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SUMMARY

The transforming growth factor beta (TGF-b)
signaling pathway exerts opposing effects on cancer
cells, acting as either a tumor promoter or a tumor
suppressor. Here, we show that these opposing
effects are a result of the synergy between SMAD3,
a downstream effector of TGF-b signaling, and the
distinct epigenomes of breast-tumor-initiating cells
(BTICs). These effects of TGF-b are associated with
distinct gene expression programs, but genomic
SMAD3 binding patterns are highly similar in the
BTIC-promoting and BTIC-suppressing contexts.
Our data show cell-type-specific patterns of DNA
and histone modifications provide a modulatory
layer by determining accessibility of genes to regula-
tion by TGF-b/SMAD3. LBH, one such context-spe-
cific target gene, is regulated according to its DNA
methylation status and is crucial for TGF-b-depen-
dent promotion of BTICs. Overall, these results
reveal that the epigenome plays a central and previ-
ously overlooked role in shaping the context-specific
effects of TGF-b in cancer.

INTRODUCTION

The effects of transforming growth factor beta (TGF-b) in tissue

homeostasis depend heavily on cellular context (Massagué,

2012). TGF-b has been shown to both induce proliferation and

suppress cell growth, stimulate stem cell self-renewal and pro-

mote differentiation, and inhibit early and promote late malignant

transformation (Gomis et al., 2006; Guasch et al., 2007; Mas-

sagué, 2008, 2012).

In breast cancer, TGF-b can either promote or inhibit tumor-

initiating cells (breast TICs, or BTICs), which are responsible

for cancer initiation, propagation, and metastasis (Bierie and

Moses, 2009; Bruna et al., 2012; Mani et al., 2008; Scheel

et al., 2011). We have previously shown these opposing effects

of TGF-b depend on breast cancer subtype (Bruna et al.,

2012). BTICs are activated only in Claudinlow breast cancer,

while in all other subtypes, TGF-b inhibits BTICs. Since no muta-
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tions in TGF-b pathway genes have been associated with spe-

cific breast cancer subtypes (Cancer Genome Atlas Network,

2012), the underlying mechanism of this dichotomy is unlikely

to be genetic.

TGF-b signaling is initiated by binding of TGF-b to its cognate

receptor, TGFBR II, resulting in phosphorylation of the transcrip-

tion factors SMAD2 and SMAD3 (Massagué et al., 2005). Upon

phosphorylation, SMAD2 and SMAD3 associate with SMAD4

and translocate to the nucleus, where they partner up with

additional transcription factors (TFs) to regulate target gene

expression (Massagué et al., 2005). Remarkably, TGF-b univer-

sally relies on SMADs despite regulating cell-type-specific tran-

scriptional programs (Massagué, 2012). The current model is

that cell-type-specific partner TFs guide SMADs to distinct

genes, thus resulting in context-specific gene regulation and

specific biological effects of TGF-b (Massagué, 2012; Mullen

et al., 2011; Xu et al., 2015).

Here, we mapped genome-wide SMAD3 binding patterns in

BTICs that model the opposing effects of TGF-b (Bruna et al.,

2012). This showed that differential SMAD3 binding does not

fully account for context-specific TGF-b target gene regulation,

and further experiments revealed that distinct epigenetic states

are responsible. We identify transcription factor LBH as a proto-

typical TGF-b target gene regulated by differential DNA methyl-

ation and show it is essential for the BTIC-promoting activity of

TGF-b. Taken together, these data reveal an important role for

epigenetic determinants in regulation of the context-specific

actions of TGF-b in cancer.

RESULTS

SMAD3 Binding to Gene-Proximal Regions Mediates
TGF-b-Dependent Gene Expression in BTICs
Two cell lines that we previously showed represent the

opposing effects of TGF-b (Bruna et al., 2012) were used as

BTIC model systems in all experiments: MDA-MB-231 for

BTIC promoting, and HCC-1954 for BTIC suppressing (Fig-

ure 1A). Cells were grown in suspension as mammosphere cul-

tures to enrich for BTICs (Bruna et al., 2012; Dontu et al., 2003a,

2003b). Confirming our previous data (Bruna et al., 2012), the

canonical TGF-b signaling cascade is intact and similarly acti-

vated by its ligand in both models, as shown by SMAD2 phos-

phorylation (Figure 1B).
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Figure 1. SMAD3 Mediates Both the

BTIC-Promoting and BTIC-Suppressing

Programs of TGF-b

(A) MDA-MB-231 and HCC-1954 first generation

mammosphere cultures with and without addition

of TGF-b. TGF-b was added to the media at the

moment of cell seeding and mammospheres were

allowed to form for 7 days. Note that this is not a

quantitative assay.

(B) Western blot showing SMAD2 phosphorylation

levels upon TGF-b pathway induction. 7-day-old

mammospheres were treated with exogenous

TGF-b ligand for 1 hr. Total SMAD2/3 and b-actin

levels were used as loading controls.

(C) Comparison of TGF-b-dependent genes in

MDA-MB-231 and HCC-1954 BTICs. MDA-MB-

231 and HCC-1954 cells were grown as mam-

mospheres for 7 days and treated with TGF-b

for 1, 3, 6, and 24 hr, and gene expression profiling

was performed using Illumina HumanHT-12

BeadChips. The plot shows the number of TGF-

b-dependent genes in each BTIC at each time

point (false discovery rate [FDR] < 0.1; data pre-

sented on the log2 scale to show both the early and

late response). TGF-b-dependent genes unique to

MDA-MB-231 or HCC-1954 BTICs are labeled in

red and blue, respectively, whereas genes regu-

lated by TGF-b in both BTIC types are labeled in

gray. The number of genes within each category is

indicated within bars. Also see Table S1.

