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ABSTRACT Norovirus infections take a heavy toll on worldwide public health. While
progress has been made toward understanding host responses to infection, the role
of the gut microbiome in determining infection outcome is unknown. Moreover,
data are lacking on the nature and duration of the microbiome response to norovi-
rus infection, which has important implications for diagnostics and host recovery.
Here, we characterized the gut microbiomes of subjects enrolled in a norovirus chal-
lenge study. We analyzed microbiome features of asymptomatic and symptomatic
individuals at the genome (population) and gene levels and assessed their response
over time in symptomatic individuals. We show that the preinfection microbiomes of
subjects with asymptomatic infections were enriched in Bacteroidetes and depleted
in Clostridia relative to the microbiomes of symptomatic subjects. These composi-
tional differences were accompanied by differences in genes involved in the metab-
olism of glycans and sphingolipids that may aid in host resilience to infection. We
further show that microbiomes shifted in composition following infection and that
recovery times were variable among human hosts. In particular, Firmicutes increased
immediately following the challenge, while Bacteroidetes and Proteobacteria de-
creased over the same time. Genes enriched in the microbiomes of symptomatic
subjects, including the adenylyltransferase glgC, were linked to glycan metabolism
and cell-cell signaling, suggesting as-yet unknown roles for these processes in deter-
mining infection outcome. These results provide important context for understand-
ing the gut microbiome role in host susceptibility to symptomatic norovirus infec-
tion and long-term health outcomes.

IMPORTANCE The role of the human gut microbiome in determining whether an
individual infected with norovirus will be symptomatic is poorly understood. This
study provides important data on microbes that distinguish asymptomatic from
symptomatic microbiomes and links these features to infection responses in a hu-
man challenge study. The results have implications for understanding resistance to
and treatment of norovirus infections.
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Noroviruses are the most common cause of acute gastroenteritis outbreaks in the
United States, with approximately 20 million cases reported annually. These RNA

viruses of the Caliciviridae family are responsible for �70,000 hospitalizations and �800
deaths in the United States alone and �50,000 deaths of children under the age of five
worldwide (1). Although the prototype “Norwalk virus” was discovered in 1972 (2), lack
of cell culture and animal model systems hampered research into the virus’ mode of
infection for several decades. The discovery of the first murine norovirus (3) and, more
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recently, the development of human cell models (4, 5) have accelerated discoveries of
norovirus tropism and pathogenicity. These studies have also implied a significant role
of enteric bacteria in host immune response.

Despite norovirus infection prevalence and severity, human challenge studies show
certain individuals can resist infection (6, 7), and up to 30% of infected individuals are
asymptomatic (8, 9). Susceptibility to infection following norovirus infection is depen-
dent on the histo-blood group antigen (HBGA) profile of the host (7, 10). HBGAs are
complex carbohydrates that form the outermost part of glycans or glycolipids found on
host cell surfaces, including those of the human small intestinal epithelium where
human noroviruses (HuNoVs) initiate infection. The molecular recognition profile is
specific to the viral strain, with different strains of prototype HuNoV (Norwalk virus)
having different capacities for binding HBGAs (11). Although little is known about
HuNoV entry into susceptible target cells, HBGAs act as the attachment receptors to
initiate binding of viral particles (10, 12). Individuals expressing HBGAs corresponding
to the viral pathotype are susceptible to HuNoV infection (6, 13), likely facilitating viral
access to a different range of target intestinal cells, including enterocytes, macro-
phages, T cells, B cells, and dendritic cells (5, 14–17). However, a proportion of people
theoretically susceptible to infection (i.e., those expressing the appropriate oligosac-
charides) are resistant (6) and/or show no symptoms (18). This phenomenon suggests
multiple factors contribute to the response, including a potential role for bacterial
interactions with HuNoV. HBGA-like molecules can also be expressed by some enteric
bacteria, mostly Gram-negative Enterobacteriaceae; HuNoV binds efficiently to these
molecules, possibly facilitating infection by either preventing the removal of the virus
through shedding or by absorbing/capturing viral particles, thereby repressing the
virus’s ability to establish a lasting infection. The effects of this interaction in the
transmission and infection process are yet to be established (14, 19). Microbial com-
pounds localized on or outside the cell surface are collectively referred to as extracel-
lular polymeric substances (EPS) and include glycans, lipids, proteins, and other biomol-
ecules that may interact with viral particles. The full scope of these interactions is
unknown, but they are likely a key component of understanding viral-microbiome
outcomes. The role of commensal bacteria in facilitating HuNoV infection is further
supported by evidence that antibiotic-mediated depletion of mouse intestinal micro-
biota significantly reduces the level of murine NoV (MuNoV) replication (14, 20). Indeed,
a recent report by Madrigal et al. (21) showed that, like HuNoV, murine noroviruses can
directly bind to a range of commensal bacteria, including Enterobacter cloacae, Esche-
richia coli, Pseudomonas aeruginosa, Lactobacillus acidophilus, Lactobacillus gasseri, and
Bacteroides dorei, with different affinities with each taxon. Neither bacterial growth
phase nor temperature significantly affected the binding capacity. In addition, these
authors showed that MuNoV can bind to the human commensal fungus Candida
albicans.

Nonetheless, microbe-HuNoV interactions in situ and the relationship between
microbiome biochemical functions and symptomatic outcomes of HuNoV infections
remain poorly understood. Enteric viruses are thought to interact with other molecules
commonly expressed on bacterial cell surfaces, particularly glycans such as lipopoly-
saccharides (22). In mice, vitamin A was found to inhibit MuNoV infection by increasing
levels of bacteria in the family Lactobacillaceae (23), suggesting a role for those
microbes in combating norovirus infections. Antibiotic treatment of mice was found to
prevent persistent enteric MuNoV infection, and this effect depended on the presence
of an antiviral cytokine, although the exact underlying mechanism is not understood
(20). The relevance of these findings for human noroviruses and hosts is also not
known.

Viral shedding can occur at high levels regardless of symptomatic status (18, 24, 25),
suggesting there are host- and/or microbiome-mediated immune responses that pre-
vent symptoms. Shedding can persist for several weeks even after symptoms subside
(8, 24); microbiome changes could therefore also be long lasting. However, human
microbiome studies assessing gut microbiome responses over the course of norovirus
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infection are limited. Even fewer data are available to differentiate the microbiomes of
asymptomatic individuals from those of symptomatic individuals. For instance, one 16S
rRNA gene amplicon study showed a minority of infected patients featured shifts in
their microbiome following infection, but the level of taxonomic resolution provided
was poor and changes were inconsistent (26).

In this study, we address these knowledge gaps in norovirus-microbiome interac-
tions by performing a controlled infection study. Subjects ingested HuNoV GI.1 via
oysters seeded with viral particles and were placed in either a symptomatic or asymp-
tomatic outcome group depending on the occurrence of gastrointestinal illness fol-
lowing the challenge (27). We assessed the taxonomic and functional differences
between the symptomatic and asymptomatic outcome groups using whole-meta-
genome shotgun sequencing and bioinformatic analyses. We further used longitudinal
data from three infected and symptomatic individuals to determine changes in micro-
biome structure and function following the challenge and documented the time until
recovery to a “baseline” state for the symptomatic individuals. Taken together, the data
from this study provide important new insights into the effect of norovirus infection on
human gut microbiome structure, function, and response.

RESULTS
Human subject responses. The nine subjects chosen for this study ranged in age

from 19 to 27 years and represented both sexes and various ethnicities, factors not
linked to symptomatic outcome (see Table S1 in the supplemental material). Of the
nine subjects, four developed symptoms of gastrointestinal illness (defined as vomiting
and/or diarrhea), while five subjects were asymptomatic. Stool samples were collected
from all subjects the day before the norovirus challenge (day 0 [T � 0]) and processed
for DNA extraction and norovirus titer measurements. Three of the symptomatic
individuals were tracked for up to 33 days following infection, with periodic stool
collections (Table S1).

Metagenome sequence coverage. Metagenome sequencing effort per sample (i.e.,
number of reads) pre- and post-quality control are provided in Table S1. Nonpareil 3.0
analysis, a tool to assess the fraction of the extracted DNA that was sequenced based on the
level of redundancy among sequenced reads (28), showed estimated metagenome cover-
age values of �80% for all samples (see Fig. S1), indicating that our sequencing effort was
large enough to draw robust conclusions from the data sets. Prechallenge metagenome
alpha diversities were not significantly different between symptomatic and asymptomatic
individuals based on nonpareil sequence diversity index (Nd) values, a metric based on
sequence diversity (t test, P � 0.23) (Fig. S1A; Table S1), and there were no differences over
time in the three symptomatic individuals (Fig. S1B to D). Stool viral titers for the study
cohort were previously published (9), and we provide data from the three symptomatic
individuals (15, 36, and 37) with longitudinal microbiome data in Table S1. Titers spiked
following the challenge on day 1 and gradually decreased over time, falling below detec-
tion levels between 20 and 34 days following the infection.

