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Abstract
Genome scan meta-analysis (GSMA) can prove very useful in detecting genetic effects too small to
be detected in an individual linkage study and can also lead to more consistent results. In this paper,
we propose a new kernel-based estimation procedure for GSMA. Instead of estimating identity by
descent between markers, as performed in interval mapping approaches, we estimated directly the
nonparametric linkage score between markers using a kernel procedure. The GSMA is then
extended to take into account the kernel estimate of the nonparametric linkage score and its
variance at a given chromosomal position. The method is applied to the rheumatoid arthritis
genome scan data (Genetic Analysis Workshop 15 Problem 2).

Background
Rheumatoid arthritis (RA) is a chronic inflammatory dis-
ease that primarily affects the synovial tissues of multiple
joints in the body. The etiology of the disease remains
unknown, but it appears to have a complex genetic com-
ponent. Several genome scans for RA studies have been
performed to identify susceptibility loci, but most of the
results have not been replicated [1]. These inconsistencies
could arise from the small sample size, low statistical
power, and clinical or genetic heterogeneity of these stud-
ies. Genome scan meta-analysis (GSMA) that combines
the results from several linkage studies can have greater
statistical power to detect small genetic effects and can
lead to more consistent results. A general difficulty in
GSMA is the heterogeneity across studies due to different

marker maps, marker informativeness, sample sizes, sam-
pling plans, and linkage tests. Loesgen et al. [2] proposed
a meta-analytic test that computed a weighted average
estimate of score statistics. Recently, Etzel et al. [3] used
this method in a genome-wide meta-analysis of RA.
Because of differences in marker maps across studies, they
decided to align the marker maps after performing some
interval mapping and combining nonparametric linkage
(NPL) scores obtained from GeneHunter2 for markers in
a pre-specified interval. Their method requires the estima-
tion of identity-by-descent (IBD) sharing probabilities
through the interval between two markers [4,5], which
can be somewhat inaccurate and imprecise. The variability
of the IBD estimate is difficult to measure and often not
reflected in the GSMA. In this paper, we propose an alter-
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native approach that estimates the NPL score between
markers directly using a kernel-based estimation proce-
dure. The GSMA is then extended to take into account the
kernel estimate of the NPL score and its variance at a given
chromosomal position.

Methods
Data
We have included three linkage studies in the meta-analy-
sis of RA: NARAC (North American Rheumatoid Arthritis
Consortium), ECRAF (European Consortium on Rheu-
matoid Arthritis Families) and United Kingdom (UK).
Only microsatellite scans and RA affection status (binary
outcome) were considered. NARAC has performed micro-
satellite scans for 511 mutliplex families, decomposed
into 757 smaller families. ECRAF had high-density micro-
satellite data from 88 families, including 105 sib pairs
typed with 1089 microsatellite markers. The UK group
performed two screens: an initial screen of the entire
genome using 369 markers analyzed on 175 families and
a second screen performed on 197 families using 89
markers in regions showing evidence for linkage. The two
screens were combined in our analyses. A summary of the
data analyzed is given in Table 1.

GSMA
We first performed a multipoint linkage analysis of each
individual study and estimated the NPL score and marker
information content (IC) at each marker location as well
as at each systematic 2-cM interval using the program
MERLIN [6]. We then performed the GSMA by calculating
the weighted average of the NPL scores at a given chromo-
somal position [2]:

where Zij is the NPL score from the ith study at the jth posi-
tion, k is the number of studies, and wij is the weight given
to each study. To perform the GSMA, we used three differ-
ent strategies that differ in the way the NPL score and IC
are estimated between markers and the definition of the
weight.

Method 1
Following Etzel et al. [3], the first method tries to align the
marker maps. After the 2-cM interval mapping was com-
pleted with MERLIN, the NPL scores that were within 1
cM of each other were combined and the statistic ZMA
was computed in each interval. The weight wij is the prod-
uct of the number of sib-pairs equivalents (SPE) from the
ith study and the IC estimated from MERLIN for the ith

study at the jth interval:

wij = SPEi*ICij.

Method 2
This approach is not based on marker alignment. Instead
of using an interval mapping estimate of the NPL score
and IC between markers, we used a kernel regression
method. The statistic ZMA is then computed at all marker
positions available after merging the three data sets (i.e., if
one marker is present in one study but missing in the
other two, its associated NPL score and IC are estimated
by the kernel regression). The weight is identical to
Method 1 except that the IC is now replaced by its kernel
estimate (ICK):

wij = SPEi*ICKij.

Method 3
The third approach is identical to Method 2 but now takes
into account in the weight the precision of the kernel esti-
mator, more precisely the inverse of standard deviation of
NPL kernel estimator (SDnpl):

wij = SPEi*ICKij*I/SDnplij.

Model
In Methods 2 and 3, the relationship between the NPL
score (or the information content) (Y) and the marker
location (T) is modelled using a nonparametric model
given by:

Yi = m(Ti) + εi, for i = l,..., n,

where m(·) and ε denote, respectively, the regression
function to be estimated and the model error; term n is the
number of observations. The stochastic distribution f(·)
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Table 1: Summary of studies included in the meta-analysis

No. of families

Study Population Total 2 siblings >2 siblings No. of microsatellite markers

NARAC U.S. Caucasian 757 208 535 396
ECRAF French 88 16 72 1089
UK U.K. Caucasian 372 158 213 369
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of ε is typically unknown and is unlikely to follow any
familiar distribution such as the normal distribution.
Hence, we decided to use nonparametric statistics. The
random variable enables to characterize the variation of Y
around m(t), the mean regression curve with:

So, the regression function m(·) depends on the joint and
the marginal densities, which are both unknown. A den-
sity estimator allows the analysis of data sets that could
exhibit skewness and multimodality due to different fac-
tors (for example, mixture of several distributions and
clusters). A histogram type estimator is the most fre-
quently used but could be strongly affected by the choice
and number of classes chosen. So we decided to use a
nonparametric kernel estimator that behaves much better
statistically. A kernel estimator of a function f(·) is
defined by:

where n is the sample size, h is the bandwidth (the
smoothing parameter) to be determined, and K is the con-
tinuous fixed kernel function with finite variance gener-

ally satisfying K > 0, K(-t) = K(t), and ∫ K(t) dt = 1. Here we
considered the Gaussian kernel. This raises the question of
determining the bandwidth parameter. The estimator

 is wiggly when h is small and very flat when h is

large. Different procedures have been previously pro-
posed to determine h, for example cross-validation. The
problem in our application is that we need to estimate the
NPL score function at different marker locations using the
kernel procedure but also its variance. Both the kernel esti-
mator and the variance depend on the same smoothing
parameter and an optimal choice for the kernel estimator
might not be optimal for the variance. To our knowledge,
there is no optimal procedure for this problem. For that
reason, we could not apply the classical cross-validation
procedure, so we decided to choose the bandwidth empir-
ically. The bandwidth was chosen inversely proportional
to the number of markers of each individual study on
each chromosome. Therefore, h was not constant in our
study but depended on the genetic background. More

exactly, we chose: , where Mi is the

number of markers of each individual linkage study on
one particular chromosome and the constant was fixed to
4.0. Intuitively, we understand that a study with less mark-

ers yields more variable results. Applying a larger h leads
to a smoother function and thus to a decreased variability.
This determination of h provided a good estimation of
both the NPL score function and its variance.

Using the kernel estimator of the marginal and joint den-
sities function, the regression estimator of m(·) is:

where Kh(·) was chosen to be the Gaussian kernel func-

tion here. This form of the estimate of the regression curve
was proposed by Nadaraya [7] and Watson [8]. The esti-

mator  is a consistent estimator m(t) and normally

distributed when h tends toward 0. It is also shown [9,10]
that under regularity conditions when h tends toward 0,

the variance of the estimator  can be approximated

by:

and  is the estima-

tor of (t).

In our method 3 above, we took .

All our computations were preformed with the computer
program R for Linux.

Results
The results of the ZMA test statistic on the whole genome
are presented in Figure 1. Our results confirm the role of
the HLA region in the susceptibility to RA with a ZMA test
statistic close to 8.0 on chromosome 6 (Fig. 1). The three
methods gave consistent results for this chromosome. We
also found some suggestion of linkage on chromosomes
1 (240 to 260 cM), 2 (200 to 250 cM), 8 (10 cM), 16 (40
cM), 18 (80 to 90 cM), and 21 (45 cM), with a ZMA test sta-
tistic close to 2.0. For most chromosomes, the three meth-
ods gave very similar results. Method 2 performs
identically to Method 1, and this was expected because the
kernel estimation is only used to smooth the information
content and NPL score functions. Some differences, how-
ever, were observed between Method 3 and the two oth-
ers, especially on chromosomes 2, 3, 13, 21, and 22. To
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GSMA results on the 22 autosomesFigure 1
GSMA results on the 22 autosomes. Green line, method 1; blue line, method 2; red line, method 3.
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better understand these discrepancies, we describe the
GSMA results on chromosome 13, where Methods 1 and
2 gave a larger ZMA test statistic than Method 3 at the loca-
tion 120 cM (Fig. 2A). The linkage signal was stronger in
ECRAF (NPL score > 2.0) than in NARAC and UK studies
(NPL score close to 0) (Fig. 2B) and the information con-
tent of ECRAF was also larger (Fig. 2C).

However the variance of the NPL score at this location, as
estimated by the kernel regression procedure, was higher
for ECRAF than for the two other studies (Fig. 2D).
Method 3, unlike Methods 1 and 2, weights each study
inversely proportionally to this variance and therefore led

to a lower ZMA test statistic. Moreover, the peak of linkage
in ECRAF is relatively thin, which could be associated with
a larger variance of the kernel estimator at this location
(Fig. 2B). This is because the variance of the kernel estima-
tor is inversely proportional to the density estimate of the
NPL score at one particular location (see variance formula
above). In general, denser marker regions and wider peak
regions both could contribute to a low variance of the ker-
nel estimator and hence, to a larger GSMA statistic.

Discussion
The use of kernel-based regression methods allow us to
estimate the NPL score function at various locations along

GSMA results on chromosome 13Figure 2
GSMA results on chromosome 13.
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the genome and thus make possible the meta-analysis of
several linkage studies with different genetic maps. To our
knowledge, this is the first kernel-based approach for
GSMA studies. Previous GSMAs have tried to perform
some map alignment that requires an estimation of the
IBD sharing probabilities between markers using interval
mapping. However, the variability of this estimate is not
reflected in the GSMA statistic. An important advantage of
our approach is that it is completely nonparametric and
we can obtain a measure of the variability of the NPL score
estimate along the genome. Incorporating this variability
into the GSMA statistic (Method 3) might improve the
consistency of linkage results by over-weighting studies
with more precise estimate of the NPL score function. This
could reflect, for example, a higher marker density. A
larger weight will be given to a study that finds a linkage
peak with many markers than to a study that finds the
same peak with fewer markers. Therefore, the information
about NPL score variability is very useful to weight each
individual study. Our procedure can also down-weight
thin peaks. Further simulation studies are needed to better
understand its properties, in particular in terms of detec-
tion of true linkage peaks.
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