence of CNVs on the

phenotype of domestic animals, such as copy number variation in

intron 1 of SOX5 leading to the Pea-comb phenotype in chickens

[11], a 4.6-kb intronic duplication in STX17 (Syntaxin 17) causing

hair greying and melanoma in horse [12,13], and the duplication

of FGF3, FGF4, FGF19 and ORAOV1 resulting in hair ridge and

predisposition to dermoid sinus in Ridgeback dogs [14]. A 110 kb

microdeletion in the maternally imprinted PEG3 domain was

found, which results in a loss of paternal MIMT1 expression and

causes late term abortion and stillbirth in cattle [15], and ectopic

KIT copy number variation may be associated with gonadal

hypoplasia in Northern Finncattle and Swedish Mountain cattle

[16]. George. Liu and his team detected CNVRs of cattle genomes

by using different methods in diverse cattle breeds, and they also

found evidence of CNVs relating with residual feed intake and

resistance to gastrointestinal nematodes [17–21]. In pigs, only a

few such studies are reported. For example, for the color of pig
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coat, the duplication and the exon-17-skipping mutation of KIT
are responsible for the dominant white phenotype and peripheral

blood cell [22–24].

Currently, CNVs can be identified using several technologies

based on either ultra-dense genotyping with SNP chips, the

hybridization of DNA in BAC/PAC/oligonu-cleotide arrays or

high-throughput sequencing. The comparative genomic hybrid-

ization (CGH) based approach and high-throughput sequencing

have excellent performance in refined resolution and relative

signal intensities, while the SNP genotyping array has the

advantage in both genome-wide association studies (GWAS) and

CNV detection. The SNP arrays can collect normalized total

signal intensity (Log R ratio-LRR) and allelic intensity ratios (B

allele frequency-BAF) which represent overall copy numbers and

allelic contrasts [25]. Besides, the SNP arrays need fewer samples

than CGH arrays in an experiment, thus being more cost-effective

and allowing users to increase the number of tested samples on a

limited budget [26]. Nowadays, SNP arrays have been routinely

used for CNV detection in humans and other organisms, and

manufacturers of SNP genotyping arrays have incorporated non-

polymorphic markers into their arrays to improve the coverage of

SNP arrays for CNV analysis [27].

Since the accomplishment of the first human genome CNV

map, many reports have been published on the characterization of

the genomic architecture of CNVs in domestic species. Low-

resolution CNV maps were produced for cattle, dog, pig, goat,

sheep, chicken, duck, turkey and horse, showing that these

structural polymorphisms comprise a significant part of these

genomes [17,28–32]. Based on porcine SNP60 Beadchip and

aCGH, Fadista et al. [33], Ramayo-Caldas et al. [29], Wang et al.
[34,35], Chen et al. [36], and Li et al. [37] have identified a large

amount of CNVs in pig genome among different breeds, including

several Chinese breeds.

Chinese indigenous breeds have larger genetic diversity than

European breeds, leading to the tremendous phenotypic differ-

ences among them. In the present study, we analyzed the

difference in CNVs between Chinese indigenous breeds and

western breeds by using Porcine SNP60 BeadChip and PennCNV

algorithm, and performed a genome-wide CNV detection in 302

pigs from six Chinese indigenous breeds, three European breeds

and one hybrid. This study produced a comprehensive map of

CNVs in the pig genome, which could give new insight to the

interspecific diversity of different breeds and facilitate further

research on porcine genome CNVs.

Materials and Methods

Ethics Statement
The whole blood samples were collected in strict accordance

with the protocol approved by the Biological Studies Animal Care

and Use Committee of Hubei Province, PR China. All efforts were

made to minimize any discomfort during blood collection.