Prechallenge microbiomes of symptomatic and asymptomatic individuals. All
subjects in this study were positive secretors for the H type 1 HBGA carbohydrate; blood
group was therefore not a confounding variable in the comparison of symptomatic and
asymptomatic individuals. Prechallenge microbiomes of asymptomatic and symptomatic
individuals differed by both alpha and beta diversity metrics calculated using extracted
16S rRNA genes (Fig. 1). Two alpha diversity metrics, the Shannon and Simpson
diversity indices, and the variance of each among replicates were calculated (29). While
both metrics account for community evenness and richness, they differ mathematically
in the calculations. Specifically, the Simpson index places less weight on lower abun-
dance taxa than Shannon entropy. Microbiomes of symptomatic subjects had slightly
higher, but not significantly different, Shannon diversity as well as lower Simpson
diversity than microbiomes of asymptomatic subjects (Fig. 1A and B). Microbiomes also
clustered separately by infection outcome based on beta diversity (see Fig. S2B),
although not by k-mer composition (Fig. 1C). Several individual taxa differed signifi-
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cantly in relative abundance between the two outcome groups according to extracted
16S rRNA genes (Fig. 2). Symptomatic individuals featured relatively more species of
Firmicutes, particularly in the order Clostridia, and relatively fewer species of Bacte-
roidetes, particularly in the order Bacteroidia, than asymptomatic individuals. Taxa
enriched in the asymptomatic baseline microbiomes also included four Betaproteobac-
teria: three members of the genus Parasutterella and one in the family Nitrosomon-
adaceae. When all metagenome reads were taxonomically classified, only seven taxa
were found be significantly differentially abundant (Fig. S2). One taxon (Odoribacter sp.)
was enriched in the asymptomatic microbiomes according to both approaches. Overall,
both methods identified a rather small number of differentially abundant taxa between
symptomatic and asymptomatic samples.

Genome binning of individually assembled metagenomes produced 665 total
metagenome-assembled genomes (MAGs), of which 151 were above the quality thresh-
old (see Materials and Methods). Dereplication yielded 67 MAGs that were used for
downstream analyses (see Table S2), including read mapping and calculation of the
truncated average sequencing depth (TAD80), a proxy for relative abundance.

Gene functional annotations of the microbiomes before challenge differentiated
asymptomatic from symptomatic individuals (Fig. 3; see also Tables S4 and S5). Of the
290 lowest-level KEGG categorical groupings (subgroup 2), 28 exhibited significantly
different relative abundances between the two outcome groups. These included
metabolism pathways of compounds found in extracellular polymeric substances (EPS),
such as glycans and sphingolipids (Fig. 3), as well broader categories such as RNA
degradation (the category of highest significance) (Table S4) and ABC transporters
(Fig. 3), which are involved in a variety of cellular functions.

In addition, 26 of 1,936 individual genes were significantly differentially abundant
between the microbiomes of symptomatic and asymptomatic study subjects (Fig. 3B;

FIG 1 Alpha and beta diversities of prechallenge microbiomes were different between asymptomatic and symptomatic individuals. Alpha
diversity of asymptomatic microbiomes showed (A) lower Shannon diversity (not significant) and (B) significantly higher Simpson diversity than
for symptomatic microbiomes (*, P � 0.01) based on extracted 16S rRNA reads. Microbiomes show some separation according to Bray-Curtis
distances of extracted 16S rRNA genes (C) and Mash distances (D) in NMDS plots. ANOSIM test results are provided for each NMDS.
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Table S5). Seven of these genes are involved in carbohydrate metabolism biochemical
pathways, and an additional four are involved in glycan metabolism and biosynthesis
(Table S5). The most differentially abundant genes encoded an acetate kinase (ackA), a
fumarate hydratase (fumA and fumB), a peptide/nickel transport system ATP-binding
protein, and a DNA recombinase (Table S5).

Temporal microbiome shifts following viral challenge. Three symptomatic sub-
jects (individuals 15, 36, and 37) were sampled following the infection challenge, with
sampling intervals ranging from 1 to 8 days, for a period of up to 33 days postchallenge
(Table S1). These longitudinal sample sets were used to assess microbiome changes
over time following a norovirus infection.

Large fractions of contaminant human reads observed in shotgun metagenomes
obtained from fecal samples have been a concern in studies addressing the gut
microbiome during diarrheal episodes (30–32). In our data sets, human reads com-
prised a very small proportion of the sequenced metagenome. The fraction they
represented increased slightly (by up to 0.06%, in total) during the infection but never
exceeded 0.1% of all reads (Table S1).

On average, gut microbiome Shannon diversity decreased immediately following
the infection challenge and fluctuated throughout the time series (see Fig. S3A).
Simpson diversity was more stable, with a slight increase following infection, suggest-
ing community evenness was not substantially altered (Fig. S3B). Metagenome k-mer
compositions of three symptomatic individuals were highly distinct, but each micro-
biome showed shifts away from the prechallenge state between days 2 and 7, with a
subsequent return to a similar composition to that in the prechallenge state (Fig. S3C).
This analysis should be interpreted with caution, as it did not include a self-versus-self
Mash distance calculation to account for inherent stochasticity in sequence data sets
(self-versus-self distance must be represented as zero in an ordination plot). When day
0 distance from day 0 was calculated by splitting the data set in half and comparing the
two halves, the same shift away from baseline was also observed as a function of overall

uncultured Blautia (Firmicutes, Clostridia)
uncultured Roseburia (Firmicutes, Clostridia)

Coprococcus (Firmicutes, Clostridia)
uncultured Lachnoclostridium (Firmicutes, Clostridia)

Butyrivibrio (Firmicutes, Clostridia)
Lachnoclostridium (Firmicutes, Clostridia)

uncultured Turicibacter (Firmicutes; Erysipelotrichia)
uncultured Dorea (Firmicutes, Clostridia)

Blautia (Firmicutes, Clostridia)
uncultured Eggerthellaceae (Actinobacteria, Coriobacteriia)

uncultured Erysipelatoclostridium (Firmicutes, Erysipelotrichia)
Aerococcus (Firmicutes, Bacilli)

uncultured Faecalitalea (Firmicutes, Erysipelotrichia)
Subdoligranulum (Firmicutes, Clostridia)

uncultured CAG-352 (Firmicutes, Clostridia)
uncultured Peptocaccaceae (Firmicutes, Clostridia)

Bacillus (Firmicutes, Bacilli)
uncultured Pseudobutyrivibrio (Firmicutes, Clostridia)

Parabacteroides (Bacteroidetes, Bacteroidia)
uncultured Acidaminococcaceae (Firmicutes, Negativicutes)

uncultured OPB41 (Actinobacteria, Coriobacteriia)
uncultured Saccharimonadaceae (Patescibacteria, Saccharimonadia)

Kluvera (Proteobacteria, Gammaproteobacteria)
Turicibacter (Firmicutes, Erysipelotrichia)

uncultured mle1-7 (Proteobacteria, Gammaproteobacteria)
Odoribacter (Bacteroidetes, Bacteroidia)

Sphingobacterium (Bacteroidetes, Bacteroidia)
uncultured Parasutterella (Proteobacteria, Gammaproteobacteria)

Asymptomatic Symptomatic

LDA Score (log 10)

Odoribacter (Bacteroidetes, Bacteroidia)
Sanguibacteroides (Bacteroidetes, Bacteroidia)
Flavobacterium (Bacteroidetes, Bacteroidia)
uncultured Odoribacter (Bacteroidetes, Bacteroidia)

FIG 2 Taxa differentially abundant between symptomatic and asymptomatic individuals at the prechallenge time point (T � 0) using 16S
rRNA reads extracted from metagenomes. Taxa enriched in the asymptomatic baseline microbiomes were largely members of the class
Bacteroidia (phylum Bacteroidetes) but also included two gammaproteobacterial taxa. Most of the taxa enriched in the symptomatic
microbiomes belonged to the class Clostridia in the phylum Firmicutes. Each taxon is labeled at the highest resolved taxonomic level,
followed by phylum and class in parentheses. The linear discriminant analysis (LDA) score (log 10) of each taxon is represented by the
horizontal bars, with red and green bars indicating taxa enriched in microbiomes from asymptomatic and symptomatic study subjects,
respectively.
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FIG 3 Relative abundances of processes and genes that differentiated the asymptomatic and symptomatic individuals. (A) Representation of each
second-order KEGG category. (B) All 26 significantly different individual genes (KOs) between the two outcome groups.
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k-mer distance from day 0 (prechallenge) (Fig. 4), although the temporal patterns were
slightly different. Relative to day 0 self-versus-self distance, metagenomes k-mer dis-
tances showed an increase immediately following infection with close, but not com-
plete, return to the prechallenge state by the end of the time course. The shifts
corresponded to the spike in viral titers (Fig. 4), which began to decrease by days 7 to
10 postchallenge but remained relatively high for several days following the challenge.
Asymptomatic individuals also experienced shifts in their microbiome following the
challenge, but these were generally of a lower magnitude than those of symptomatic
individuals (see Fig. S4).

