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Abstract

Basal cell carcinoma (BCC) is the most common human cancer, characterized by aberrant

activation of the hedgehog (HH) signaling pathway resulting from mutations in the patched 1

(PTCH1) or smoothened (SMO) genes. In the present study, to uncover the expression pro-

file of HH signaling-related molecules, we thoroughly examined the mRNA and protein

expression levels of six molecules including GLI1, GLI2, PTCH1, PTCH2, SHH, and SMO in

BCC and various other cutaneous tumors. Real-time PCR analysis demonstrated that BCC

showed remarkably enhanced mRNA expression of all HH molecules, except SMO com-

pared to other skin tumors. However, immunohistochemical analysis revealed that only

GLI1 protein was specifically upregulated in BCC, while the other HH-related proteins did

not show any significant differences between the tumors. Notably, other skin malignancies

such as squamous cell carcinoma, sebaceous carcinoma, and malignant melanoma

showed no GLI1 expression and there was no difference in GLI1 expression between the

BCC subtypes. In addition, GLI1 and GLI2 expression were strongly associated with the

hair follicle stem cell markers, LGR4 and LGR5, which are known target genes of the Wnt

pathway. Our results suggest that GLI1 has the potential to be a diagnostically useful marker

for differentiating BCC from other skin malignancies and an interaction between the HH and

Wnt signaling pathways may be involved in the development of BCCs.

Introduction

Basal cell carcinoma (BCC) is the most common human cancer, and approximately 750, 000

BCCs are diagnosed each year in the United States alone [1]. BCCs are largely caused by expo-

sure to ultraviolet light and develop on the sun-exposed areas of skin. They are classically

slow-growing and locally invasive cancers that are considered to arise from hair follicles [2, 3].

The majority of BCCs occur sporadically, however, basal cell nevus syndrome (BCNS, also
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known as Gorlin syndrome) is a rare heritable disease, in which the patients have a marked

susceptibility to developing BCCs. Family-based linkage studies identified patched 1 (PTCH1)

as the causative mutant gene, indicating that aberrant hedgehog (HH) signaling activity is

responsible for the development of BCCs [4, 5]. Since the discovery of PTCH1 mutation, it has

been demonstrated that most spontaneous BCCs are associated with mutations in the compo-

nents of the HH signaling pathway such as PTCH1, Smoothened (SMO), and suppressor of

fused homolog (SUFU) leading to constitutive activation of the HH signaling [1, 5, 6]. In addi-

tion, the growing body of evidence suggests that dysregulation of the HH signaling pathway

occurred frequently in a wide variety of cancers [7].

In the canonical HH pathway, sonic hedgehog (SHH) functions as an initiator and PTCH1

is a 12-transmembrane receptor for SHH that has a regulatory effect on the pathway [8]. In the

absence of SHH, PTCH1 binds to SMO and inhibits the downstream signaling cascade,

whereas the binding of SHH to PTCH1 relieves SMO inhibition, resulting in activation of the

downstream zinc-finger glioma transcription factor (GLI) family of transcription factors,

GLI1, GLI2, and GLI3 [1]. GLI1 appears to exclusively act as a transcriptional activator,

whereas GLI2 and GLI3 can display both activator and repressor functions [9]. In the absence

of upstream signal, GLI3, and to a lesser degree GLI2, are proteolytically cleaved and play a

role of transcriptional repressors [10]. The nuclear localization of GLI1 is considered to be

characteristic of the activated HH signaling pathway [11]. Although several reports have spe-

cifically shown GLI1 expression in human BCCs [12–14], no study has thoroughly examined

the expression of multiple HH-related molecules in a variety of human skin neoplasms. In this

study, we investigated the expression profile of six HH pathway molecules (GLI1, GLI2,

PTCH1, PTCH2, SMO, and SHH) in BCCs and other benign and malignant skin tumors by

real-time PCR and immunohistochemistry. Although the precise cellular origin of BCC has

been controversial, recent studies have demonstrated that BCC-like tumors can arise from

multiple hair follicle (HF) stem cell populations [15–17]. Since several distinct stem cell mark-

ers of HF have been identified by lineage-tracing experiments, we also assessed the correlation

of HH molecules with the established markers including LGR4, LGR5, LGR6, and LRIG1.