Animal samples
The animals were composed of 302 pigs from nine pure breeds

and one hybrid, including six Chinese indigenous breeds (45

Tongcheng pigs-TC, 23 Laiwu pigs-LW, 40 Luchuan pigs-LC, 23

Bama pigs-BM, 26 Wuzhishan pigs-WZS, 24 Ningxiang pigs-NX)

and three western breeds (33 Yorkshire pigs-YS, 33 Landrace pigs-

LD, 32 Duroc pigs-Dur) and one hybrid (23 Tongcheng 6Duroc

crossbred pigs-BC).

Genomic DNA samples were extracted from whole blood of all

pigs using a standard phenol/chloroform method. All DNA

samples were analyzed by spectrophotometry and agarose gel

electrophoresis.

SNP array genotyping and quality control
All 302 pigs were genotyped with the Porcine SNP60

Genotyping BeadChip (Illumina Inc., USA) using the Infinium

II Multisample assay (Illumina Inc.). SNP arrays were scanned

using iScan (Illumina Inc.) and analyzed using GenomeStudio

(Version 3.2.2, Illumina, Inc.).

In order to exclude poor-quality DNA samples and decrease

potential false-positive CNVs, only the samples at a call rate .

98% and call frequency .90% were reserved. After quality

control, 286 of the 302 samples were retained for CNV detection

(43 Tongcheng pigs, 22 Laiwu pigs, 39 Luchuan pigs, 21 Bama

pigs, 23 Wuzhishan pigs, 23 Ningxiang pigs, 31 Yorkshire pigs, 31

Landrace pigs, 30 Duroc pigs and 23 Tongcheng 6Duroc

crossbred pigs). For subsequent data analysis, a subset of 52,089

SNPs was selected by removing the SNPs located in sex

chromosomes and those not mapped in the Sscrofa10.2 assembly.

Identification of pig CNVs
PennCNV was used for CNV identification by integrating a

Hidden Markov Model (HMM) for high resolution copy number

variation detection with whole-genome SNP genotyping data [38].

This algorithm incorporates multiple sources of information,

including total signal intensity data of log R Ratio (LRR) and B

allele frequency (BAF) at each SNP marker, the distance between

neighboring SNPs, the population frequency of B allele (PFB) of

SNPs, and the pedigree information where available. The LRR

and BAF were exported using Illumina BeadStudio software.

There were three arguments in PennCNV including -test, -trio

and -joint. Individual-based CNV calling was performed using the

-test with default parameters of the HMM model by integrating

Log R Ratio, BAF, population allele frequency and the SNP

distance. To reduce the false discovery rate in CNV calling, we

adopted the calling criteria that the standard deviation (SD) of

LRR was under or less than 0.35, and the CNV contained three or

more consecutive SNPs. All putative CNVs identified in this study

were pooled across breeds. Finally the CNV regions (CNVRs)

were determined by aggregating the overlapping CNVs identified

across all samples according to the previously published protocols

[3].

Gene contents and functional annotation
Gene contents in the identified CNVRs were retrieved from the

Ensembl Genes 70 Database using the BioMart (http://asia.

ensembl.org/biomart/martview/) data management system.

Functional annotation of these genes was performed with the

DAVID bioinformatics resources 6.7 (http://david.abcc.ncifcrf.

gov/) for Gene Ontology (GO) terms and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway analysis. Considering the

limited number of genes in the pig genome have been annotated,

we first converted the pig Ensembl gene IDs to homologous

human Ensembl gene IDs by BioMart, and then carried out the

GO and pathway analysis. Statistical significance was assessed by

using P value of a modified Fisher’s exact test and Benjamini

correction for multiple testing.

Validation of CNVRs by qPCR
CNVRs were confirmed by qPCR using the Roche Light-

CyclerW 480 Detection System and the 22DDCt method which

compares the DCt (cycle threshold (Ct) of the target region minus

Ct of the control region) value of samples with CNV to the DCt of

Copy Number Variations in Chinese Indigenous and Western Pig Breeds
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a calibrator without CNV [39]. The primers were designed using

the Primer Premier 5 software (Table S10 in File S1). As

previously reported, the copy number of each CNVR was

normalized against the GCG gene, a control region in the genome

with no variation in the copy numbers between the pigs [29].