Functional gene and MAG abundance shifts over time. MAGs were assigned to
two groups based on the change in coverage immediately following the challenge:
those that increased in relative abundance and those that decreased or remained the
same. Both groups featured a range of temporal responses, with some MAGs returning
to prechallenge levels relatively quickly, while others never fully recovered (see Fig. S5).
Several MAGs featured different responses depending on the individual and were
excluded from the taxonomic and functional gene analyses.

MAGs belonging to the “increase” group were exclusively assigned to the phylum
Firmicutes, with seven in the order Clostridiales and two in the order Negativicutes. In
contrast, the “decrease” group featured members of the phyla Bacteroidetes (12) and
Proteobacteria (2) (see Table S3). The closest relatives of these MAGs included Eubac-
terium coprostanoligenes and Gemmiger formicillis, found in both groups, as well as
Eubacterium rectale, Blautia wexlerae, Bacillus cereus, and Ruminococcus bicirculans,
found only in the “increase” group, and Prevotella stercorea, Faecalibacterium prausnitzii,
and Shigella sonnei, found only in the “decrease” group (Table S3).

Of 3,645 genes tested, 116 differed significantly (corrected P � 0.05) in abundance
between the “increase” and “decrease” MAGs (Table S5; Fig. 5). These genes were part
of 17 KEGG subcategories (subgroup 1), including carbohydrate metabolism (33 genes)
and amino acid metabolism (15 genes) (Fig. 5). They also include genes encoding
proteins involved in transmembrane sensing and export, metabolism of cofactors and

FIG 4 Whole-community similarity over the infection period, with the challenge administered on day 1
(black dashed line). Solid lines represent the Mash distance of whole metagenomes over time and reveal
a shift away from time zero (baseline) coinciding with the increase in norovirus titer (dashed lines). As
virus titers decrease, Mash distances initially drop, with those for two of three individuals rising again in
later time points.

Human Gut Microbiome Response to Norovirus Infection ®

November/December 2020 Volume 11 Issue 6 e02634-20 mbio.asm.org 7

https://mbio.asm.org


vitamins, and a fumarate hydratase that was also significantly different in abundance
between the metagenomes of asymptomatic and symptomatic subjects.

DISCUSSION

Despite its prevalence and widespread public health impacts, the effects of noro-
virus infection on the human gut microbiome remain poorly understood. As a primarily
enteric pathogen, the virus enters epithelial cells in the digestive tract and initiates a
course of infection that is generally acute and self-limiting but, in rare cases, can lead
to debilitating symptoms. However, a proportion of infected individuals exhibit no
symptoms of gastrointestinal infection, an outcome distinct from resistance to infection
(33, 34). Several lines of evidence suggest that viral pathogenicity is affected by the
number and types of microbes encountered by the virus in the intestine (14, 15, 20, 35,
36), as is the case with several other enteric pathogens (37, 38). Our study provides
some of the first data to support this hypothesis using a human challenge-response
study design and deep metagenomic sequencing to assess gut microbiome correla-
tions in symptomatic versus asymptomatic outcomes and response to infection.

Human gut microbiomes are extremely diverse and complex, with high levels of
interindividual variability (39). We used several different metrics to assess broad-scale
differences in microbiome composition between asymptomatic and symptomatic in-
dividuals and found small, but significant, differences between the two outcome
groups. Mash distance, a measure of overall metagenome nucleotide composition
similarity, was not an effective predictor of infection outcome (Fig. 1D), and alpha and
beta diversity were not significantly different between outcome groups (Fig. 1A to C).

FIG 5 Genes that differed significantly (corrected P � 0.05) in copy number/genome between MAGs that increased (purple) or decreased
(orange) following the viral challenge. Functions enriched in “decrease” MAGs included proteins involved in carbohydrate metabolism and signal
transduction, while functions enriched in “increase” MAGs were largely hypothetical. The highest-level functional category is provided by a color
bar on the y axis (“hypothetical” refers to uncategorized KEGG annotations, i.e., “not included in pathway or BRITE”).
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This is likely due to the high level of interindividual variability among human micro-
biomes, which are influenced by multiple factors, including diet, environmental expo-
sure, and physiological conditions (39). Nevertheless, several taxa differed significantly
between the two outcome groups (Fig. 2; see Fig. S2 in the supplemental material).
Different taxa were identified using two different methods of estimating community
composition (extracted 16S rRNA genes versus k-mer-based taxonomic classification of
all reads); this discrepancy is likely due to inherent limitations and biases in both
methods, e.g., the use of different reference databases. Assessing the reliability of each
method is beyond the scope of this study; we therefore focus here on the 16S-based
analysis. The higher levels of Bacteroidetes in the asymptomatic individuals, particularly
members of the class Bacteroidia, suggested that these taxa confer some advantage in
resisting enteric viral infection or neutralizing its pathogenicity and symptoms. Consis-
tent with these findings, higher levels of Bacteroidetes have been linked to gut
microbiomes from individuals who are healthy and have recovered from a range of
acute enteric infections (40, 41), although there are different outcomes depending on
the exact genera and species present. Interestingly, members of the family Enterobac-
teriaceae, which have been shown to express HBGA-like molecules on their cell mem-
branes and thus facilitate viral attachment to human B cells (14, 19), were not among
the differentially abundant taxa. Their absence indicates that the role of this family in
norovirus infection may not be essential. Noroviruses can effectively bind to a range of
microbial taxa (21), but in some cases, the efficiency is dependent upon the growth
medium (35), suggesting nutrient availability may play an additional role in binding.

The separation of symptomatic and asymptomatic individuals was also evident in
their different functional gene potentials (Fig. 2; Fig. S3C). Because some biochemical
processes encompass genes with potentially wide diversity among individual human
microbiomes, we assessed differences in relative abundances at both the functional
category and individual gene level. Numerous functional categories, pathways, and
genes were differentially enriched between the two groups. Many of these are likely not
directly involved in immune function or response to viral pathogenicity; rather, they are
different because they are associated with taxa that function in defense or resistance to
HuNoV (a so-called “hitchhiker effect”). Moreover, some of these genes may reflect the
gene content of taxa that are differentially abundant between the two subject groups
by chance or another reason not related to the biochemical function in question. To
validate the genes identified here as part of the protective mechanism(s) versus
hitchhiker effects would require experimental testing. Nonetheless, it is possible to
propose reasonable hypotheses based on the current understanding of norovirus
tropism and the (predicted) functions found to differentiate the microbiomes of
symptomatic study subjects versus those of asymptomatic subjects. More specifically,
processes, including glycan biosynthesis and metabolism, lipid metabolism, and sig-
naling and cellular processes, were differentially enriched between the two groups
(Fig. 3A). Of the 26 significantly differently abundant genes, several are involved in
multiple biochemical pathways, while others are specific to one process (Fig. 3B).
Moreover, both genes and categories include uncharacterized processes. Nevertheless,
certain patterns may point to underlying biological mechanisms of an asymptomatic
infectious state. For example, two of the most differentially enriched genes in symp-
tomatic microbiomes are involved in carbohydrate metabolism, including the glycogen
biosynthesis gene glgC. Glycogen is generally considered an intracellular storage
polysaccharide (42), and the enrichment of glgC may represent more taxa diverting
polysaccharides to energy reserves rather than to the biosynthesis of extracellular
polymeric substances (EPS), which facilitate viral attachment and subsequent infection
of human B cells (14, 19). Noroviruses interact in various ways with outer membrane
molecules; for example, a human milk oligosaccharide was found to inhibit the binding
of one norovirus genotype to HBGAs (43). It is therefore likely that there exist as-yet-
unknown extracellular molecules in the gut microbiome that influence infection out-
come, and these patterns are reflected in the microbial functional potential to synthe-
size and transport glycans, sphingolipids, and lipoproteins.
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Norovirus infections can have long-lasting effects on host health and physiology
(24), well past the typical 12- to 48-h duration of symptoms. Viral shedding can persist
for several weeks postchallenge (8, 24, 34, 44), suggesting the gut microbiome is
impacted by viral replication and possibly delaying full recovery. We examined longi-
tudinal stool samples from three infected symptomatic individuals and found that
alpha diversity (Fig. S3) and microbiome composition (Fig. 4; Fig. S3C) were altered
immediately following the infection. The magnitude of change and the time until a
partial return to the prechallenge state varied among the three individuals, but the
long-lasting effects were coincident with the persistence of HuNoV in the gut (Fig. 4).
Consistent with the duration of the altered microbiome composition, we detected
HuNoV up to 26 days following the challenge, with an average 20.7-day duration for
three symptomatic individuals (Table S1), and shedding magnitudes were similar to
those of asymptomatic individuals, as reported previously (9). Detection of viral RNA in
stool has been reported for up to 60 days postchallenge (8, 24), though symptoms
generally resolve much sooner. There are conflicting reports in the literature regarding
viral shedding duration; some studies showed similar values in asymptomatic and
symptomatic individuals (24, 25), while others found significant differences (8, 34). Our
results offer further support for the latter pattern. Asymptomatic individuals also
experienced microbiome shifts following the challenge, but the rate and magnitude of
change was not as dramatic as in symptomatic individuals (Fig. S4), suggesting asymp-
tomatic outcome is accompanied by greater overall microbiome stability.