(D) Annotation of SMAD3 binding sites in the

genomes of MDA-MB-231 BTICs (red) and HCC-

1954 BTICs (blue). ChIP-seq was performed on

7-day-old mammospheres treated with TGF-b for

3 hr. See Supplemental Experimental Procedures

for details.

(E) Heatmaps showing gene expression dynamics

upon TGF-b stimulation in each BTIC indepen-

dently. Bar plots below each gene expression time point show the proportion of TGF-b-dependent genes at that particular time point that were detected as bound

by SMAD3 in the ChIP-seq experiment (bar below the 1-hr time point in HCC-1954 is absent as zero genes were detected as significantly differentially expressed).

Asterisks indicate statistical significance, which was determined with the chi-square test, using TGF-b-independent gene sets as background (refer to Sup-

plemental Experimental Procedures for details).
The transcriptional responses associated with the opposing

effects of TGF-b on BTICs were characterized by gene expres-

sion profiling. BTIC-enriched mammosphere cultures (hereafter

referred to as ‘‘BTICs’’) were treated with TGF-b for varying

amounts of time (1, 3, 6, and 24 hr) to capture both early

and late transcriptional responses. Comparing the lists of

TGF-b-dependent genes revealed that only a small fraction

is commonly regulated in both BTIC types (‘‘shared’’ genes)

(Figure 1C; Table S1). The vast majority of genes displayed

cell-context-specific regulation, indicating that distinct and

non-overlapping TGF-b-dependent transcriptional regulation

occurs in BTICs with opposing (pro-oncogenic and tumor-sup-

pressive) responses.

We previously showed that the BTIC-promoting and BTIC-

suppressing effects of TGF-b depend on SMADs (Bruna

et al., 2012). Hence, we hypothesized that SMADs mediate the

TGF-b-dependent transcriptional regulation in both contexts.

SMAD3 binding patterns in BTICs were mapped genome-wide

after 3 hr of TGF-b exposure using chromatin immunoprecipita-

tion and sequencing (ChIP-seq). We chose the 3-hr time point as
Cell Rep
it was the earliest at which significant TGF-b-dependent gene

expression changes were detected in both models. Genomic

annotation of SMAD3 binding sites showed a significant fraction

of peaks (>30%) is directly associated with genes, with the

remainder being at distal regulatory regions (Figure 1D).

We defined gene-proximal SMAD3 binding when peaks

occurred within a genomic unit encompassing the 1,500 bp

upstream of the transcription start site (TSS) to the end of the

gene body. Comparing TGF-b-dependent and TGF-b-indepen-

dent (background) gene sets revealed that both early- and

late-responder genes are strongly enriched for gene-proximal

SMAD3 binding in both BTIC types (Figure 1E). These data

suggest that gene-proximal SMAD3 binding mediates TGF-

b-dependent gene regulation in both contexts.

Differential SMAD3 Binding Is Not the Sole Determinant
of Context-Specific Gene Regulation by TGF-b
The prevailing model for TGF-b context-dependent transcrip-

tional regulation assumes binding of SMAD3 to different genes

in different cell types (Massagué, 2012; Mullen et al., 2011).
orts 13, 2480–2490, December 22, 2015 ª2015 The Authors 2481



Our data showed instead that a substantial proportion of SMAD3

binding sites are identical in both BTIC types (50% in MDA-MB-

231 and 37% in HCC-1954) (Figure 2A). Motif analysis identified

a number of distinct DNAmotifs under SMAD3 binding sites (Fig-

ures S1A and S1C), including ‘‘canonical’’ SMAD consensusmo-

tifs (Figures S1D and S1E) (Dennler et al., 1998; Jonk et al., 1998;

Koinuma et al., 2009; Shi et al., 1998; Zawel et al., 1998). Thema-

jority of identified motifs also corresponded to known SMAD

binding partners (Figure S1B), which have been implicated in

TGF-b responses by single gene studies (Gomis et al., 2006; Koi-

numa et al., 2009; Liberati et al., 1999;Massagué, 2012; Sundqv-

ist et al., 2013; Xu et al., 2015; Zaidi et al., 2002). These results

indicate that SMAD3 associates with diverse co-factors that

guide it to both shared and cell-type-specific genomic locations

in BTICs.

Inspection of ChIP-seq profiles around BTIC context-specific

TGF-b-dependent genes revealed that SMAD3 binding is not

necessarily associated with the regulation of the underlying

gene, but rather can adopt four different binding modes (Fig-

ure 2B). For example, a gene regulated by TGF-b only in MDA-

MB-231 BTICs (MDA-unique gene) can be: (1) uniquely bound

by SMAD3 in MDA-MB-231 (binding mode 1), (2) uniquely bound

bySMAD3 inHCC-1954 (bindingmode2), (3) commonlyboundby

SMAD3 in both cell types (binding mode 3), and (4) not bound by

SMAD3 in either cell type (binding mode 4). The same applies to

the TGF-b-dependent genes regulated uniquely in HCC-1954

BTICs (HCC-unique genes) (Figure 2B, bottom panels). These re-

sults differ from those previously reported using non-malignant

cellular models, where TGF-b’s cell-context-specific genes are

almost exclusively associated with cell-type-specific SMAD3

binding patterns (Mullen et al., 2011).