Triplicate wells of reactions (10 mL) contained 5 mL SYBR Green

Real-time PCR Master Mix, 1 mL of 50 ng/mL gDNA, 0.3 mL

10 mM of each primer and 3.4 mL ddH2O. The cycling conditions

consisted of 95uC for 10 min, 40 cycles (at 94uC for 30 sec, 60uC
for 30 sec, and 72uC for 10 sec), and fluorescence acquisition at

72uC in single mode. The specific PCR products were confirmed

by the results of melting curve analysis and agarose gel

electrophoresis.

Results and Discussion

Genome-wide CNVs detection
A total of 1272 CNVs were assessed by PennCNV on 18 pairs of

autosomal chromosomes and 348 CNVRs were acquired by

aggregating overlapping CNVs (Table S1a in File S1), covering

Figure 1. Genomic distribution of CNVRs in 18 pairs of autosomal chromosomes of pigs. The chromosomal locations of 348 CNVRs are
indicated by lines. Y-axis values are chromosome names, and X-axis values are chromosome positions in Mb, which are proportional to the real size of
swine genome sequence assembly (10.2). Round represents CNVRs identified only in Chinese indigenous breeds; triangle represents CNVRs identified
only in western breeds; and quadrate represents those identified both in Chinese and western breeds.
doi:10.1371/journal.pone.0106780.g001
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150.49 Mb of the pig genome and about 6.14% of the autosomal

genome sequence, with an average number of 4.45 CNVs per

individual. Among the 348 CNVR events, 88 were found to be

gain, 243, loss and 17, both (loss and gain within the same region)

events, which were dispersed all over the 18 autosomes and ranged

from 4.93 Kb to 12.41 Mb in length with a mean of 443.24 Kb

and median of 170.77 Kb. The location and characteristics of all

CNVRs on autosomal chromosomes are presented in Figure 1,

showing that these CNVRs are not uniformly distributed among

different chromosomes. The proportion of CNVRs on the 18 pairs

of autosomal chromosomes varies from 1.17–20.91% and

chromosome 1 harbors the greatest number (43) of CNVRs

(Table 1).

Excluding the CNVR event detected only in one individual, we

obtained 166 CNVRs, with 107 loss, 42 gain and 17 both events.

These CNVRs covered 103.01 Mb, and ranged from 5.75 Kb to

12.41 Mb with a mean of 620.57 Kb and median of 217.76 Kb

(Table S1b in File S1). Previous studies always analyzed their

results after eliminating the only individual event, but when

compared with their results, more than 36% of the only individual

events in our results overlapped with their data, suggesting the loss

of much useful information by eliminating the only individual

events. Thus, we analyzed the whole 348 CNVRs during the

following research.

In our study, the 6.14% CNVR coverage in the autosomal

genome sequence was consistent with the 0.31% to 5.84%

coverage of analyzed genome on pigs reported previously

[29,34,36]. In humans, CNVR coverage was reported to be as

high as 12% of the genome when Redon et al first identified 1447

CNVRs in human genome [3]. The CNVs were anticipated to

cover up to 13% of the human genome [40]. In bovines, the

Table 1. Chromosome distribution of CNVRs in pigs.

Chr No. of CNVRs No. of genes Length of CNVRs (bp) Length of chromosomes (bp) Percentage (%)

1 43 73 23217110 315321322 7.36

2 26 59 11921008 162569375 7.33

3 18 23 2788734 144787322 1.93

4 22 51 8591089 143465943 5.99

5 18 35 5889799 111506441 5.28

6 16 45 3648860 157765593 2.31

7 12 40 2619625 134764511 1.94

8 28 20 8873483 148491826 5.98

9 22 53 5312989 153670197 3.46

10 10 14 1565092 79102373 1.98

11 17 20 5477336 87690581 6.25

12 8 15 741280 63588571 1.17

13 32 230 45721621 218635234 20.91

14 23 59 11437761 153851969 7.43

15 23 18 5627033 157681621 3.57

16 11 18 2673814 86898991 3.08

17 12 17 2291744 69701581 3.29

18 7 8 2087925 61220071 3.41

Total 348 798 150486303 2450713522 6.14

doi:10.1371/journal.pone.0106780.t001

Table 2. Sample size and CNVs number detected in nine breeds.