We evaluated the changes in 67 microbial populations, represented by meta-
genome-assembled genomes (MAGs), over the course of infection and found a wide
variety in response patterns (Fig. S5). MAGs were divided into two groups, those that
increased immediately during infection and those that decreased, presumably reflect-
ing taxa that are differentially adapted to changing gut conditions resulting from
HuNoV infection. Within each group, there were various patterns of recovery and
stability in coverage over time (Fig. S5). These data support the idea of a dynamic
nonlinear response to viral perturbation that is dependent on a variety of both host
biological and microbiome factors. The populations that decreased following infection
were enriched in members of the class Bacteroidia (phylum Bacteroidetes) relative to those
that increased (Table S3), suggesting these taxa are more susceptible to the HuNoV-
induced perturbation. The differences in taxonomy were accompanied by differences in
biochemical functions, including outer membrane proteins, folate biosynthesis proteins,
and polysaccharide biosynthesis/export proteins, all of which were enriched in MAGs that
decreased during infection (Fig. 5; Table S5). These functions may not be involved in HuNoV
infection of human cells but rather may be part of the biochemical repertoire of taxa that
provide infection resistance. Bacteroidia were also enriched in the prechallenge micro-
biomes of asymptomatic individuals (Fig. 2), suggesting a link between taxa unlikely to
facilitate viral infection and those that respond negatively once infection is initiated. The
underlying assumption is that if Bacteroidia are less likely to express the specific extracel-
lular compounds that mimic HBGAs, and thus confer resistance, they may also be dispro-
portionately affected when the virus successfully initiates infection. In effect, bacteria that
have evolved to facilitate viral infection (e.g., Enterobacteriaceae or the Clostridiales enriched
in symptomatic individuals) may also be better adapted to an environment characterized
by HuNoV proliferation and the host immune response.

Conclusions. In this study, we provide some of the first data on human gut
microbiome composition and function in the context of norovirus infection. These
results, while based on a small number of subjects and only one strain of human
norovirus (genogroup I.1), are nonetheless valuable because the exposure and course
of infection are well characterized and because human experiments are challenging
to conduct and limited in number. Importantly, we generated a list of high-quality
genomes that can be further characterized or used as a reference in future studies to
understand resistance to norovirus infection. Characterization of the overall micro-
biome taxonomic compositions showed important differences in the taxa enriched in
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the asymptomatic individuals versus those in symptomatic individuals. Furthermore,
we generated hypotheses about specific genes and pathways that can be tested in
future experiments. These data bring us toward a better understanding of norovirus
pathogenicity and how future outbreaks may be controlled, treated, or prevented.

MATERIALS AND METHODS
Study design and sample preparation. The Norwalk virus human challenge study was designed

and conducted as described in reference 27, a study whose primary goal was to determine whether heat
and pressure treatment of contaminated seafood could inactivate norovirus. The authors concluded this
treatment was ineffective; we therefore leveraged samples from subjects administered infected oysters
to conduct our own study addressing the effects of norovirus on the human gut microbiome. In the
original study, 44 individuals were selected for participation based on specific inclusion and exclusion
criteria, including overall good health and low potential to transmit the virus to other susceptible
individuals after challenge. Demographic characteristics of all subjects are provided in reference 27.
Samples from 9 of these 44 individuals were sequenced as part of the present study based on the
patients’ treatment conditions (ingestion of infected but otherwise unmodified oysters). All participants
were positive secretors of the H type 1 HBGA carbohydrate. Norwalk virus (genogroup I.1 HuNoV
inoculum 8FIIb) RNA was extracted from stool filtrates and quantified by real-time reverse transcription-
quantitative PCR (RT-qPCR). Commercial oysters (Crassostrea virginica) were prepared by high hydrostatic
pressure processing (HPP) of 400 MPa for 5 min to inactivate any potential pathogens acquired from the
harvest area. The HuNoV inoculum was injected into the tissue of multiple batches of three oysters
(Crassostrea virginica) 3 days prior to the challenge, such that each batch of three oysters contained
1.0 � 104 genomic equivalent copies (GEC) of HuNoV in total. Each study subject ingested one batch of
three inoculated oysters, including oyster juice, and also ingested approximately 2.4 g sodium bicar-
bonate dissolved in water 2 min prior to, and 5 min after, oyster consumption to reduce stomach acidity.
Subjects were classified as either symptomatic (n � 4) or asymptomatic (n � 5) based on the occurrence
of gastrointestinal responses, including diarrhea and vomiting. Gut microbiomes (stool samples) of all
nine individuals were sampled 1 day prior to the challenge (day 0). Microbiomes of three symptomatic
individuals were sampled for up to 33 days following the challenge. An additional symptomatic individ-
ual was sampled only once postinfection, 11 days following the challenge. Five asymptomatic individuals
were sampled at various time points following the challenge (Table 1).

Study protocols and sample collections for the original Norwalk virus challenge study (27) (Clinical-
Trials.gov identifier NCT00674336) were approved by an independent DSMB and the Emory University
Institutional Review Board.

Sample collection, processing, and sequencing. DNA from stool samples was extracted from a
homogenized stool mix using the MO BIO PowerSoil DNA isolation kit and following the standard manual
of procedures (MoP) suggested by the Human Microbiome Project (http://hmpdacc.org/resources/tools
_protocols.php). The purity and concentration of the DNA were measured using a NanoDrop spectro-
photometer (Thermo Fisher Scientific) and the Qubit double stranded DNA (dsDNA) high-sensitivity assay
(Invitrogen). Metagenomic libraries were prepared using the Nextera XT DNA library preparation kit
(Illumina) according to manufacturer’s instructions, except that the protocol was terminated after
isolation of cleaned double-stranded libraries. Library concentrations were determined using a Qubit HS
DNA assay and Qubit 2.0 fluorometer (Thermo Fisher Scientific), and samples were run on a high-
sensitivity DNA chip using a Bioanalyzer 2100 instrument (Agilent) to determine average library insert
sizes. An equimolar mixture of the libraries was sequenced as recommended by the manufacturer on an
Illumina HiSeq 2500 instrument (Georgia Institute of Technology Molecular Evolution Core Facility) for
300 cycles (2 � 150-bp paired-end run). Library demultiplexing and adapter trimming were carried out
on the instrument.

TABLE 1 Longitudinal sampling scheme for nine study subjects infected with HuNoV GI.1,
including four symptomatic and five asymptomatic individuals

Subject IDa Outcome

Sampling time point (day postchallenge)b

0 2 3 4 5 6 7 12 13 14 20 21 22 27 28 34

4 Symptomatic X X
15 Symptomatic X X X X X X
36 Symptomatic X X X X X X
37 Symptomatic X X X X X X X
13 Asymptomatic X X X
28 Asymptomatic X X
38 Asymptomatic X X
41 Asymptomatic X X
49 Asymptomatic X X X
aID, identifier.
bTime points when stool samples were collected are marked by an X. All individuals provided stool samples
at day 0, 1 day prior to the virus challenge.
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Sequencing read quality control. Paired-end reads were processed and quality filtered with
SolexaQA�� (45) with a minimum Phred score of �20 for each base and a minimum read length of
50 bp. Filtered reads were run against the latest human genome sequence using BMTagger (46) to
identify host DNA contamination. Reads identified as human were quantified and removed from the data
for downstream analyses. Abundance-weighted average coverage of the data sets was estimated using
Nonpareil (28) with the alignment algorithm and an iterative subsample factor of 0.7.