Materials and methods

Subjects

A total of 152 formalin-fixed, paraffin-embedded (FFPE) human skin tissues (normal skin,

n = 5; skin tumors, n = 168) were collected from punch or excisional biopsy specimens at the

Jeju National University Hospital, Jeju from 2011 to 2015. Skin tumors are basal cell carcino-

mas (BCCs; n = 84), trichoepitheliomas (TEs; n = 17), pilomatricomas (PMCs; n = 13), eccrine

poromas (EPs; n = 11), spiradenomas (SPAs; n = 9), hidradenomas (HDAs; n = 10), squamous

cell carcinomas (SCCs; n = 9), sebaceous carcinomas (SBCs; n = 7), and melanomas (MNs;

n = 8). All hematoxylin and eosin-stained slides were thoroughly re-examined by two derma-

topathologists (BGJ and CL), and only clear cases with typical histologic features were included

for the study. Additionally, surgically resected specimens (18 BCCs, 7 TEs, 8 PMCs, 9 EPs, 8

SPAs, 10 HDAs, 9 SCCs, 7 SBCs, 8 MNs, and 5 normal skin tissues) were chosen for RNA

extraction and real-time PCR analysis. This study was approved by the Institutional Review

Board of Jeju National University Hospital (2017-06-005). Informed consent was waved due to

the retrospective nature of this study and all the data were analyzed anonymously.

Tissue microarray construction

We constructed ten tissue microarrays (TMAs) containing 84 BCCs, 17 TEs, 13 PMCs, 11 EPs,

9 SPAs, 10 HDAs, 9 SCCs, 7 SBCs, 8 MNs and 5 normal skins. In brief, a representative tumor
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area (4 mm in diameter) was extracted from each FFPE tumor tissue (donor blocks) and

arranged in a new recipient paraffin block (tissue microarray block) using a trephine apparatus

(SuperBioChips Laboratories, Seoul, Korea).

Immunohistochemistry

Immunohistochemistry (IHC) was performed on 4-μm TMA sections using a Ventana Bench-

Mark XT Staining systems (Leica Microsystems, Wetzlar, Germany) according to the manu-

facturer’s instructions. The primary antibodies used are as follows: anti-GLI1 (Cell signaling,

#3538), anti-GLI2 (Abcam, ab26056), anti-PTCH1 (Abcam, ab53715), anti-PTCH2 (Abcam,

ab238338), anti-SHH (Abcam, ab53281), and anti-SMO (Abcam, ab236465). GLI1 and GLI2

were evaluated for cytoplasmic and nuclear stain, while PTCH1, PTCH2, SHH, and SMO were

evaluated for cytoplasmic stain. IHC was scored from 0 to 3 according to the stain intensity

because a majority of cases showed a diffuse staining pattern.

RNA extraction and quantitative real-time PCR

Each tumor area was manually dissected from FFPE tissue section (4-μm thick) from a repre-

sentative paraffin block. Total RNA was extracted with an RNeasy FFPE Kit (Qiagen, Valencia,

CA, USA) with a slight modification as previously described [18]. The cDNA was synthesized

from 1–2 μg of RNA with random hexamer primers using the GoScript reverse transcription

system (Promega, Madison, Wisconsin, USA). Real-time PCR was performed with a StepOne

Plus real-time PCR system (Applied Biosystems, Foster City, CA, USA) using the Premix Ex

Taq (Takara Bio, Shiga, Japan) according to the manufacturer’s instructions. The cycling condi-

tions are as follows: initial denaturation for 30 s at 95˚C, followed by 40 cycles of 95˚C for 1 s

and 60˚C for 5 s. The following TaqMan gene expression assays were used: Hs01551772_m1

(LGR4), Hs00173664_m1 (LGR5), Hs00663887_m1 (LGR6), Hs01006146_m1 (LRIG1),

Hs00171790_m1 (GLI1), Hs01119974_m1 (GLI2), Hs00181117_m1 (PTCH1), Hs00184804_m1

(PTCH2), Hs01123832_m1 (SHH), Hs01090242_m1 (SMO) and Hs0275899_g1 (GAPDH).

GAPDH served as the endogenous control.

RNA in situ hybridization

In situ hybridization (ISH) for LGR5 was performed using the RNAscope FFPE assay kit

(Advanced Cell Diagnostics, Inc., Hayward, CA, USA) as described previously [18]. In brief, 4-

μm thick FFPE tissue sections were baked at 60˚C for 1 hour, followed by protease digestion,

and subject to hybridization with LGR5 for 2 hours. An HRP-based signal amplification system

was hybridized to the probe before color development with 3,30-diaminobenzidine tetrahy-

drochloride. The housekeeping gene, ubiquitin C and the bacterial gene, DapB served as a posi-

tive and negative controls, respectively. Brown punctate dots in the nucleus and/or cytoplasm

were considered positive.