Breed sample size CNVs number CNVs per sample CNVRs number unique CNVRs Frequency (%)

Tongcheng 43 194 4.51 84 33 22.70

Laiwu 22 160 7.27 76 41 20.54

Luchuan 39 279 7.15 125 64 33.78

Bama 21 90 4.29 36 6 9.73

Wuzhishan 23 67 2.91 35 15 9.46

Ningxiang 23 120 5.22 61 25 16.49

Yorkshire 31 113 3.65 54 25 14.59

Landrace 31 107 3.45 48 19 12.97

Duroc 30 79 2.63 37 12 10.00

doi:10.1371/journal.pone.0106780.t002
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CNVR coverage was reported to be from 0.68% to 4.6% of the

genome [17,41,42].

A great difference was found in the CNVR numbers among the

nine breeds. Among the six Chinese indigenous breeds, the

maximum number of CNVRs was detected in Luchuan pigs,

accounting for 125 CNVRs (33.78%), followed by Tongcheng

84(22.7%) and Laiwu 76 (20.54%) pigs. The minimum number of

CNVRs was only 35 (9.46%) in Wuzhishan pigs. With respect to

European breeds, 54 (14.59%), 48 (12.97%) and 37 (10%) CNVRs

were found in Yorkshire, Landrace and Duroc pigs, respectively.

Altogether 240 unique CNVRs were detectable in the nine breeds,

with Luchuan pigs harboring the maximum number (Table 2).

The number of CNVs among individuals was variable. 39

individuals were only found one CNV event, 49 individuals were

found two CNV events, and most individuals were three CNV

events (Table S2 in File S1). With an increase in copy number

variation, the detected individuals became fewer and fewer,

indicating that most animals can survive through only a few

CNVs. CNV numbers differed greatly among different pig

populations too. The average number of CNVs per population

was 127.2, ranging from 67 (Wuzhishan) to 279 (Luchuan). The

maximum number of CNVs per sample was detected in Laiwu

pigs (7.32 CNVs per sample on average) against the minimum

number of 2.63 CNVs per animal in Duroc pigs. Similar to the

finding in human [43], most CNVRs (68.77%) were restricted to

one population, probably due to sampling variances or recent

evolution events.

Gene content of pig CNVRs
Totally, 798 genes within the identified CNVRs were retrieved

from the Ensembl Genes 70 Database using the BioMart data

management system, including 651 protein-coding genes, 10

pseudogenes, 30 miRNA, 49 snRNA, 35 snoRNA, 13 miscRNA, 7

rRNA, and 3 processed-transcripts. In CNVRs, 455 of the 798

genes were identified to be loss events, 303 and 39 genes, gain and

both events, respectively (Table S3 in File S1). The average

number of genes per Mb of 348 CNVRs was 5.29, which was less

than that on the whole genome(8.62) according to the Sus crofa
10.2 assembly in Ensembl (http://a sia.ensembl.org/), suggesting

that CNVs are located preferably in gene-poor regions, probably

because changes in copy number for genes that perform essential

functions are subject to strong purifying selection [44,45].

In order to provide insight into the functional enrichment of the

CNVs, Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway analyses were performed with the

DAVID bioinformatics resources. The Gene Ontology (GO)

analysis revealed that CNV genes mainly participated in cell

adhesion, phosphorus metabolic process, cell projection, phos-

phorylation, cellular component morphogenesis, cell differentia-

tion, muscle cell development and other basic metabolic processes.