16S rRNA gene extraction and diversity metrics. Microbiomes were analyzed for differences in
alpha and beta diversities using quality-filtered unassembled reads. Nonpareil 3.0 (28) was used to
generate curves of estimated average coverage as a function of sequencing depth. The Nd value, a metric
based on sequence diversity, was calculated for each metagenome. Differences in alpha diversities
between asymptomatic and symptomatic baseline microbiomes were tested using a student’s two-tailed t
test of the sample Nd metrics. 16S rRNA gene-carrying reads were extracted from the metagenomes using
Parallel-META (47). The resulting matching reads were run against the SILVA 132 SSU Ref NR 99 database (48)
using vsearch (49). Tables with assigned taxonomy and corresponding counts were used to compare the
diversities of baseline microbiomes for asymptomatic and symptomatic study subjects as well as assess
diversity over time in the symptomatic individuals. Alpha and beta diversity metrics were calculated at the
family and sequence variant levels, respectively, using DivNet (29) and plotted using ggplot2 (50). Beta
diversity was assessed using the resulting Bray-Curtis distance matrix in nonmetric multidimensional scaling
(NMDS) plots with the metaMDS and anosim functions of the vegan package (51) in R.

Biomarker analysis. Prechallenge microbiomes of asymptomatic and symptomatic subjects were
compared to identify differentially abundant microbial taxa (“biomarkers”) using linear discriminant
analysis effect size (LEfSe) (52). This analysis was performed in the following two ways: (i) number of reads
mapped to 16S rRNA reads were extracted from metagenomes as described above, and (ii) taxonomic
compositions were based on classification of all metagenomic short reads. The latter was performed
using Kraken 2 (53), which applies a k-mer-based approach to taxonomically classify short metagenomic
reads using the RefSeq database (“standard” prebuilt database includes archaea, bacteria, viral, plasmid,
and human reads; https://genome-idx.s3.amazonaws.com/kraken/k2_standard_20200919.tar.gz), fol-
lowed by Bracken (54), which generates abundance estimations using the taxonomic classifications from
Kraken 2. In both cases, the LEfSe analysis was run using raw numbers of reads, not relative abundances,
with a per-sample normalization and all-versus-all parameters.

Metagenome assembly and binning. Quality-filtered reads were de novo assembled using IDBA-UD
(55). Genome equivalent values for each metagenome were calculated using MicrobeCensus (56). MaxBin
2.0 (57) was used to bin assembled contigs into metagenome-assembled genomes (MAGs) with a
minimum contig length of 2,000 bp. MAGs were generated from each individual metagenome (not a
coassembly). Resulting bins were run through CheckM v1.0.3 (58) and the Microbial Genomes Atlas
(MiGA) (59) for quality assessment and taxonomic assignment, respectively. Each MAG was assigned a
quality score defined as completion minus five times the estimated contamination, and only MAGs with
a quality score of �50 were retained for further analysis. To remove redundant bins (i.e., genomes from
different samples representing the same microbial taxon), MAGs were dereplicated in a two-step
clustering process using dRep (60) using a 95% average nucleotide identity (ANI) threshold for clustering.
When multiple MAGs were present in a secondary cluster, the highest-quality MAG was chosen as a
representative to be used for subsequent analyses. The final list of dereplicated high-quality MAGs and
their taxonomy and closest relatives by amino acid identity (AAI) are shown in Table S3 in the
supplemental material, and sequences are available on NCBI under BioProject PRJNA645402.

Mash distances. To complement the taxonomy-based community composition comparisons among
microbiomes, we also performed k-mer-based assessments of unassembled microbiomes. Overall similarities
of metagenomic nucleotide compositions were calculated using Mash (61). To compare baseline microbiomes
of asymptomatic (5) and symptomatic (4) individuals, reference sketches were generated for all quality-
controlled and filtered reads from the prechallenge (time zero) time point using a k-mer size of 25. Sketches
were combined within each outcome group and used to generate an all-versus-all distance matrix.

To compare metagenomes from the three symptomatic individuals over time, reads of a metag-
enomic data set were first randomly divided into two equal-size files so that prechallenge samples (T0)
could be self-compared by running one half of the reads against the other half. The resulting files
(half-read files) were used to generate reference sketches and an all-versus-all distance matrix, with the
T0 half-read files run against each other for a starting distance value. Mash distances from the symp-
tomatic individuals were also used to generate a line plot in R showing change in distance over time.

Full read files were used to generate a Mash distance matrix, which was used for an NMDS analysis
and an analysis of similarity (ANOSIM) using the metaMDS and anosim functions, respectively, of the
vegan library in R (51). Self-versus-self distances were assumed to be zero in this analysis.

MAG coverage and temporal analyses. Coverage of each MAG in each sample was calculated by
estimating sequencing depth per position using Bowtie 2 (62) with default settings for read mapping,
bedtools (63) for coverage estimation, and averaging the central 80% of the distribution, which removes the
highest 10% and lowest 10% of outlier positions in terms of coverage (here referred to as truncated average
depth [TAD80]). TAD80 values were normalized by the genome equivalent of the corresponding metag-
enome. Relative abundance of each MAG in each metagenome was calculated as the raw TAD (not the
TAD80) multiplied by the MAG size (in base pairs), all divided by the total number of base pairs in the
metagenome.

MAGs with an average TAD80 value greater than 0.01 (approximate relative abundance of 1% of the
total community) from three symptomatic individuals were analyzed for temporal changes. MAGs were
grouped by the change in TAD80 (increase versus decrease) from prechallenge to the first postchallenge
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time point. MAGs grouped by individual were plotted in Seaborn, with lines representing the median
TAD80 values and shaded areas representing the 95% confidence intervals.

MAGs were grouped based on their change in TAD80 from the baseline to the first time point
following the challenge as either “increase” or “decrease” depending on the response. MAGs that
increased in one individual and decreased in a different individual were excluded from the groups
because their response was not consistent. The taxonomy and closest relative (based on average amino
acid identity [AAI]) of the MAGs belonging to each group are shown in Table S3.

Functional annotation. KEGG gene functional annotations were assigned and quantified for each
prechallenge metagenome. Open reading frames were generated using Prodigal (64) and clustered with
MeShClust (65) at 90% nucleotide identity. The longest sequence from each cluster was extracted using
a custom Python script, and these representative sequences were run against the KEGG ortholog profile
hidden Markov models (HMMs) (KOfams) using KofamScan with the “prokaryote” database (66). The
parameter “-f mapper” was applied to provide only the most confident annotations (those assigned an
individual KO). Orthologues were matched to their corresponding functions using a parsed version of the
ko00001.keg database text file (https://github.com/edgraham/GhostKoalaParser), which provides a
three-tiered hierarchical categorization of each gene, here referred to as “group,” “subgroup 1,” and
“subgroup 2.” Sequence coverage of each gene was generated by mapping metagenomic short reads
against each one using Magic-BLAST (67). The Magic-BLAST output was filtered to include only the best
match for each read with a ratio of alignment length to read length of 0.7 and a minimum read length
of 70 bp. Read counts were normalized by genome equivalent value of the corresponding metagenome
in order to provide the relative abundance of the gene to which the reads were mapped (i.e., what
fraction of total cells/genomes encode the gene of interest).

The normalized gene counts were used to test for significantly different functions and run hierarchical
clustering analyses. KofamScan outputs were grouped by the three hierarchical categories as well as by
individual KO number (gene). At the highest categorical level (group), the categories human diseases,
organismal systems, cellular community–eukaryotes, and BRITE hierarchies were removed before performing
the statistical analyses. The first three groups are not relevant to microbial gene functions, and the fourth
provides a different hierarchical categorization scheme for the same annotations that was redundant. Each
gene and highest-resolution category (subgroup 2) were tested for significantly different abundance between
symptomatic and asymptomatic individuals by running a two-tailed Student’s t test on the normalized read
counts. A Benjamini-Hochberg multiple-test correction for false discovery rate was run on the individual KO
P values due to the large number of tests performed (1,936). Genes were considered to be significantly
differentially abundant with a corrected P value of less than 0.05. Fold change was calculated as the ratio of
mean values from symptomatic to asymptomatic subjects. All significantly different categories (subgroup 2
level) and genes (KO level) are shown in Tables S4 and S5, respectively.

Cluster maps were generated at the subgroup 1 level for all categories, and individual cluster maps
were generated for each subgroup 2 group determined to be significantly different in relative abundance
(28 total). All cluster analyses were run with the “clustermap” function in the Python library Seaborn (68)
using the Ward linkage and Euclidean distance methods.