Statistical analysis

Statistical analyses were performed with Prism version 5.0 (GraphPad Software, Inc., San

Diego, CA, USA). Comparisons between the groups of real-time PCR data were tested using

Tukey’s multiple comparison test. The significance of the correlations between LGR 4, LGR5,

LGR6 and HH signaling-related genes was assessed with the Pearson correlation test. The cor-

relations between IHC score and BCC subtypes were tested by Pearson chi-square test. A P-

value < 0.05 was considered statistically significant.

Hedgehog signaling molecules in basal cell carcinomas
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Results

Real-time PCR analysis for hedgehog signaling-related genes in various

skin tumors

To measure the transcription levels of HH-related molecules in human skin tumors, the FFPE

samples were collected as follows: normal skin (n = 5), BCC (n = 18), TE (n = 7), PMC (n = 8), EP

(n = 9), HDA (n = 10), SPA (n = 8), SCC (n = 9), SBC (n = 7), and MN (n = 8). Real-time PCR

results demonstrated that all HH-related molecules, except SMO, were remarkably elevated in

BCC compared to normal skin and most other skin tumors (Fig 1). TE also showed higher expres-

sion of GLI1, GLI2, and SHH than normal skin, however, the expression levels of PTCH1and

PTCH2 were as low as normal skin tissues (Fig 1C and 1D). SHH expression was slightly higher in

several tumors including BCC, TE, EP, and SPA (Fig 1E). Interestingly, SMO levels were

Fig 1. Relative mRNA levels of Hedgehog signaling-related molecules in various skin tumors. Expression of GLI1 (A), GLI2 (B), PTCH1 (C), PTCH2 (D),

SHH (E), and SMO (F) in normal skin tissue (n = 5), basal cell carcinoma (BCC; n = 18), trichoepithelioma (TE; n = 7), pilomatricoma (PMC; n = 8), eccrine

poroma (EP; n = 9), hidradenoma (HAD; n = 10), spiradenoma (SPA; n = 8), squamous cell carcinoma (SCC; n = 9), sebaceous carcinoma (SBC; n = 7), and

malignant melanoma (MN; n = 8). (G) Relative expression of Hedgehog signaling molecules in BCCs (n = 18). Bars represent mean ± SEM. �P< 0.05;
��P< 0.01; ���P< 0.001; ns, not significant.

https://doi.org/10.1371/journal.pone.0225511.g001
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significantly increased only in PMC (Fig 1F). When comparing each HH-related molecule in

BCC, GLI1 was the most highly expressed, while SMO was the least expressed (Fig 1G).

Immunohistochemical analysis of Hedgehog signaling-related molecules in

skin tumors

Next, we performed IHC to examine the protein expression of HH-related molecules using tissue

microarrays from a variety of skin tumors as follows: BCC (n = 84), TE (n = 17), PMC (n = 13),

EP (n = 11), HDA (n = 10), SPA (n = 9), SCC (n = 19), SBC (n = 9), and MN (n = 8). The mean

IHC scores demonstrated that GLI1 exhibited the most differential expression between skin

tumors (Fig 2A), whereas the GLI2, PTCH1, PTCH2, SHH, and SMO proteins showed less or no

significant difference in expression (Fig 2B–2F). GLI1 is specifically expressed in the bulb areas of

hair follicles (Fig 3A), but not in the sweat glands (Fig 3B) or sebaceous glands (Fig 3C). Most

BCCs expressed GLI protein, which tended to be notably stronger in the palisading cells of the

tumor nests (Fig 3D). TEs also showed GLI expression but not as much as BCCs (Fig 3E). Tumors

other than BCC and TE did not express GLI1 (Fig 3F–3L).

Expression profile of hedgehog signaling-related molecules in basal cell

carcinoma

In BCCs, GLI 1 was most highly expressed among the HH-related proteins, which was consis-

tent with the mRNA expression levels (Fig 4A). Representative images are shown in Fig 4B.