We systematically investigated how these four SMAD3

binding modes contribute to gene regulation downstream of

TGF-b. We found that TGF-b-dependent early-responder genes

(derived 6 hr post-TGF-b treatment) are highly enriched for the

common SMAD3 binding mode (mode 3) in both MDA-MB-231

and HCC-1954 BTICs (Figure 2C, upper table). TGF-b-depen-

dent late-responder genes (derived 24 hr post-TGF-b treatment)

show enrichment of both common (mode 3) and cell-type-

unique SMAD3 binding (modes 1 and 2; Figure 2C, lower table).

Notably, these BTIC type-unique SMAD3 binding events are

associated with TGF-b-dependent genes in the corresponding

model (MDA-unique genes with MDA-unique SMAD3 binding,

and HCC-unique genes with HCC-unique SMAD3 binding)

24 hr after pathway activation. Genes not bound by SMAD3 in

either cell type (mode 4) are relatively depleted in both the early

and late TGF-b-responder genes, as could be expected based

on the results presented in Figure 1E.

Based on the observed enrichment of the common SMAD3

binding mode in all gene groups and particularly in the early

TGF-b responders, we conclude that cell-type-specific gene-

proximal SMAD3 binding is not the sole determinant of

context-specific TGF-b transcriptional responses.

In embryonic stem cells and muscle and lymphocyte progen-

itors, SMAD3 occupies distinct, non-overlapping sites within the

gene, even when binding to the same gene (Mullen et al., 2011).

To test if this also occurs in BTICs, we systematically categorized

SMAD3 binding events into three classes: (1) uniquely present in
2482 Cell Reports 13, 2480–2490, December 22, 2015 ª2015 The Au
MDA-MB-231 (Figure 2D, red peak), (2) uniquely present in HCC-

1954 (Figure 2D, blue peak), and (3) present in identical position

in both cell types (Figure 2D, gray peaks). For each context-spe-

cific TGF-b-dependent gene, we derived a composite SMAD3

binding profile (Figure 2D, right). This analysis revealed that

only a small fraction of commonly bound genes (mode 3)

possess mutually exclusive SMAD3 binding patterns (Figures

2E and 2F, light blue boxes). In fact, most genes that are

commonly bound by SMAD3 (mode 3) display either a mixed

occupancy profile, where both identical and cell-type-specific

binding sites are present, or an identical occupancy profile,

where SMAD3 binds at identical coordinates within a given

gene in both cell types (Figures 2E and 2F). These findings led

us to hypothesize that for many genes (at least 422 MDA-unique

genes and 264 HCC-unique genes) possessing remarkably

similar SMAD3 binding patterns in BTICs (yellow boxes, Figures

2E and 2F), other regulatory determinants might govern the

context-specific transcriptional outputs of TGF-b.

We obtained similar results for SMAD3 binding events located

distally to genes (Figures S2A–S2F; Supplemental Experimental

Procedures); however, for simplicity, these are not presented in

the Results section.

Context-Specific Epigenetic Landscape Modulates
TGF-b/SMAD3-Dependent Transcriptional Regulation
In breast cancer, epigenetic modifications have characteristic,

subtype-specific genomic patterns (Bediaga et al., 2010; Holm

et al., 2010). We therefore reasoned that cell-type-specific

epigenetic landscapes in BTICs could contribute to shaping

the TGF-b transcriptional responses. We profiled the chromatin

configuration in BTICs by mapping RNA polymerase II (Pol II)

binding, histone H3 lysine 27 acetylation (H3K27ac), histone

H3 lysine 4 trimethylation (H3K4me3), and histone H3 lysine 27

trimethylation (H3K27me3) using ChIP-seq. We also mapped

CpG DNA methylation using methyl-binding domain pull-down

and sequencing (MBD-seq). These epigenetic marks were pro-

filed in untreated BTIC cultures to determine whether the

‘‘native’’ chromatin configuration existing prior to TGF-b stimula-

tion was what modulated the context-specific transcriptional

response.

Peak-based analysis showed the genomic distribution of

the epigenetic marks occurred in the expected patterns: Pol II

peaks localized predominantly to enhancer and promoter re-

gions, H3K4me3 peaks to promoter regions, H3K27ac peaks

to enhancer and promoter regions, H3K27me3 peaks to inter-

genic domains, and DNA methylation peaks to gene-proximal

elements (Figure S3A). Comparative analysis revealed that

MDA-MB-231 and HCC-1954 BTICs harbor distinct epigenetic

landscapes (Figure S3B).

Overlaying the epigenetic marks with SMAD3 binding data

showed that SMAD3 binds to open chromatin (marked by

H3K27ac, Pol II, and H3K4me3) and not to closed chromatin

(marked by H3K27me3 and DNA methylation) (Figure S3C).

Additionally, BTIC type-specific SMAD3 binding coincided

with the type-specific patterns of Pol II and H3K27ac (Fig-

ure S3D). This suggested that the pre-existing cell-type-spe-

cific chromatin context determines where SMAD3 binds upon

TGF-b stimulation.
thors
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Figure 2. Differential SMAD3 Binding Is Not the Sole Determinant of Context-Specific Gene Regulation by TGF-b
(A) Occupancy plots showing SMAD3 binding sites in MDA-MB-231 (red) and HCC-1954 (blue) BTICs relative to each other, within the 5-kb window around the

peak summits. Also see Figure S1.