Comparison of genes between the MAGs that increased in relative abundance following the
challenge and those that decreased or remained the same was performed using similar methods as for
the asymptomatic/symptomatic comparison mentioned above, with the following differences: each MAG
was annotated independently with KofamScan such that each MAG was a sample in the statistical
comparison rather than an assembly. The t test was run on each KO using the number of hits per gene
per MAG as sample values, and a Benjamini-Hochberg multiple-test correction for false discovery rate
was run on all KOs due to the large number of tests performed (3,645). Fold change was calculated as
the ratio of “increase” group to “decrease” group mean values. A cluster map was generated as described
above without clustering the MAGs so that differences between the two groups could be easily
visualized but with clustering of genes to show groups of genes with similar patterns of relative
abundance (Fig. 5). The complete list of significantly different genes (corrected P values � 0.05; 116 total)
and their corrected P values and fold changes are provided in Table S5.

Data availability. Raw reads for all metagenomes are available in NCBI under BioProject
PRJNA645402. Custom scripts for bioinformatic and statistical analyses can be found at https://github
.com/nvpatin/Norovirus_manuscript. The analyses include formatting vsearch taxonomic assignment
outputs for downstream analyses, alpha and beta diversity analyses of the extracted 16S rRNA gene
sequences (both prechallenge samples and time series of infected individuals), and comparison and
visualization of differentially abundant gene content from KofamScan outputs.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
FIG S1, PDF file, 1 MB.
FIG S2, PDF file, 0.2 MB.
FIG S3, PDF file, 0.9 MB.
FIG S4, PDF file, 0.8 MB.
FIG S5, PDF file, 1 MB.
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Human Gut Microbiome Response to Norovirus Infection ®

November/December 2020 Volume 11 Issue 6 e02634-20 mbio.asm.org 13

https://github.com/edgraham/GhostKoalaParser
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA645402
https://github.com/nvpatin/Norovirus_manuscript
https://github.com/nvpatin/Norovirus_manuscript
https://mbio.asm.org


TABLE S4, XLSX file, 0.1 MB.
TABLE S5, XLSX file, 0.1 MB.

ACKNOWLEDGMENTS
We thank Juan Leon for his leadership role in the Norwalk virus human challenge

study that provided the specimens for the present research.
We declare no competing interests.
Funding for this study was provided by National Institutes of Allergy and Infectious

Diseases grant 1K01AI103544 and by Colciencias through a doctoral fellowship to
A.P.-G. We also acknowledge funding from USDA-NIFA (grant 2005-5110-03271) for the
original Norwalk virus human challenge study.

N.V.P. conducted the bioinformatic analyses and wrote the manuscript. A.P.-G.
processed the samples, conducted bioinformatic analyses, and helped write the man-
uscript. J.K.H. processed and sequenced the samples. C.M. and A.K. helped design the
study. K.K.T. designed the study and helped write the manuscript.

REFERENCES
1. Shah MP, Hall AJ. 2018. Norovirus illnesses in children and adolescents.

Infect Dis Clin North Am 32:103–118. https://doi.org/10.1016/j.idc.2017
.11.004.

2. Kapikian AZ. 2000. The discovery of the 27�nm Norwalk virus: an historic
perspective. J Infect Dis 181(Suppl 2):S295–302. https://doi.org/10.1086/
315584.

3. Karst SM, Wobus CE, Lay M, Davidson J, Virgin IH. 2003. STAT1-
dependent innate immunity to a Norwalk-like virus. Science 299:
1575–1578. https://doi.org/10.1126/science.1077905.

4. Jones MK, Grau KR, Costantini V, Kolawole AO, de Graaf M, Freiden P,
Graves CL, Koopmans M, Wallet SM, Tibbetts SA, Schultz-Cherry S,
Wobus CE, Vinjé J, Karst SM. 2015. Human norovirus culture in B cells.
Nat Protoc 10:1939 –1947. https://doi.org/10.1038/nprot.2015.121.

5. Ettayebi K, Crawford SE, Murakami K, Broughman JR, Karandikar U,
Tenge VR, Neill FH, Blutt SE, Zeng X-L, Qu L, Kou B, Opekun AR, Burrin D,
Graham DY, Ramani S, Atmar RL, Estes MK. 2016. Replication of human
noroviruses in stem cell-derived human enteroids. Science 353:
1387–1393. https://doi.org/10.1126/science.aaf5211.

6. Lindesmith L, Moe C, Marionneau S, Ruvoen N, Jiang X, Lindblad L,
Stewart P, LePendu J, Baric R. 2003. Human susceptibility and resistance
to Norwalk virus infection. Nat Med 9:548 –553. https://doi.org/10.1038/
nm860.

7. Donaldson EF, Lindesmith LC, Lobue AD, Baric RS. 2010. Viral shape-
shifting: norovirus evasion of the human immune system. Nat Rev
Microbiol 8:231–241. https://doi.org/10.1038/nrmicro2296.

8. Atmar RL, Opekun AR, Gilger MA, Estes MK, Crawford SE, Neill FH, Graham
DY. 2008. Norwalk virus shedding after experimental human infection.
Emerg Infect Dis 14:1553–1557. https://doi.org/10.3201/eid1410.080117.

9. Kirby AE, Shi J, Montes J, Lichtenstein M, Moe CL. 2014. Disease course
and viral shedding in experimental Norwalk virus and Snow Mountain
virus infection. J Med Virol 86:2055–2064. https://doi.org/10.1002/jmv
.23905.

10. Tan M, Jiang X. 2005. Norovirus and its histo-blood group antigen
receptors: an answer to a historical puzzle. Trends Microbiol 13:285–293.
https://doi.org/10.1016/j.tim.2005.04.004.

11. Harrington PR, Lindesmith L, Yount B, Moe CL, Baric RS. 2002. Binding of
Norwalk virus-like particles to ABH histo-blood group antigens is
blocked by antisera from infected human volunteers or experimentally
vaccinated mice. J Virol 76:12335–12343. https://doi.org/10.1128/jvi.76
.23.12335-12343.2002.

12. Marionneau S, Ruvoën N, Le Moullac-Vaidye B, Clement M, Cailleau-
Thomas A, Ruiz-Palacois G, Huang P, Jiang X, Le Pendu J. 2002. Norwalk
virus binds to histo-blood group antigens present on gastroduodenal
epithelial cells of secretor individuals. Gastroenterology 122:1967–1977.
https://doi.org/10.1053/gast.2002.33661.

13. Hutson AM, Atmar RL, Graham DY, Estes MK. 2002. Norwalk virus infec-
tion and disease is associated with ABO histo– blood group type. J Infect
Dis 185:1335–1337. https://doi.org/10.1086/339883.

14. Jones MK, Watanabe M, Zhu S, Graves CL, Keyes LR, Grau KR, Gonzalez-
Hernandez MB, Iovine NM, Wobus CE, Vinjé J, Tibbetts SA, Wallet SM,

Karst SM. 2014. Enteric bacteria promote human and mouse norovirus
infection of B cells. Science 346:755–759. https://doi.org/10.1126/science
.1257147.

15. Karst SM. 2015. Identification of a novel cellular target and a co-factor for
norovirus infection – B cells and commensal bacteria. Gut Microbes
6:266 –271. https://doi.org/10.1080/19490976.2015.1052211.

16. Green KY, Kaufman SS, Nagata BM, Chaimongkol N, Kim DY, Levenson EA,
Tin CM, Yardley AB, Johnson JA, Barletta ABF, Khan KM, Yazigi NA, Subra-
manian S, Moturi SR, Fishbein TM, Moore IN, Sosnovtsev SV. 2020. Human
norovirus targets enteroendocrine epithelial cells in the small intestine. Nat
Commun 11:2759. https://doi.org/10.1038/s41467-020-16491-3.

17. Karandikar UC, Crawford SE, Ajami NJ, Murakami K, Kou B, Ettayebi K,
Papanicolaou GA, Jongwutiwes U, Perales M-A, Shia J, Mercer D, Fine-
gold MJ, Vinjé J, Atmar RL, Estes MK. 2016. Detection of human norovirus
in intestinal biopsies from immunocompromised transplant patients. J
Gen Virol 97:2291–2300. https://doi.org/10.1099/jgv.0.000545.

18. Newman KL, Moe CL, Kirby AE, Flanders WD, Parkos CA, Leon JS. 2016.
Norovirus in symptomatic and asymptomatic individuals: cytokines and
viral shedding. Clin Exp Immunol 184:347–357. https://doi.org/10.1111/
cei.12772.

19. Miura T, Sano D, Suenaga A, Yoshimura T, Fuzawa M, Nakagomi T,
Nakagomi O, Okabe S. 2013. Histo-blood group antigen-like substances
of human enteric bacteria as specific adsorbents for human noroviruses.
J Virol 87:9441–9451. https://doi.org/10.1128/JVI.01060-13.

20. Baldridge MT, Nice TJ, McCune BT, Yokoyama CC, Kambal A, Wheadon M,
Diamond MS, Ivanova Y, Artyomov M, Virgin HW. 2015. Commensal mi-
crobes and interferon-� determine persistence of enteric murine norovirus
infection. Science 347:266–269. https://doi.org/10.1126/science.1258025.