Since BCCs are classified into four subtypes: nodular, micronodular, superficial, and infiltra-

tive (or desmoplastic), we examined whether there is a difference in GLI1 expression

Fig 2. Immunohistochemical analysis of hedgehog-signaling related molecules in various skin tumors. Expression of GLI1 (A), GLI2 (B), PTCH1 (C),

PTCH2 (D), SHH (E), and SMO (F) in basal cell carcinoma (BCC; n = 84), trichoepithelioma (TE; n = 17), pilomatricoma (PMC; n = 13), eccrine poroma (EP;

n = 11), hidradenoma (HAD; n = 10), spiradenoma (SPA; n = 9), squamous cell carcinoma (SCC; n = 19), sebaceous carcinoma (SBC; n = 9), and malignant

melanoma (MN; n = 8). Bars represent mean ± SEM. �P< 0.05; ��P< 0.01; ���P< 0.001; ns, not significant.

https://doi.org/10.1371/journal.pone.0225511.g002
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according to subtypes. However, all subtypes of BCCs showed similar levels of HH-related

molecules including GLI1 (Fig 5).

Correlation of GLI1 expression with epidermal stem cell markers

Several molecules including LGR4, LGR5, LGR6, Keratin 15, Sox9, CD34, Blimp1 and LRIG1

have been identified as stem cell markers of the epidermis and hair follicles [19] and HH sig-

naling is involved in the regulation of discrete populations of stem and progenitor cells in vari-

ous organs including skin [20]. Thus, we explored the correlation of HH-related molecules

except SMO with some of the stem cell markers; LGR4, LGR5, LGR6, and LRIG1. Interestingly,

GLI1 expression showed a strong positive correlation with LGR4 (r2 = 0.62, P< 0.001), LGR5
(r2 = 0.60, P< 0.001), but not with LGR6 (r2 = 0.21, P = 0.05) and LRIG1 (r2 = 0.07, P = 0.27)

(Fig 6A). Representative images of a BCC expressing both LGR5 mRNA and GLI1 protein are

shown in Fig 6B. GLI2 and PTCH1 also had a positive correlation with LGR4 and LGR5, while

PTCH2 and SHH showed a correlation only with LGR5 (Fig 7).

Fig 3. Immunohistochemical staining for GLI1 in normal skin and various skin tumors. Representative images of

GLI expression in hair follicle (A), sweat gland (B), sebaceous gland (C), basal cell carcinoma (D), trichoepithelioma

(E), pilomatricoma (F), eccrine poroma (G), hidradenoma (H), spiradenoma (I), squamous cell carcinoma (J),

sebaceous carcinoma (K), and malignant melanoma (L). A, B: ×400 magnification, C-L: ×200 magnification.

https://doi.org/10.1371/journal.pone.0225511.g003
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Discussion

In this study, we first measured the mRNA levels of six HH pathway molecules to investigate

the transcriptional activity of the HH signaling pathway in various cutaneous tumors. As

expected, out of the nine skin tumors examined, only BCCs exhibited substantially elevated

levels of all the HH-related molecules, except SMO. This finding is consistent with previous

studies reporting that HH signaling can activate genes involved in positive and negative feed-

back such as GLI1, GLI2, PTCH1, and PTCH2 [21–23]. Although TEs also expressed slightly

increased levels of GLI1, GLI2, PTCH2, and SHH, it was significantly lower than BCCs. Inter-

estingly, SMO transcription was not altered in BCCs, whereas Martinez et al. recently showed

an increased mRNA expression of SMO in BCCs from 20 nevoid basal cell carcinoma syn-

drome (NBCCS) patients mainly caused by PTCH1 gene mutations [24]. This discrepancy is

probably due to the different study groups because our study only includes sporadic BCCs that

Fig 4. Expression of hedgehog (HH)-signaling related molecules in basal cell carcinomas. (A) A graph showing the immunohistochemistry scores of HH-

related proteins in basal cell carcinoma (n = 81). (B) Representative images of H&E and immunohistochemical staining for GLI1, GLI2, PTCH1, PTCH2, SHH,

and SMO in a basal cell carcinoma. B: ×100 magnification. ���P< 0.001.

https://doi.org/10.1371/journal.pone.0225511.g004
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have different genetic profiles from those of NBCCS patients even though both BCCs share a

common signaling abnormality.

Immunohistochemical evaluation of the HH-related molecules demonstrated that only

GLI1 protein had the same expression pattern as its mRNA in skin tumors. Real-time PCR

analysis showed that GLI2, PTCH1, and PTCH2 expression were specifically elevated in BCCs

and TEs, however, IHC analysis showed that there were no significant differences in their pro-

tein expression levels between the skin tumors. This finding was not surprising since mRNA

and protein expression is often discordant due to several biological reasons, such as post-tran-

scriptional modification and different degradation rates. For example, the lower GLI2 protein

expression may be in part associated with the high turnover rate considering the fact that GLI2

can be proteolytically processed into the truncated-repressor form in the absence of HH

ligands. Additionally, the discrepancy between mRNA and protein levels could be in part due

to the low sensitivity and specificity of antibodies used in the present study. Indeed, only GLI1

antibody, C68H3, was previously demonstrated to be reliable for IHC [14], and was further

confirmed in our studies by GLI1 expression observed in normal skin tissues, in which C68H3

antibody exhibited exclusive and specific expression in hair follicles (Fig 3).

Fig 5. GLI1 expression in each subtype of basal cell carcinoma. (A) Representative H&E and GLI1 images of nodular, micronodular, superficial and

infiltrative basal cell carcinoma. Nodular, micronodular, superficial and infiltrative basal cell carcinomas: ×40 magnification, Infiltrative: ×100 magnification.

(B) No differences were observed in the expression of GLI1, GLI2, PTCH1, and SHH between each subtype of basal cell carcinoma including nodular (n = 55),

micronodular (n = 5), superficial (n = 5) and infiltrative (n = 16) types.

https://doi.org/10.1371/journal.pone.0225511.g005
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GLI1 expression was highest among the HH-related molecules in BCCs at both mRNA and

protein levels. In addition, GLI1 was only detected in BCCs and TEs, whereas it was not

observed in other benign and malignant skin tumors. It has been well-established that BCCs

and TEs, which share similar histologic features, have upregulated GLI1 expression due to

aberrant HH signaling, which plays a decisive role in the development of both tumors [25]. In

addition, it was notable that only BCCs were found to express GLI among the malignant skin

tumors, suggesting GLI1 as a candidate diagnostic marker in differentiating BCC from other

skin malignancies. In particular, GLI1 may be useful to differentiate BCCs from basaloid squa-

mous cell carcinoma of the skin, another basaloid tumor that is rare but diagnostically

challenging.

Multiple stem cell markers have been identified in the mouse skin and hair follicles includ-

ing LGR4, LGR5, LGR6, LRIG1, SOX9 and Keratin 15 [26–28]. We previously demonstrated

that LGR5 and LGR6 expression was upregulated in BCCs [29], and here we examined whether

HH signaling-related molecules were associated with those stem cell markers. Interestingly,

GLI1 and GLI2 have strong correlations with stem cell markers, particularly LGR4 and LGR5
(Figs 6 and 7). This finding seems to be consistent with a previous study reporting that

GLI1-expressing stem cells co-express LGR5 [30]. In this study, we showed that GLI1-expres-

sing cells reside in the hair bulb area, which largely overlapped with the LGR5-expressing area.

Thus, it is reasonable to hypothesize that the cells expressing LGR5, as well as GLI1, in the bulb

area might be the origin of cells giving rise to BCC. Since LGR4 and LGR5 are the target genes

of the Wnt signaling pathway, our results also suggest a possible interplay between the HH and

Fig 6. Correlations of GLI1 expression with other stem cell markers in basal cell carcinomas. (A) Scatter plots with regression lines showing the correlations

between GLI1 and stem cell marker mRNA expression in basal cell carcinomas (n = 18). (B) Representative case of basal cell carcinoma expressing both LGR5
mRNA and GLI1 protein (RNA in situ hybridization for LGR5 and immunohistochemistry for GLI1). B: ×100 magnification.

https://doi.org/10.1371/journal.pone.0225511.g006
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Wnt signaling pathways. It has been demonstrated that the Wnt-HH signaling axis is essential

for maintaining the hair cycle and activation of canonical Wnt signaling induces SHH expres-

sion [31].

In summary, we investigated the mRNA and protein expression profile of six HH signal-

ing-related molecules in a variety of cutaneous benign and malignant neoplasms. Our results

demonstrated that BCC shows dramatically increased mRNA levels of GLI1, GLI2, PTCH1,

PTCH2, and SHH. Among these 5 molecules, only GLI1 showed elevated protein expression in

BCCs, suggesting a possible role as a diagnostic marker for differentiating BCCs from other

Fig 7. Correlation of GLI2, PTCH1, PTCH2, and SHH with epidermal stem cell markers in basal cell carcinoma. Scatter plots with regression lines showing

the correlations of GLI2 (A), PTCH1 (B), PTCH2 (C), and SHH (D) with stem cell markers including LGR4, LGR5, LGR6, and LRIG1.

https://doi.org/10.1371/journal.pone.0225511.g007
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skin malignancies. Furthermore, GLI1 was strongly associated with hair follicle stem cell mark-

ers, LGR4 and LGR5, suggesting a link between HH and Wnt signaling in BCC carcinogenesis.
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