The KEGG pathway analysis indicated that genes in CNVRs were

involved in seven pathways including phosphatidylinositol signal-

ing system, inositol phosphate metabolism, oocyte meiosis, cell

cycle, leukocyte transendothelial migration, Alzheimer’s disease

and Huntington’s disease (Table S4 in File S1 and S5 in File S1).

Additionally, 3258 QTLs out of 8000 which affect a wide range

of traits, such as immune capacity, disease resistance, meat quality,

growth and litter size, were found in 240 CNVRs by comparing

the overlapping of CNVRs with QTLs in the pig QTLdb (http://

www.animalgenome.org/cgi-bin/QTLdb/SS/index) (Table S6 in

File S1).

Differences between Chinese normal size pig and
minipig breeds

In our population, four of the six Chinese breeds are normal size

(Tongcheng, Laiwu, Luchuan and Ningxiang), the other two are

minipig breeds. There are many differences of CNVs between

these two type pigs. The four normal size breeds harbored 179

CNVRs, covering 80.59 Mb of pig genome sequence and 366

ensemble genes (table S7a and 7b in File S1). These genes mainly

participate in cell adhesion, regulation of cell cycle, detection of

stimulus, phosphate metabolic process, ATP biosynthetic process,

muscle cell differentiation, purine nucleotide metabolic process,

and regulation of growth. Many CNV-associate genes in these

regions appear to be certain gene clusters or families, such as

ubiquitin-conjugating enzyme family (UBE2B, UBE2G2),

ATPase family (ATP2A1, ATP13A5, ATP5J), trefoil factor

family (TFF1.TFF2, TFF3), and claudin family (CLDN8,

CLDN17). These genes mainly involved in immune system and

some human diseases [46–53]. VCAN (versican), ADAM17
(ADAM metallopeptidase domain 17), ITGB1BP1 (integrin beta

1 binding protein 1), CDH19, ITGAD and PCDH15 were also

playing important role in inflammation and other diseases [54–

59]. Moreover, CDH19 was evidenced as a copy number

alterations (CNAs) target gene to impact central nervous system.

ZWINT (ZW10 interacting protein PIK3C3), PIK3C3 (phospho-

inositide-3-kinase class 3) and PTGS2 (prostaglandin-endoperox-

ide synthase 2) were important for cell proliferation [60–62], and

PIK3C3 and PTGS2 were proved as candidate marker for

production and reproductive traits in pigs [63–65]. These findings

indicated that CNVs may have potential effect on immune

response, production and reproductive traits of these pigs.

Bama pigs and Wuzhishan pigs are two famous Chinese minipig

breeds, whose body weight are less than one third of modern

commercial breeds. 21 CNVRs that only detected in these two

breeds were picked out to investigate whether CNVs were

contribute to their phenotypes. 49 ensemble genes were retrieved

overlapped with these CNVRs, including 42 protein-coding genes,

4 snoRNAs, 2 snRNAs and 1 pseudogene (Table S7c and 7d in

File S1). Among these genes, STX17 was evidenced that a 4.6-kb

intronic duplication of it would cause hair greying and melanoma

in horse [12]; INPP5A (inositol polyphosphate-5-phosphatase),

TCERG1L (transcription elongation regulator 1-like), FOXL1
(forkhead box L1) and POLR1D (polymerase (RNA) I polypeptide

D) mainly participated in human cancer and some other diseases

[66–69]. Some genes such as MTCH2 (mitochondrial carrier 2),

BNIP3 (BCL2/adenovirus E1B 19 kDa interacting protein 3) and

DPYSL4 (dihydropyrimidinase-like 4) were playing essential role

in cell apoptosis [70–72], some as CDK13 (cyclin-dependent

kinase 13) and SGSM1 (small G protein signaling modulator 1)

participated in regulation of cell circle, differentiation and

proliferation [73,74]. According to the function of CNV-associated

genes in the six breeds, we assumed that CNVs may contribute to

disease resistance and stress resistance of all these breeds, but

unfortunately, we didn’t find sound evidence for CNVs impacting

the growth of these two minipig breeds.

An average of 6.04 CNVs was obtained for each sample in the

four Chinese normal size breeds, while only 3.6 was in the two

minipig populations (table 2). This means more variations

occurred in four nomal size breeds than minipigs. Despite the

population size of these breeds, the most convincing reason for

such small number of CNVs in minipigs is domestic methods and

artificial selection. These two breeds were both raised in mountain

area, which means highly inbreeding was inevitable because of

terrible traffic condition, leading to less variation in these breeds.

Copy Number Variations in Chinese Indigenous and Western Pig Breeds

PLOS ONE | www.plosone.org 5 September 2014 | Volume 9 | Issue 9 | e106780

http://a
http://www.animalgenome.org/cgi-bin/QTLdb/SS/index
http://www.animalgenome.org/cgi-bin/QTLdb/SS/index


After long period of natural and artificial selection, these two

breeds became more and more conservative and steady.

Differences of CNVRs in Chinese indigenous breeds and
western breeds

A total of 213 CNVRs were identified to exist only in the six

Chinese native breed populations, 60, in three western breeds and

49, in all. Fewer CNVRs were detected in western breeds, with

only one CNVR detected on chromosomes 4, 5, 12 and 18

(Figure 1, Table S8a in File S1). Two potential reasons may

explain such a small number of CNVRs. Firstly, the population

size of the western breeds of pigs in this study is smaller than that

of Chinese native breeds. Secondly, strongly artificial selection of

the western commercial breeds tended to make them purified, thus

decreasing variations in the population. However, Chinese native

pigs were subjected to lower selection intensities and had fewer

selection signatures, which may conserve most variations after

evolution.

A total of 109 ensemble genes overlapped with CNVRs of

western breeds, including 99 protein-coding genes, 2 pseudogenes,

1 miRNA, 5 snRNA and 2 snoRNA. GO analysis revealed that

these genes were mainly involved in cell adhesion, regulation of

phosphorylation and cell proliferation. Differ from western breeds,

499 ensemble genes were retrieved overlapping CNVRs of

Chinese indigenous breeds, including 389 protein-coding genes,

6 pseudogenes, 26 miRNA, 35 snRNA, 28 snoRNA, 8 miscRNA,

5 rRNA, and 2 processed-transcripts. By GO analysis, we found

that these genes were involved in not only cell adhesion and

regulation of phosphorylation, but also behavior, neuron differ-

entiation and regulation of T cell receptor signaling pathway

(Table S8b in File S1). For further pathway analysis, we found

Chinese breeds specific CNV-associated genes such as ITGB2,

CLDN8/14/17, CDK13, JAM2, ALCAM and VCAN played

important role in immune system, Leukocyte transendothelial

migration, T cell receptor signaling pathway and other pathways.

Some of the important genes were mentioned in proceeding part.

These results illustrated that CNVs may play important role in

immune system among Chinese breeds and growth among

western breeds. As we all know that Chinese indigenous breeds

and western breeds show obvious differences in many aspects, our

results may provide a genetic explanation for the difference in

disease resistance and growth rate.

Comparison with previous reports
Our results were compared with previous reports on porcine

genomic CNVs (Table S9 in File S1). The first research on CNVs

of pig genome by using Porcine SNP60 Beadchip was reported by

Ramayo-Caldas [29], who detected 49 CNVRs from 55 pigs of

Iberian x Landrace cross. Thirty out of the 49 CNVRs were

overlapped with our results. Wang et al. detected 382 CNVRs

based on the Porcine SNP 60 genotyping data of 474 individuals

from three pure breed populations and one Duroc 6 Erhualian

crossbred population [34]. Among the 382 CNVRs, 97 regions

were found to overlap with our results. Using the same method,

Chen et al. detected 565 CNVRs in 1693 pigs from 18 diverse

populations, and 179 of them were overlapped with our results.