21. Madrigal JL, Bhar S, Hackett S, Engelken H, Joseph R, Keyhani NO, Jones
MK. 2020. Attach me if you can: murine norovirus binds to commensal
bacteria and fungi. Viruses 12:759. https://doi.org/10.3390/v12070759.

22. Pfeiffer JK, Virgin HW. 2016. Viral immunity: transkingdom control of viral
infection and immunity in the mammalian intestine. Science 351:
aad5872. https://doi.org/10.1126/science.aad5872.

23. Lee H, Ko GP. 2016. Antiviral effect of vitamin A on norovirus infection
via modulation of the gut microbiome. Sci Rep 6:25835. https://doi.org/
10.1038/srep25835.

24. Teunis PFM, Sukhrie FHA, Vennema H, Bogerman J, Beersma MFC,
Koopmans MPG. 2015. Shedding of norovirus in symptomatic and
asymptomatic infections. Epidemiol Infect 143:1710 –1717. https://doi
.org/10.1017/S095026881400274X.

25. Ozawa K, Oka T, Takeda N, Hansman GS. 2007. Norovirus infections in
symptomatic and asymptomatic food handlers in Japan. J Clin Microbiol
45:3996 – 4005. https://doi.org/10.1128/JCM.01516-07.

26. Nelson AM, Walk ST, Taube S, Taniuchi M, Houpt ER, Wobus CE, Young VB.
2012. Disruption of the human gut microbiota following norovirus infection.
PLoS One 7:e48224. https://doi.org/10.1371/journal.pone.0048224.

27. Leon JS, Kingsley DH, Montes JS, Richards GP, Lyon GM, Abdulhafid GM,
Seitz SR, Fernandez ML, Teunis PF, Flick GJ, Moe CL. 2011. Randomized,
double-blinded clinical trial for human norovirus inactivation in oysters

Patin et al. ®

November/December 2020 Volume 11 Issue 6 e02634-20 mbio.asm.org 14

https://doi.org/10.1016/j.idc.2017.11.004
https://doi.org/10.1016/j.idc.2017.11.004
https://doi.org/10.1086/315584
https://doi.org/10.1086/315584
https://doi.org/10.1126/science.1077905
https://doi.org/10.1038/nprot.2015.121
https://doi.org/10.1126/science.aaf5211
https://doi.org/10.1038/nm860
https://doi.org/10.1038/nm860
https://doi.org/10.1038/nrmicro2296
https://doi.org/10.3201/eid1410.080117
https://doi.org/10.1002/jmv.23905
https://doi.org/10.1002/jmv.23905
https://doi.org/10.1016/j.tim.2005.04.004
https://doi.org/10.1128/jvi.76.23.12335-12343.2002
https://doi.org/10.1128/jvi.76.23.12335-12343.2002
https://doi.org/10.1053/gast.2002.33661
https://doi.org/10.1086/339883
https://doi.org/10.1126/science.1257147
https://doi.org/10.1126/science.1257147
https://doi.org/10.1080/19490976.2015.1052211
https://doi.org/10.1038/s41467-020-16491-3
https://doi.org/10.1099/jgv.0.000545
https://doi.org/10.1111/cei.12772
https://doi.org/10.1111/cei.12772
https://doi.org/10.1128/JVI.01060-13
https://doi.org/10.1126/science.1258025
https://doi.org/10.3390/v12070759
https://doi.org/10.1126/science.aad5872
https://doi.org/10.1038/srep25835
https://doi.org/10.1038/srep25835
https://doi.org/10.1017/S095026881400274X
https://doi.org/10.1017/S095026881400274X
https://doi.org/10.1128/JCM.01516-07
https://doi.org/10.1371/journal.pone.0048224
https://mbio.asm.org


by high hydrostatic pressure processing. Appl Environ Microbiol 77:
5476 –5482. https://doi.org/10.1128/AEM.02801-10.

28. Rodriguez-R LM, Gunturu S, Tiedje JM, Cole JR, Konstantinidis KT.
2018. Nonpareil 3: fast estimation of metagenomic coverage and
sequence diversity. mSystems 3:e00039-18. https://doi.org/10.1128/
mSystems.00039-18.

29. Willis AD, Martin BD. 21 April 2018. DivNet: estimating diversity in
networked communities. bioRxiv https://doi.org/10.1101/305045.

30. Vincent C, Mehrotra S, Loo VG, Dewar K, Manges AR. 2015. Excretion of
host DNA in feces is associated with risk of Clostridium difficile infection.
J Immunol Res 2015:246203. https://doi.org/10.1155/2015/246203.

31. Huang AD, Luo C, Pena-Gonzalez A, Weigand MR, Tarr CL, Konstantinidis
KT. 2017. Metagenomics of two severe foodborne outbreaks provides
diagnostic signatures and signs of coinfection not attainable by tradi-
tional methods. Appl Environ Microbiol 83:e02577-16. https://doi.org/10
.1128/AEM.02577-16.

32. Peña-Gonzalez A, Soto-Girón MJ, Smith S, Sistrunk J, Montero L, Páez M,
Ortega E, Hatt JK, Cevallos W, Trueba G, Levy K, Konstantinidis KT. 2019.
Metagenomic signatures of gut infections caused by different Esche-
richia coli pathotypes. Appl Environ Microbiol 85:e01820-19. https://doi
.org/10.1128/AEM.01820-19.

33. Haessler S, Granowitz EV. 2013. Norovirus gastroenteritis in immuno-
compromised patients. N Engl J Med 368:971. https://doi.org/10.1056/
NEJMc1301022.

34. Wu Q-s, Xuan Z-l, Liu J-y, Zhao X-t, Chen Y-f, Wang C-x, Shen X-t, Wang
Y-x, Wang L, Hu Y. 2019. Norovirus shedding among symptomatic and
asymptomatic employees in outbreak settings in Shanghai, China. BMC
Infect Dis 19:592. https://doi.org/10.1186/s12879-019-4205-y.

35. Almand EA, Moore MD, Outlaw J, Jaykus LA. 2017. Human norovirus
binding to select bacteria representative of the human gut microbiota.
PLoS One 12:e0173124. https://doi.org/10.1371/journal.pone.0173124.

36. Baldridge MT, Turula H, Wobus CE. 2016. Norovirus regulation by host
and microbe. Trends Mol Med 22:1047–1059. https://doi.org/10.1016/j
.molmed.2016.10.003.

37. McKenney PT, Pamer EG. 2015. From hype to hope: the gut microbiota
in enteric infectious disease. Cell 163:1326 –1332. https://doi.org/10
.1016/j.cell.2015.11.032.

38. Karst SM. 2016. The influence of commensal bacteria on infection with
enteric viruses. Nat Rev Microbiol 14:197–204. https://doi.org/10.1038/
nrmicro.2015.25.

39. Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. 2018.
Current understanding of the human microbiome. Nat Med 24:392– 400.
https://doi.org/10.1038/nm.4517.

40. Singh P, Teal TK, Marsh TL, Tiedje JM, Mosci R, Jernigan K, Zell A, Newton
DW, Salimnia H, Lephart P, Sundin D, Khalife W, Britton RA, Rudrik JT,
Manning SD. 2015. Intestinal microbial communities associated with
acute enteric infections and disease recovery. Microbiome 3:45. https://
doi.org/10.1186/s40168-015-0109-2.

41. Duvallet C, Gibbons SM, Gurry T, Irizarry RA, Alm EJ. 2017. Meta-analysis of
gut microbiome studies identifies disease-specific and shared responses.
Nat Commun 8:1784. https://doi.org/10.1038/s41467-017-01973-8.

42. Schmid J, Sieber V, Rehm B. 2015. Bacterial exopolysaccharides: biosyn-
thesis pathways and engineering strategies. Front Microbiol 6:496.
https://doi.org/10.3389/fmicb.2015.00496.

43. Koromyslova A, Tripathi S, Morozov V, Schroten H, Hansman GS. 2017.
Human norovirus inhibition by a human milk oligosaccharide. Virology
508:81– 89. https://doi.org/10.1016/j.virol.2017.04.032.

44. Costantini VP, Cooper EM, Hardaker HL, Lee LE, Bierhoff M, Biggs C,
Cieslak PR, Hall AJ, Vinjé J. 2016. Epidemiologic, virologic, and host
genetic factors of norovirus outbreaks in long-term care facilities. Clin
Infect Dis 62:1–10. https://doi.org/10.1093/cid/civ747.

45. Cox MP, Peterson DA, Biggs PJ. 2010. SolexaQA: at-a-glance quality
assessment of Illumina second-generation sequencing data. BMC Bioin-
formatics 11:485. https://doi.org/10.1186/1471-2105-11-485.