(B) Gene tracks showing binding of SMAD3 in MDA-MB-231 (red) and HCC-1954 (blue) BTICs, at genes regulated by TGF-b only in MDA-MB-231 (top) and HCC-

1954 (bottom) BTICs. SMAD3 adopts four modes of occupancy at these genes: bound in a cell-context-specific manner (modes 1 and 2), bound commonly in

both BTIC types (mode 3), or not bound in either (mode 4).

(C) Genome-wide analysis showing the enrichment of each of the four SMAD3 binding modes (from B) at TGF-b-dependent genes. Gene expression data from

6-hr and 24-hr time points were used. Enrichment was calculated over SMAD3 binding distribution in the TGF-b-independent, background gene set (see

(legend continued on next page)
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We next asked whether the pre-existing BTIC type-spe-

cific gene-proximal chromatin patterns prime genes for TGF-

b-mediated regulation. To address this question, we combined

differential binding analysis with gene set enrichment analysis

(Figure 3A). This revealed that context-specific TGF-b-depen-

dent genes are enriched for those with cell-type-specific epige-

netic patterns, characterized by higher levels of gene-proximal

open chromatin marks (H3K4me3, H3K27ac, and Pol II) (Fig-

ures 3B and 3C) and lower levels of repressive chromatin

marks in the corresponding BTIC type (Figure S3E; HCC-unique

genes depleted from H3K27me3; MDA-unique genes depleted

from DNA methylation). We also noted that TGF-b-dependent

genes unique to MDA-MB-231 showed higher levels of DNA

methylation in HCC-1954 (Figure 3B). Together, these results

show that distinct epigenetic landscapes in BTICs modulate

context-specific responses to TGF-b: high levels of H3K4me3,

H3K27ac, and Pol II in gene-proximal space permit, while TSS

DNA methylation and H3K27me3 impede, TGF-b/SMAD3-

dependent regulation of gene expression.

We next asked whether these epigenetic differences in the

gene-proximal space act in synergy with, or independently of,

differential SMAD3 binding to control context-specific TGF-b

target gene regulation. For this purpose, genes with differential

levels of SMAD3 were defined using the same analysis as for

the chromatin factors (Figure 3A). This enabled us to stringently

detect genes with the most pronounced differences in SMAD3

binding intensity between BTICs. For each TGF-b context-spe-

cific gene group (MDA unique and HCC unique), we derived

three sets of signatures: SMAD3-high gene set (genes that

display higher levels of SMAD3 in the corresponding BTIC

type), open chromatin-high gene set (genes with higher levels

of either H3K4me3, H3K27ac or Pol II in the corresponding

BTIC type), and DNA hypo-methylation gene set (genes with

lower levels of TSS DNA methylation in the corresponding

BTIC type) (Table S2). Comparison of these gene sets in each

BTIC type revealed that virtually all genes within the SMAD3-

high set (58 in MDA and 30 in HCC) also belong to the open chro-

matin-high gene set (Figures 3D and 3E). This shows that in order

to achieve type-specific gene regulation, differential binding of

SMAD3 is assisted by gene-proximal open chromatin configura-

tion, as shown for IGDCC4 and GRAMD2 (epigenome-assisted

TGF-b-regulated genes; Figures 4A and 4B). Moreover, a sub-

stantial number of TGF-b-dependent genes in each BTIC type

(401 MDA-unique genes; 181 HCC-unique genes) belonged to

the open chromatin-high and/or DNA hypo-methylation sets,

but not to the SMAD3-high set. Hence, the context-specific

TGF-b-dependent regulation of the genes in this set is likely to

be mediated by epigenetic differences (epigenome-directed
Supplemental Experimental Procedures for details). Note that the common binding

but on different sites in the two BTICs. Also see Figure S2.

(D) Schematic of the gene-based SMAD3 binding analysis. For each gene in the g

shared binding sites (gray) were calculated and represented as a composite pro

(E and F) Gene-based SMAD3 binding analysis on context-specific TGFb-depen

TGF-b stimulation were used. Genes are aligned along the x axis and grouped into

modes are indicated below the plot in gray. Gene examples are highlighted with

binding patterns, and the yellow box marks those with predominantly similar o

Supplemental Experimental Procedures for details.
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TGF-b-regulated genes), as highlighted by ADAM8 and IGFBP5

(Figures 4A and 4B). This analysis also revealed that only a

subset of SMAD3-high genes overlap with the DNA hypo-meth-

ylated set, suggesting that differential DNA methylation and dif-

ferential SMAD3 binding appear to independently contribute to

context-specific gene regulation by TGF-b.

Taken together, these results suggest that cell context-spe-

cific transcriptional responses to TGF-b are mediated by both

SMAD3 and the epigenome. The epigenomic landscape primes

genes for transcriptional regulation by TGF-b signaling, both in

synergy with, and independently of, differential SMAD3 binding.

Differential DNA Methylation of LBH Impacts the BTIC-
Promoting Effects of TGF-b
To functionally validate the impact of the epigenome on the

opposing effects of TGF-b on BTICs, we focused on context-

specific TGF-b-dependent genes with differential DNA methyl-

ation. Interesting links have been proposed between normal

developmental processes and breast cancer (Holm et al.,

2010; Prat et al., 2010), and therefore, we selected two genes

encoding developmental TFs for further analysis: Limb Bud

and Heart Development (LBH), and Vestigial-like family member

3 (VGLL3).

LBH and VGLL3 are induced by TGF-b in a SMAD2/3 depen-

dent manner in BTICs from MDA-MB-231, but not in HCC-1954

(Figures S4A–S4D). LBH is bound by SMAD3, and Pol II at an

identical intragenic regulatory region in both cell types (Fig-

ure 5A), but in HCC-1954, the TSS-proximal region is DNA

methylated (coinciding with lack of Pol II binding) (Figure 5A).

This suggests that context-specific regulation of LBH, despite

remarkably similar SMAD3 binding, is dependent on the methyl-

ation status of its promoter (epigenome directed). In contrast,

VGLL3 is bound by SMAD3 and Pol II only in MDA-MB-231

BTICs, while its TSS harbors DNA methylation only in HCC-

1954 (Figure 5B). Hence, TGF-b-dependent regulation of

VGLL3 is epigenome assisted.

To test if promoter methylation of LBH and VGLL3 determines

their context-specific TGF-b-dependent transcriptional regula-

tion, BTICs were treated with 5-aza-20-deoxycytidine (5-aza-

dC) prior to TGF-b stimulation, which resulted in reduction of

overall methylation levels at these loci in HCC-1954 (Figures

S4F and S4G). In HCC-1954, 5-aza-dC treatment reactivated

both LBH and VGLL3 expression, and TGF-b treatment further

induced LBH, but not VGLL3 (Figures 5C, 5D, and S4E). This

shows that promoter DNA methylation is sufficient to block

TGF-b/SMAD3-mediated induction of LBH. Erasure of DNA

methylation from VGLL3 failed to restore its TGF-b-dependent

induction in HCC-1954, as predicted due to the absence of
mode (3) does not exclude SMAD3 binding sites that occur on the same genes

enome, the number of context-specific SMAD3 binding sites (red and blue) and

file.

dent genes (performed as outlined in D). TGF-b-dependent genes 24 hr post-

distinct categories based on their SMAD3 composite profiles. SMAD3 binding

dashed lines. The light blue box marks genes with mutually exclusive SMAD3

r identical SMAD3 binding patterns in both BTICs. Also see Figure S2. See

thors
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D E

Figure 3. Epigenetic Wiring Confers Predis-

position for Context-Specific TGF-b Re-

sponses

(A) Schematic of the analysis approach. Differences

between BTICs in the levels of each factor were

defined based on differential binding analysis within

the gene-proximal space (1,500 bp upstream of the

TSS to gene end), apart from DNA methylation, for

which only TSS-proximal regions were considered

(�1,500 bp to +1,500 bp around the TSS). Gene set

enrichment analysis was then conducted, testing

the enrichment of differentially bound gene sets

within the context-specific TGF-b-dependent gene

sets (MDA-unique andHCC-unique genes). Refer to

Supplemental Experimental Procedures for details.

(B and C) Over-representation of genes with cell-

type-specific levels of epigenetic modifications and

Pol II, within the context-specific TGF-b-dependent

genes (MDA-unique on the left and HCC-unique on

the right). The significance of enrichment is repre-

sented as a p value on a bi-symmetrical x axis. The

left and the right sides of the axis correspond to the

enrichment of genes with more binding of the cor-

responding mark in HCC-1954 (blue) and MDA-

MB-231 (red), respectively. p value cutoffs were set

at 0.05 (�log10(1.33) = 0.05) (dashed lines). TGF-

b-dependent genes derived at the 24-hr time point

were used (see Supplemental Experimental Pro-

cedures for details). Also see Figure S3.

(D and E) Comparison of SMAD3-high, open

chromatin-high, and DNA hypo-methylation gene

sets within the MDA-unique and HCC-unique TGF-

b-dependent genes (24-hr gene expression time

point). For each BTIC, SMAD3-high, open chro-

matin-high, and DNA hypo-methylation gene sets

were defined as groups of genes with differentially

higher SMAD3 levels, differentially higher open

chromatin levels, and differentially lower DNA

methylation levels when compared to the opposing

BTIC type (differential binding analysis performed

as in A). Also see Table S2.
SMAD3 binding at this locus. Taken together, these results

confirm that the epigenetic configuration not only determines

baseline gene expression levels, but it also controls TGF-b/

SMAD3-dependent transcriptional regulation.

To assess the functional implications of epigenome-directed

and epigenome-assisted mechanisms, we investigated whether

LBH and VGLL3 are required for the effects of TGF-b on BTICs.

We knocked down their expression using short interfering RNAs

(siRNAs), resulting in 80%and 50% reduction of LBH and VGLL3

transcript levels, respectively (Figures S5A and S5B). Mammo-

sphere-initiating cell (MS-IC) and colony-forming cell (CFC)

assays were used to test self-renewal and proliferation of BTICs

(Bruna et al., 2012; Dontu et al., 2003a, 2003b).

LBH knockdown in untreated cells reduced BTIC self-renewal

and proliferation in both cell lines (Figures 6A and 6B), suggest-

ing that LBH is required for baseline BTIC maintenance re-

gardless of the response to TGF-b. In HCC-1954 BTICs, LBH

transcripts are expressed at very low levels despite promoter

methylation, and their reduction by siRNA treatment (Figure S5A)

results in measurable effects in the BTIC assays (Figures 6A and

6B). These LBH transcripts are likely to originate from low levels
Cell Rep
of transcription initiated at methylated DNA molecules with

variegated CpG methylation patterns (‘‘epipolymorphisms’’;

Landan et al., 2012), as determined by reduced representation

bisulfite sequencing (RRBS) (Figure 6C). Thus, residual tran-

scription initiated at epipolymorphic promoters can be function-

ally important.

In MDA-MB-231, LBH depletion impaired the BTIC-promoting

effects of TGF-b by more than 2-fold (Figures 6A and 6B). In

contrast, in HCC-1954, LBH depletion did not affect BTIC sup-

pression by TGF-b (Figures 6A and 6B). In both cells lines,

VGLL3 depletion had no effect on BTICs after TGF-b treatment

(Figures 6A and 6B). Altogether, these results suggest that epi-

genome-directed gene co-regulation with SMAD3, as occurs

with LBH, acts as amolecular switch that mediates the opposing

effects of TGF-b on BTICs.

We previously showed that TGF-b specifically promotes BTIC

activity only in Claudinlow cell lines (Bruna et al., 2012). We also

showed that in normal mammary epithelium, TGF-b promotes

mammary stem cells (the presumed cell of origin of Claudinlow

cancers), and it inhibits luminal progenitors (Bruna et al., 2012).

Interestingly, others have shown that in normal breast epithelial
orts 13, 2480–2490, December 22, 2015 ª2015 The Authors 2485
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Figure 4. Epigenome either Assists or Directs Context-Specific Target Gene Regulation by TGF-b/SMAD3

(A and B) Examples illustrating the epigenome-assisted and epigenome-directed modes for target-gene regulation by TGF-b/SMAD3. ChIP-seq tracks for

MDA-MB-231 are shown in red shades and for HCC-1954 in blue shades. TwoMDA-unique (IGDCC4 and ADAM8) and two HCC-unique (GRAMD2 and IGFBP5)

TGF-b-dependent genes are shown. In the epigenome-assisted mode, differential SMAD3 binding patterns (dashed boxes) are coupled with differential

epigenetic configuration (gray boxes and arrows). In the epigenome-directed mode, SMAD3 binding patterns are the same in both BTICs (dashed boxes), while

epigenetic differences (gray boxes and arrows) are associated with cell-type-specific gene regulation by TGF-b.
tissue, LBH promotes stemness and inhibits differentiation (Lind-

ley et al., 2015; Rieger et al., 2010). We therefore sought evi-

dence for a relevant role of LBH in both normal breast epithelium

and in breast cancer. Analysis of gene expression data from

normal human and mouse mammary epithelium revealed that

LBH is highly expressed in the basal (stem cell-containing)

compartment and is downregulated as cells differentiate along

the luminal lineage (Figures 6F, S5C, and S5D). Investigation of

gene expression data from 1,980 primary breast cancers (Curtis

et al., 2012) showed that LBH expression is highest in the Clau-

dinlow subtype (Figure 6D). In patients with Claudinlow tumors,

higher LBH expression correlates with worse survival (Figure 6E).

These findings suggest that the BTIC context-specific TGF-b/

LBH observations we made in model cell lines are relevant to

both normal and malignant primary tissue biology.

DISCUSSION

The mechanisms underlying the opposing TGF-b effects in can-

cer cells, being both pro-oncogenic and tumor suppressive,

remain a significant challenge for inhibition of the pathway as a

feasible cancer therapeutic strategy in the clinic. The current

understanding is that TGF-b stimulation results in different

responses in distinct cell types through the association of

SMAD2/3 with specific SMAD cofactors (Massagué, 2008,
2486 Cell Reports 13, 2480–2490, December 22, 2015 ª2015 The Au
2012). Accordingly, in normal cells, along a developmental

cascade, SMAD3 co-occupies distinct genomic locations in as-

sociation with cell-type-specific master transcription factors:

Oct4 in embryonic stem cells, Myod1 in myotubes, and PU.1 in

pro-B cells (Mullen et al., 2011). These cofactors are required

for SMAD3 binding, andmost TGF-b-regulated genes are bound

by these master TFs (Mullen et al., 2011). In other words, the

currently accepted model suggests that master TFs are respon-

sible for instructing the gene targets downstream of TGF-b

signaling and thus determine its cell-type-specific effects

(Mullen et al., 2011). In cancer cells, no similar genome-wide

studies have been conducted, but single-gene studies appear

to show analogous findings: TF switches (where SMADs ex-

change binding partners) can occur and result in redirecting of

SMADs from the promoters of tumor suppressor genes to pro-

moters of oncogenes, concomitant with altered transcription of

those target genes (Gomis et al., 2006; Seoane et al., 2004; Xu

et al., 2015).

Our results show for the first time that different SMAD3 binding

patterns cannot fully account for the observed differences in the

TGF-b-dependent transcriptional responses associated with

promotion or suppression of BTICs. In fact, and surprisingly,

the majority of BTIC context-specific TGF-b-dependent genes,

particularly early-responder genes, are bound by SMAD3 in

both contexts. While binding may occur in distinct locations
thors
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Figure 5. DNA Methylation Regulates TGF-

b-Dependent Induction of LBH

(A and B) Gene tracks showing SMAD3/Pol II

binding and DNA methylation at LBH and VGLL3

loci. ChIP-seq tracks for MDA-MB-231 are shown in

red shades and for HCC-1954 in blue shades. Also

see Figure S4.

(C and D) qRT-PCRs showing the expression of LBH

and VGLL3 transcripts upon 5-aza-dC and TGF-b

treatments. Cells were treated with 5-aza-dC for

5 days, seeded, and allowed to form mammo-

spheres for 7 days, and then stimulated with TGF-b

for 24 hr. Data were normalized to the housekeeping

(RBM22) transcript levels and are presented as

mean ± SD of three biological replicates. Asterisks

indicate significant differences. ns, not significant

(one-way ANOVA). Also see Figure S4.
along the gene, a large fraction of genes possessed coherent

SMAD3 occupancy profiles, many with only identical SMAD3

binding sites. These results reveal that TGF-b-dependent cell-

type-specific transcriptional regulation in cancer cells is not

universally mediated by differential SMAD3 binding. This promp-

ted us to analyze whether additional regulatory mechanisms

operating on chromatin modulate the context-specific target

gene selection by TGF-b/SMAD3.

Very recently, it has been reported that epigenetic configura-

tion of somatic cells predisposes them to reprogramming

fates (Pour et al., 2015). Here we show that tumor initiating cells

harbor distinct epigenetic landscapes that prime specific gene

sets for regulation by TGFb. These distinct epigenetic configu-

rations can act both in synergy with cell-type-specific SMAD3

binding (epigenome-assisted), and independently of cell-type-

specific SMAD3 binding (epigenome-directed), to control TGFb/

SMAD3-dependent context-specific regulation of target genes

(Figure 7).

We propose that epigenome-directed priming in cancer cells

might be a prevalent way of instructing context-specific TGFb ef-

fects. Cancer cells that originate in the same tissue (mammary

epithelium in the case of BTICs), unlike cells from distinct tissue

lineages, are likely to possess similar master TF wiring. But can-

cerswith the same tissueof origin canpossessmarkedly different
Cell Reports 13, 2480–2490, D
epigenomes, for example, DNA methyl-

ation of gene promoters (Holm et al.,

2010). Here, we reveal an unexpected sim-

ilarity of SMAD3 binding patterns in BTICs

with opposing transcriptional responses

to TGF-b and show that context-specific

TGF-b-dependent genes are frequently

regulated by an epigenome-directed, DNA-

methylation-dependent mechanism, rather

than by differential SMAD3 binding. These

results at the whole-genome level expand

a previous observation in glioma, where

the methylation status of PDGFB predis-

poses tumor cells for either an oncogenic

or a tumor-suppressive response to TGF-b

signaling (Bruna et al., 2007).
We have identified LBH, a regulator of epithelial differentiation

in the mammary gland (Lindley et al., 2015; Rieger et al., 2010),

as a mediator required for the context-specific BTIC-promoting

effects of TGF-b, depending on its cell-type-specific methylation

state. The patterns of expression of LBH in normal mammary

development and in human breast cancers are consistent with

its role as a context-specific TGF-b target in primary tissues.

We speculate that many epigenome-directed genes behave

like LBH to mediate the context-specific effects of TGF-b in

cancer.

The model we propose here (Figure 7), that regulation of

transcriptional programs by extracellular growth factors is

dependent on the context-specific epigenomic landscapes of

cancer cells, might not be specific to TGF-b and could have

broader implications for the paracrine effects of the microenvi-

ronment on the malignant compartment of cancers.

EXPERIMENTAL PROCEDURES

Cell Manipulation and Mammosphere Cultures

MDA-MB-231 and HCC-1954 breast cancer cell lines were enriched for

BTICs by mammosphere cultures, as described previously (Bruna et al.,

2012; Dontu et al., 2003a, 2003b). To activate TGF-b signaling, mammo-

spheres were treated with 0.1 nM recombinant TGF-b1. LBH, VGLL3,

SMAD2 and SMAD3 levels were manipulated using siRNA pools (GE
ecember 22, 2015 ª2015 The Authors 2487
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Figure 6. LBH Is Necessary for TGF-b’s

BTIC-Promoting Activity

(A) MS-IC assay showing the changes in MS-IC

numbers upon TGF-b treatment and siRNA-medi-

ated knockdown of LBH and VGLL3. Mammo-

sphereswere simultaneously treatedwith TGF-b and

siRNA against LBH and VGLL3 for 7 days, second-

generation mammospheres were seeded, and an

MS-IC assay was performed (see Supplemental

Experimental Procedures). Data are presented as

mean ± 95% confidence interval (CI) of nine repli-

cates. Asterisks indicate significant differences. ns,

not significant (one-wayANOVA). Also see Figure S5.

(B) CFC assay showing the effects of TGF-b and

siRNA-mediated knockdown of LBH and VGLL3 on

the proliferation of BTICs.

(C) RRBS analysis of the LBH promoter. x axis

shows eight adjacent CpG sites within the LBH

promoter (highlighted on top); y axis shows binary

methylation calls for each CpG site within 26

sequenced DNA molecules. Genomic track on top

represents the DNA methylation profile of HCC-

1954 BTICs derived by MBD-seq.

(D) Box plots showing the expression of LBH in

different breast cancer subtypes. Significance was

determined by a linear model (ANOVA) and simul-

taneous tests comparing each group to the mean

(see Supplemental Experimental Procedures).

Gene expression data are obtained from the

METABRIC cohort (Curtis et al., 2012).

(E) Survival analysis showing the relationship

between LBH expression and disease-free survival

in the Claudinlow patient group. Patients were

stratified based on top and bottom halves of LBH

expression. Survival function was estimated using

the Kaplan-Meier estimator, and differences be-

tween groups were tested with the log-rank test

(see Supplemental Experimental Procedures).

(F) Expression of LBH in different cell compart-

ments of normal humanmammary epithelium. Basal

compartment, luminal progenitors (LP), and differ-

entiated luminal cells (DL) are shown. Signifi-

cance was determined by a linear model (ANOVA)

comparing LPandDLexpression to thebasal group.

Data from Shehata et al. (2012). Also see Figure S5.
Healthcare). To achieve global DNA demethylation, the cells were treated

with 1 mM 5-aza-20-deoxycytidine. For full details, see Supplemental Exper-

imental Procedures.

Chromatin Immunoprecipitation and Sequencing

ChIP-seq was performed using a custom-developed protocol. Briefly, mam-

mospheres (treated with 0.1 nM TGF-b for 3 hr for SMAD3 ChIP-seq, and

untreated in all other experiments) were crosslinked for 45 min with Di(N-suc-

cinimidyl) glutarate (DSG) and 30 min with formaldehyde. Chromatin was ex-

tracted and then sheared using Covaris. Immunoprecipitation was performed

with 10 mg of the corresponding antibodies and protein G agarose beads

(Santa Cruz Biotechnology). Libraries were prepared with TruSeq LT kit (Illu-

mina) and sequenced on HiSeq 2000 (Illumina). For the full protocol, see Sup-

plemental Experimental Procedures.

DNA Methylation Profiling

For MBD-seq, methylated DNA was precipitated with recombinant methyl

binding domain (MBD2b/MBD3L1) protein complex as part of MethylCollec-

tor Ultra kit (Active Motif), following the manufacturer’s recommendations.

Libraries were generated using TruSeq LT kit (Illumina) and sequenced on
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HiSeq 2000 (Illumina). Refer to Supplemental Experimental Procedures for

details.

RRBS was performed as described previously (Boyle et al., 2012).

Targeted bisulfite sequencing was performed using a custom-developed

method (refer to Supplemental Experimental Procedures for details).

ChIP-Seq and MBD-Seq Data Analysis

Sequencing reads were filtered based on quality and aligned to the

Human Genome Build 37 (hg19) using BWA (Li and Durbin, 2009). For

ChIP-seq, SMAD3 peaks were called using MACS (Zhang et al., 2008),

and SICER (Zang et al., 2009) was used for all other factors profiled.

For MBD-seq, bi-asymmetric-Laplace model (BALM) was used to call

methylation peaks (Lan et al., 2011), and (MeD)IP-seq data analysis (MED-

IPS) was used for quantitative analysis, whereby the data were normalized

to the CG content (Lienhard et al., 2014). Downstream analysis of all

datasets was performed in R statistical software (R Development Core

Team, 2009), using edgeR (v3.8.5) for differential binding analysis (Robin-

son et al., 2010) and annovar (2014nov12) for annotation (Wang et al.,

2010). Motif analysis was performed in MEME-ChIP (Machanick and

Bailey, 2011). Tracks representing genomic data were derived from IGV
thors



Figure 7. Context-Specific Effects of TGF-b/SMAD3 Are Modulated

by the Epigenome
A model depicting how cell-type-specific epigenetic configurations determine

context-specific effects of TGF-b/SMAD3. Genes differentially bound by

SMAD3 also possess differential levels of open and closed chromatin modi-

fications that will participate in specifying TGF-b-dependent expression of

those genes (epigenome-assisted mechanism). Genes commonly bound by

SMAD3 rely on the underlying cell-type-specific epigenetic configuration for

determining their context-specific regulation by TGF-b (epigenome-directed

mechanism).
(Robinson et al., 2011). Refer to Supplemental Experimental Procedures for

details.

Gene Expression Analysis

Gene expression upon TGF-b induction was profiled using Illumina HumanHT-

12 BeadChips. Data were analyzed as previously described (Smyth, 2005).

Refer to Supplemental Experimental Procedures for details.

qRT-PCR

Reverse transcription was performed using Transcriptor First Strand cDNA

Synthesis Kit (Roche), as recommended by the manufacturer. qPCR was

performed using TaqMan Fast Universal PCR Master Mix and gene-specific

TaqMan probes (Applied Biosystems). Refer to Supplemental Experimental

Procedures for details.

Western Blots

The cells were grown asmammospheres for 7 days then treatedwith TGF-b for

1 hr. Total cell lysates were collected, and 20 mg protein was run per condition

on the 10% SDS-PAGE gels. Transfer to nitrocellulose membranes was con-

ducted using semi-dry blotting system (Invitrogen). Membranes were blocked

in 5% dried milk powder, 0.1% Tween-20 in PBS, and the following antibodies

were used for protein detection: rabbit monoclonal against human phospho-

SMAD2 (Ser 465/467) (Cell Signaling, 3108), rabbit polyclonal against human

SMAD2/3 (Santa Cruz Biotechnology, sc-8332) and rabbit polyclonal against

human b-actin (Abcam, ab8227).

Mammosphere-Initiating Cell and Colony-Forming Cell Assays

MS-IC and CFC assays were performed as previously described (Dontu et al.,

2003a, 2003b). Refer to Supplemental Experimental Procedures for details.
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