Using 720 K array CGH, Li et al. identified 259 CNVRs in 12

animals including three Chinese native pigs, 5 European pigs, 2

synthetic pigs and 2 crossbred pigs (Landrace 6 DIV pigs) [37],

and only 15 regions were found to be identical or overlapped with

our data. Only 3 regions were found in all reports, containing 9

genes, with 7 of them being protein coding genes (table S9e in File

S1).

The potential reasons for the differences between our results

and other studies are as follows. First, there was a difference in

population size and genetic background between our study and

Figure 2. QPCR validation of 8 identified CNVRs. The x-axis represents the animals and the y-axis shows the relative quantification value.
doi:10.1371/journal.pone.0106780.g002
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others. In our study, the CNVs of the four Chinese indigenous

breeds including Luchuan, Laiwu, Ningxiang and Wuzhishan pigs

were reported for the first time, involving lots of new breed-specific

regions. Second, platforms (SNP genotyping array and CGH

array) and calling algorithms, which are different in the calling

technique, resolution and genome coverage, might contribute to

the discrepancy of the CNVs detected. Third, our results were

based on genome assembly sus scrofa 10.2, and except for Chen’s

research, the aforementioned reports were all based on genome

assembly sus scrofa 9.0 version. As our data needed to be

converted from 10.2 to 9.0, great differences might arise during

the transformation, causing the deviation between our results and

others. This is also occurred in CNV studies of other mammals

[17,75,76].

Validation of CNVR by real-time quantitative PCR (qPCR)
Quantitative real time PCR (qPCR) was used to validate 12

CNVRs chosen from the 348 CNVRs detected in the study. These

12 CNVRs represent different predicted status of copy numbers

(i.e., loss, gain and both) and different CNVR frequencies. 9 (75%)

of them were in agreement with the prediction by PennCNV

(Figure 2).

Except for CNVR187, 11 CNVRs contained important

functional genes. The CNVR164 contained Mast/stem cell

growth factor receptor gene, also known as KIT gene. KIT gene

was considered to affect colors and their distribution in pigs with a

450 kb long duplication and the exon-17-skipping mutation. The

copy number of KIT in dominant white color was higher than any

other patterns [77,78]. In our data, the copy numbers of three

detected Yorkshire pigs were from 4 to 6, while the other detected

samples including Tongcheng (two-black-end) and Duroc pigs

(red) had approximately 2 copies. This result is consistent with the

previous reports and prediction of PennCNV analysis based on

SNPs chip. The CNVR182 locus contained MAPK10 gene,

which is a member of mitogenactivated protein kinase (MAPK)

superfamily, and plays an important role in cancer and some other

diseases [79]. The MAPK10 is also associated with Hirschsprung

disease as a candidate CNV gene [80]. In our data, the copy

numbers of 11 samples out of 26 were identified as loss events,

corresponding with PennCNV prediction. There has been no

report so far about the function of MAPK10 in pigs, and our

results indicate that MAPK10 may play an important role in pigs.

Another 7 genes were detected in our validated CNVRs, such as

VCAN, CIB4, VCPIP1, ALG14, FAM5C, ZFPM2 and DOK5.

Copy number variations were identified in all these seven genes,

and these variations may affect their function in immunity,

development, and growth.

Conclusions

In this study, we described a map of porcine CNVRs between

six Chinese indigenous breeds and three western breeds based on

Porcine SNP60 genotyping data of 302 pigs. The results revealed

that 213 CNVRs belong to the Chinese native breed populations,

and 60 CNVRs, to the western breeds. We also discussed the CNV

characters of four Chinese normal size breeds (Luchuan,

Tongcheng and Laiwu pigs) and two minipig breeds (Bama and

Wuzhishan pigs). Functional annotation suggested that these

CNVRs and CNV-associate genes are involved in variety of

molecular function and may play important roles in phenotypic

and production traits difference between Chinese and western pig

breeds.
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