46. Sherry S. 2011. Human sequence removal. National Center for Biotech-
nology Information. https://hmpdacc.org/hmp/doc/HumanSequence
Removal_SOP.pdf.

47. Jing G, Sun Z, Wang H, Gong Y, Huang S, Ning K, Xu J, Su X. 2017.
Parallel-META 3: comprehensive taxonomical and functional analysis
platform for efficient comparison of microbial communities. Sci Rep
7:40371. https://doi.org/10.1038/srep40371.

48. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J,
Glöckner FO. 2013. The SILVA ribosomal RNA gene database project:
improved data processing and web-based tools. Nucleic Acids Res 41:
D590 –D596. https://doi.org/10.1093/nar/gks1219.

49. Rognes T, Flouri T, Nichols B, Quince C, Mahé F. 2016. VSEARCH: a
versatile open source tool for metagenomics. PeerJ 4:e2584. https://doi
.org/10.7717/peerj.2584.

50. Wickham H. 2016. ggplot2: elegant graphics for data analysis. Springer-
Verlag, New York, NY.

51. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, Mcglinn D,
Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E,
Wagner H. 2019. vegan: community ecology package. P R package
version 2.5–5. https://cran.r-project.org/package�vegan.

52. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS,
Huttenhower C. 2011. Metagenomic biomarker discovery and explana-
tion. Genome Biol 12:R60. https://doi.org/10.1186/gb-2011-12-6-r60.

53. Wood DE, Lu J, Langmead B. 2019. Improved metagenomic analysis with
Kraken 2. Genome Biol 20:257. https://doi.org/10.1186/s13059-019-1891-0.

54. Lu J, Breitwieser FP, Thielen P, Salzberg SL. 2017. Bracken: estimating
species abundance in metagenomics data. PeerJ Comput Sci 3:e104.
https://doi.org/10.7717/peerj-cs.104.

55. Peng Y, Leung HCM, Yiu SM, Chin FYL. 2012. IDBA-UD: a de novo
assembler for single-cell and metagenomic sequencing data with highly
uneven depth. Bioinformatics 28:1420 –1428. https://doi.org/10.1093/
bioinformatics/bts174.

56. Nayfach S, Pollard KS. 2015. Average genome size estimation improves
comparative metagenomics and sheds light on the functional ecology of
the human microbiome. Genome Biol 16:51. https://doi.org/10.1186/
s13059-015-0611-7.

57. Wu YW, Simmons BA, Singer SW. 2016. MaxBin 2.0: an automated
binning algorithm to recover genomes from multiple metagenomic
datasets. Bioinformatics 32:605– 607. https://doi.org/10.1093/
bioinformatics/btv638.

58. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015.
CheckM: assessing the quality of microbial genomes recovered from
isolates, single cells, and metagenomes. Genome Res 25:1043–1055.
https://doi.org/10.1101/gr.186072.114.

59. Rodriguez-R LM, Gunturu S, Harvey WT, Rosselló-Mora R, Tiedje JM, Cole
JR, Konstantinidis KT. 2018. The Microbial Genomes Atlas (MiGA)
webserver: taxonomic and gene diversity analysis of Archaea and Bac-
teria at the whole genome level. Nucleic Acids Res 46:W282–W288.
https://doi.org/10.1093/nar/gky467.

60. Olm MR, Brown CT, Brooks B, Banfield JF. 2017. DRep: a tool for fast and
accurate genomic comparisons that enables improved genome recovery
from metagenomes through de-replication. ISME J 11:2864 –2868.
https://doi.org/10.1038/ismej.2017.126.

61. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S,
Phillippy AM. 2016. Mash: fast genome and metagenome distance esti-
mation using MinHash. Genome Biol 17:132. https://doi.org/10.1186/
s13059-016-0997-x.

62. Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bow-
tie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923.

63. Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for
comparing genomic features. Bioinformatics 26:841– 842. https://doi
.org/10.1093/bioinformatics/btq033.

64. Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. 2010.
Prodigal: prokaryotic gene recognition and translation initiation site
identification. BMC Bioinformatics 11:119. https://doi.org/10.1186/1471
-2105-11-119.

65. James BT, Luczak BB, Girgis HZ. 2018. MeShClust: an intelligent tool for
clustering DNA sequences. Nucleic Acids Res 46:e83. https://doi.org/10
.1093/nar/gky315.

66. Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S,
Ogata H. 2020. KofamKOALA: KEGG ortholog assignment based on
profile HMM and adaptive score threshold. Bioinformatics 36:2251–2252.
https://doi.org/10.1093/bioinformatics/btz859.

67. Boratyn GM, Thierry-Mieg J, Thierry-Mieg D, Busby B, Madden TL. 2019.
Magic-BLAST, an accurate RNA-seq aligner for long and short reads. BMC
Bioinformatics 20:405. https://doi.org/10.1186/s12859-019-2996-x.

68. Waskom M. 2018. Seaborn: statistical data visualization—Seaborn 0.9.0
documentation. https://seaborn.pydata.org/.

Human Gut Microbiome Response to Norovirus Infection ®

November/December 2020 Volume 11 Issue 6 e02634-20 mbio.asm.org 15

https://doi.org/10.1128/AEM.02801-10
https://doi.org/10.1128/mSystems.00039-18
https://doi.org/10.1128/mSystems.00039-18
https://doi.org/10.1101/305045
https://doi.org/10.1155/2015/246203
https://doi.org/10.1128/AEM.02577-16
https://doi.org/10.1128/AEM.02577-16
https://doi.org/10.1128/AEM.01820-19
https://doi.org/10.1128/AEM.01820-19
https://doi.org/10.1056/NEJMc1301022
https://doi.org/10.1056/NEJMc1301022
https://doi.org/10.1186/s12879-019-4205-y
https://doi.org/10.1371/journal.pone.0173124
https://doi.org/10.1016/j.molmed.2016.10.003
https://doi.org/10.1016/j.molmed.2016.10.003
https://doi.org/10.1016/j.cell.2015.11.032
https://doi.org/10.1016/j.cell.2015.11.032
https://doi.org/10.1038/nrmicro.2015.25
https://doi.org/10.1038/nrmicro.2015.25
https://doi.org/10.1038/nm.4517
https://doi.org/10.1186/s40168-015-0109-2
https://doi.org/10.1186/s40168-015-0109-2
https://doi.org/10.1038/s41467-017-01973-8
https://doi.org/10.3389/fmicb.2015.00496
https://doi.org/10.1016/j.virol.2017.04.032
https://doi.org/10.1093/cid/civ747
https://doi.org/10.1186/1471-2105-11-485
https://hmpdacc.org/hmp/doc/HumanSequenceRemoval_SOP.pdf
https://hmpdacc.org/hmp/doc/HumanSequenceRemoval_SOP.pdf
https://doi.org/10.1038/srep40371
https://doi.org/10.1093/nar/gks1219
https://doi.org/10.7717/peerj.2584
https://doi.org/10.7717/peerj.2584
https://cran.r-project.org/package=vegan
https://doi.org/10.1186/gb-2011-12-6-r60
https://doi.org/10.1186/s13059-019-1891-0
https://doi.org/10.7717/peerj-cs.104
https://doi.org/10.1093/bioinformatics/bts174
https://doi.org/10.1093/bioinformatics/bts174
https://doi.org/10.1186/s13059-015-0611-7
https://doi.org/10.1186/s13059-015-0611-7
https://doi.org/10.1093/bioinformatics/btv638
https://doi.org/10.1093/bioinformatics/btv638
https://doi.org/10.1101/gr.186072.114
https://doi.org/10.1093/nar/gky467
https://doi.org/10.1038/ismej.2017.126
https://doi.org/10.1186/s13059-016-0997-x
https://doi.org/10.1186/s13059-016-0997-x
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1186/1471-2105-11-119
https://doi.org/10.1186/1471-2105-11-119
https://doi.org/10.1093/nar/gky315
https://doi.org/10.1093/nar/gky315
https://doi.org/10.1093/bioinformatics/btz859
https://doi.org/10.1186/s12859-019-2996-x
https://seaborn.pydata.org/
https://mbio.asm.org

	RESULTS
	Human subject responses. 
	Metagenome sequence coverage. 
	Prechallenge microbiomes of symptomatic and asymptomatic individuals. 
	Temporal microbiome shifts following viral challenge. 
	Functional gene and MAG abundance shifts over time. 

	DISCUSSION
	Conclusions. 

	MATERIALS AND METHODS
	Study design and sample preparation. 
	Sample collection, processing, and sequencing. 
	Sequencing read quality control. 
	16S rRNA gene extraction and diversity metrics. 
	Biomarker analysis. 
	Metagenome assembly and binning. 
	Mash distances. 
	MAG coverage and temporal analyses. 
	Functional annotation. 
	Data availability. 

	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES

