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Unique behavior of Trypanosoma 
cruzi mevalonate kinase: A 
conserved glycosomal enzyme 
involved in host cell invasion and 
signaling
Éden Ramalho Ferreira1, Eduardo Horjales2, Alexis Bonfim-Melo1, Cristian Cortez1, 
Claudio Vieira da Silva3, Michel De Groote2, Tiago José Paschoal Sobreira4, Mário Costa Cruz1, 
Fabio Mitsuo Lima1, Esteban Mauricio Cordero1, Nobuko Yoshida1, José Franco da Silveira1, 
Renato Arruda Mortara1 & Diana Bahia1,5

Mevalonate kinase (MVK) is an essential enzyme acting in early steps of sterol isoprenoids biosynthesis, 
such as cholesterol in humans or ergosterol in trypanosomatids. MVK is conserved from bacteria 
to mammals, and localizes to glycosomes in trypanosomatids. During the course of T. cruzi MVK 
characterization, we found that, in addition to glycosomes, this enzyme may be secreted and modulate 
cell invasion. To evaluate the role of TcMVK in parasite-host cell interactions, TcMVK recombinant 
protein was produced and anti-TcMVK antibodies were raised in mice. TcMVK protein was detected in 
the supernatant of cultures of metacyclic trypomastigotes (MTs) and extracellular amastigotes (EAs) by 
Western blot analysis, confirming its secretion into extracellular medium. Recombinant TcMVK bound 
in a non-saturable dose-dependent manner to HeLa cells and positively modulated internalization 
of T. cruzi EAs but inhibited invasion by MTs. In HeLa cells, TcMVK induced phosphorylation of MAPK 
pathway components and proteins related to actin cytoskeleton modifications. We hypothesized that 
TcMVK is a bifunctional enzyme that in addition to playing a classical role in isoprenoid synthesis in 
glycosomes, it is secreted and may modulate host cell signaling required for T. cruzi invasion.

Trypanosoma cruzi is the etiological agent of Chagas’ disease or American trypanosomiasis, a prevalent health 
problem that affects 6–7 million people worldwide, mostly in Latin America1. T. cruzi has a complex life cycle 
involving invertebrate and vertebrate hosts. Trypomastigotes and extracellular amastigotes are the infective forms 
for mammalian hosts and they may engage a variety of strategies to infect and survive in mammalian host cells2,3.

T. cruzi does not synthesize cholesterol de novo, but instead synthesizes ergosterol and enzymes of sterol bio-
synthesis pathway could be potential targets for development of anti-trypanosomal drugs4. Mevalonate kinase 
(MVK) is an important enzyme of the isoprenoid/cholesterol biosynthesis pathway, catalyzing the phosphoryl-
ation of mevalonic acid into phosphomevalonate5. Mevalonate kinases are found in a wide variety of organ-
isms from bacteria to mammals. The mevalonate pathway provides cells with essential bioactive molecules vital 
in multiple cellular processes6 via conversion of mevalonate into sterol isoprenoids including cholesterol, an 
indispensable precursor of lipoproteins and steroid hormones, a number of hydrophobic molecules and non-
sterol isoprenoids. These intermediates of the mevalonate biosynthetic pathway play important roles in the 
post-translational modification of a variety of proteins involved in the intracellular signaling essential in cell 
growth/differentiation, gene expression, protein glycosylation and cytoskeletal assembly6,7.
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Recently, it has been demonstrated that in the trypanosomatids Trypanosoma brucei and Leishmania major 
sterol biosynthesis is distributed in multiple intracellular compartments and the production of HMG-CoA from 
acetyl Coenzyme A and generation of mevalonate mainly occurs in the mitochondrion while further mevalonate 
phosphorylation is almost exclusively located in glycosomes8. During the course of the characterization of T. cruzi 
MVK (TcMVK), we found that, in addition to glycosomes, this enzyme may be secreted and modulate cell inva-
sion, possibly by phosphorylation of host cell components. Given this unexpected behavior we hypothesized that 
TcMVK may be a bifunctional enzyme, typified by having a second function not related to its original, classical 
function. In addition, many enzymes that are originally involved in metabolic pathways can also act as virulence 
factors of pathogenic protozoa9–12. The present study demonstrates a new role for a metabolic enzyme of T. cruzi.

Materials and Methods
Ethics Statement.  All experiments involving animal work were conducted under Brazilian National 
Committee on Ethics Research (CONEP) ethic guidelines, which are in accordance with international stand-
ards (CIOMS/OMS, 1985). The protocol was approved by the Committee on Ethics of Animal Experiments of 
Universidade Federal de São Paulo (Permit Number: CEP 0913/10). During the experimental procedures, all 
efforts were made to minimize animal suffering.

Parasites and mammalian cells.  T. cruzi isolates used in this study were: strain CL and clone CL Brener 
(DTU VI13,14), and strain G (DTU I13,15). Extracellular amastigotes (EAs) were obtained by differentiation of tissue 
culture trypomastigotes (TCTs) in LIT medium at pH 5.8 for 14 h as previously described16. Epimastigotes (EPs) 
and metacyclic trypomastigotes (MTs) were obtained as previously described17. HeLa cells (Instituto Adolfo Lutz, 
São Paulo, SP, Brazil) were grown in RPMI 1640 medium (Sigma-Aldrich, St Louis, MO, USA) supplemented 
with 10% fetal bovine serum (FBS, Invitrogen, Carlsbad, CA, USA), 10 μg/mL streptomycin, 100 U/mL penicillin 
and 40 μg/mL gentamycin at 37 °C and 5% CO2.

Invasion assays.  HeLa cell invasion assays were performed by adding 500 μL of cell suspension (1.5 ×  105) to 
24 well plates containing sterile glass coverslips and incubated overnight at 37 °C and 5% CO2. Cells were treated 
with 300 nM of rTcMVK in RPMI/10% FBS and incubated at 37 °C in a CO2 (5%) humidified incubator for 1 h 
and washed twice with sterile PBS. Next, parasite suspensions at 10:1 per cell for EAs and 20:1 for MTs were added 
and the plates incubated for another 2 h at 37 °C in a 5% CO2 humidified incubator. The cells were then gently 
washed three times with PBS to remove unattached parasites, fixed with Bouin and stained with Giemsa as previ-
ously described18. For antibody inhibition assays parasites were incubated for 30 min with anti-MVK, specificity 
control α -C0319, rTcMVK or untreated, washed then incubated with HeLa cells as described above.

Cloning of TcMVK alleles.  Alleles were amplified by PCR from genomic DNA of clone CL Brener, G and 
CL strains and cloned into pGEM®-T Easy Vector (Promega, Fitchburg, WI, USA). The coding sequences of 
TcMVK were amplified using the following primers: XM_797435.1 (Esmeraldo like), forward- 5′  CTA AAT TTT 
GGC ACT TCT AGG GCA 3′  and Reverse: GAA GTA CAG GAA CGT TAT TTA ACC T; and XM_809535.1 
(non-Esmeraldo like), forward BamHI-5′-GGC CGG GGA TCC GAG CGA ACA GAG AAG AAC C 3′  and 
reverse HindIII-5′-GGC CGG AAG CTT AGG CAC TTC TAG GGC ACG CAG 3. The recombinant clones were 
sequenced by using the dideoxynucleotide chain-termination method20 according to manufacturer’s protocol. 
Gene sequencing was performed in an automatic ABI PRISM 3100 sequencer (Applied Biosystem, Foster City, 
CA, USA) using the primers above and internal primers for TcMVK (internal: GTT CAC TTC ATC TTC GGT 
CA) and TcKMV2 (3′  internal primer forward 1: CGT CCT GCT GTGCCAGG and internal primer forward 2: 
CGG CCG CGA CAT TTG GT). Sequence edition and analyses were performed using DNASTAR Lasergene 
Editseq (www.dnastar.com).

Expression of the recombinant protein TcMVK (rTcMVK).  TcMVK was cloned in fusion with amino 
terminal His6 tag in plasmid pET-28a (Merck, Darmstadt, Germany). In order to amplify the fragment from G 
strain genomic DNA, the following primers were used: forward BamHI-5′-GGC CGG GGA TCC GAG CGA 
ACA GAG AAG AAC C 3′  and reverse HindIII-5′-GGC CGG AAG CTT AGG CAC TTC TAG GGC ACG CAG 
3′ . Amplification was performed using Pfu ultra II DNA polymerase (Agilent, Santa Clara, CA, USA) in a final 
volume of 50 μL. PCR conditions were: 35 cycles of 1 min at 94 °C, 1 min at 94 °C, 30 s at 50 °C, 1 min at 72 °C, and 
a final extension of 10 min at 72 °C. E. coli BL21 strain cells were transformed with pET-28a:TcMVK plasmid and 
grown at 20 °C for 48 h, 150 rpm, in 4 L ZYM-5052 high induction medium21 containing kanamycin (30 μg/mL). 
Cells were harvested by centrifugation (40 min, 6000 g), the pellet re-suspended in one tenth of culture volume in 
buffer A (50 mM Tris, 250 mM NaCl, 20 mM imidazole, pH 7.5) and stored at − 20 °C.

Purification of rTcMVK.  Cells were incubated with lysozyme (100 μM) in an ice bath for 40 min and then 
were lysed by sonication using a Branson Sonifier 450 (VWR Scientific, Radnor PA, USA) equipped with a 
2 mm-diameter tip. Debris was removed by centrifugation (60 min, 4500 g) and the clear supernatant used for 
protein purification. Prior to size exclusion chromatography the protein was dialyzed in glycine buffer pH 9.0 (30 
mM), NaCl (50 mM). The Ni-NTA Superflow (Qiagen, Venlo, Germany) column was washed with MilliQ water, 
equilibrated with start buffer A and the cleared sample applied to the Ni-NTA Superflow column (Qiagen, Venlo, 
Germany). The column was washed with ten column volumes of start buffer A, followed by 5 volumes of elution 
buffer (buffer A with 230 mM imidazole). Samples with high OD280 were collected and concentrated to an OD280 
of 5.0 AU (nanoDrop Thermo, Waltham, MA, USA) and the gel filtration step was performed using Superdex 200 
High Load 16/60 prep-grade with glycine buffer pH 9.0 containing 0.15 M NaCl, which permits size separation of 
MVK monomers and dimers. The fractions corresponding to the rTcMVK peak were diluted five times in glycine 
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buffer pH 9.0 without NaCl, concentrated and used for activity measurements. Purified rTcMVK was visualized 
in SDS-PAGE gels (Figure SM5). Purified rTcMVK was stored at 4 °C, 1 mg/mL.

Binding of rTcMVK to HeLa cells.  5 ×  104 HeLa cells/well were seeded in 96 well microplates and grown 
at 37 °C for 24 h. Subsequently, cells were fixed with 3.5% paraformaldehyde in PBS and blocked with 10% FBS 
in PBS for 1 h at room temperature (RT). Cells were incubated with increasing amounts of rTcMVK or rEnolase 
used as a negative control for 1 h22. Subsequent steps were performed as previously described22.

Production of anti-TcMVK antibodies.  Anti-TcMVK polyclonal antibodies were obtained by subcutane-
ous immunization of BALB/c mice with purified rTcMVK in association with complete or incomplete Freund’s 
adjuvant (Sigma-Aldrich, St. Louis, CA, USA). Mice immunization was performed administering four 100 μg 
doses of rTcMVK at 15 day intervals. Serum was collected and titrated to 1:3200 by an enzyme-linked immu-
nosorbent assay (ELISA) with purified rTcMVK. Western blots using total G extracts were performed to verify 
antibody specificity (Figure SM4).

Detection of TcMVK into supernatants of T. cruzi cultures.  To obtain the parasite conditioned 
medium, EAs and MTs were washed in serum free RPMI and incubated in the same medium at a concentration 
of 1 ×  108 cells/mL for 16 h at 37 °C as previously described22. Following 16 h incubation, parasites were removed 
by centrifugation at 3000 g for 10 min at 4 °C. Parasite-free supernatants were filtered with 0.45 μm-pore-size 
filters (Millipore) and concentrated by trichloroacetic acid (TCA) precipitation, submitted to 13% SDS-PAGE 
and visualized by Western blot using anti-TcMVK at a dilution of 1:1000. Parasite viability was determined by 
propidium iodide incorporation at the beginning and end of the experiment and approximately 96% of cells were 
viable as determined in both measurements.

TcMVK kinase activity.  Specific rTcMVK activity was measured as previously described23 with minor mod-
ifications. Briefly, a stock standard solution of 0.1 M (RS)-mevalonic acid was prepared by dissolving 65 mg of 
crystalline mevalonic acid lactone (Sigma-Aldrich, St. Louis, MO, USA) in 3 mL of 0.2 N potassium hydroxide 
(KOH) and heated at 37 °C for 1 h to hydrolyze the lactone. The pH was adjusted to 7.2 with 0.1 N hydrochlo-
ric acid (HCl) and the volume brought to 5 mL with water. Measurement of enzyme activity was carried out at 
25 °C on a Spectra max Plus 384, 96 well plate, UV/V spectrometer (Molecular Devices, Sunnyvale, CA, USA). 
In accordance with the manufacturer’s instructions, 0.2 mL of mix solution containing glycine buffer (100 mM)  
pH 9.0, NaCl (25 mM), Lactic dehydrogenase (4 U), Pyruvate kinase (4 U), mevalonate* (4 mM), β-NADH 
(30 μM), ATP (5 mM), Magnesium Chloride (5 mM), Phosphoenolpyruvate (1 mM), rTcMVK (50 ng to 2500 ng). 
The enzyme rTcMVK was used to start the reaction. OD340 was monitored for 10 min, recorded every 20 seconds. 
One unit of enzyme activity was defined as the amount of activity required to produce 1 µmol of mevalonate 
5-phosphate (measured as µmol of NADH consumed) per minute per mg of enzyme. Blank assays were per-
formed in the absence of ATP. All the measurements were repeated at least three times.

Immunofluorescence assays.  Double immunofluorescence assays were performed with anti-TcMVK, 
anti-aldolase (glycosomal marker, raised in rabbit) and anti-binding immunoglobulin protein (BiP) [endoplas-
mic reticulum (ER) marker, raised in rabbit], provided by Dr. Sergio Schenkman, UNIFESP. Developmental 
forms (EPs, MTs and EAs) of the G strain were washed with PBS and fixed with 3.5% paraformaldehyde in 
PBS for 15 min at RT, washed with PBS in 1.5 mL microcentrifuge tubes, then incubated with blocking/per-
meabilizing solution PGS (0.2% gelatin, 0.1% saponin and 0.1% NaN3, diluted in PBS) for 1 h at RT. Cells were 
then washed with PBS and incubated with primary antibodies diluted 1:50 in PGS for 24 h at 4 °C, washed 
with PBS and incubated with secondary antibodies for 1 h at RT: anti-mouse Alexa 568 (Invitrogen, Carlsbad, 
CA, USA), or anti-rabbit Alexa 488 (Invitrogen, Carlsbad, CA, USA) diluted 1:200 in PGS containing 1 μg/mL  
4′ 6,-diamidino-2-phenylindol (DAPI, Sigma-Aldrich, St. Louis, MO, USA) to label nuclei and kinetoplasts. 
Parasites were then washed with PBS and mounted in glycerol buffered with 0.1 M Tris, pH 8.6, with 0.1% 
p-phenylenediamine as anti-fade agent. Images were acquired with a TCS SP5 II Tandem Scanner confocal 
microscope (Leica Microsystems, Wetzlar, Germany) using a 100× NA 1.44 PlanApo oil immersion objective 
and processed with Imaris® (Bitplane).

Phosphoprotein assays and Western blotting.  HeLa cells (5 ×  106) were seeded onto 10 cm (diameter) 
plates and grown for 24 h. Cells were incubated with serum-free RPMI for another 24 h (starvation) to decrease 
cell constitutive signaling. Following starvation, cells were incubated with rTcMVK or parasites (EAs and MTs) 
for the following time periods: 0 (without contact), 1, 5, 15, 30, 60, 90 and 120 min. Following incubation, cells 
were washed with PBS and removed from the plates with a cell scraper in a solution of cold PBS (4 °C) containing 
2 mM Na3VO4 and NaF to inhibit intrinsic phosphatase activity. Cells were then centrifuged and lysed with mam-
malian cell lysis buffer (mPER, Thermo, Waltham, MA, USA) containing 5 mM Na3VO4 and 2 mM NaF. Protein 
quantification was performed using the BCA kit (Thermo, Waltham, MA, USA) according to the manufacturer’s 
instructions. Subsequently, samples were submitted to 10% SDS-PAGE, transferred to PVDF membranes and 
blocked with skimmed milk (Cell Signaling, Danvers, MA, USA). Antibodies to different phosphoproteins were 
diluted according to the manufacturer´s instructions. Membrane blocking and primary and secondary antibodies 
(conjugated with peroxidase) incubations were performed using Na3VO4 250 nM in Tris-buffered saline (TBS). 
Bound antibodies were amplified with ECL (GE Healthcare Little Chalfont, UK) and luminescent bands vis-
ualized using the UVITEC photo documenter (UVItec. Cambridge, UK). Band densitometry was performed 
using UVIBAND software. The antibodies used were specific to phosphorylation residues implicated in enzyme 
activation, namely: Src family kinases (pSFKs), Y416; pFAK, Y397; pERK1/2, T202/Y204; p-p38 T180, Y182 
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(Cell Signaling, Danvers, MA, USA), pPAK, S144 (Invitrogen, Carlsbad, CA, USA) and mouse anti-actin (A2228, 
Sigma-Aldrich, St. Louis, MO, USA) used as a loading control.

Protein prediction, alignment and similarities search.  Motif scanning within the predicted MVK 
from the T. cruzi genomic database was performed in the ExPASy proteomics server (http://www.expasy.org). 
Primary structure predictions were constructed by the on-line program SMART24. Alignment of TcMVK with 
MVK of other trypanosomatids was performed using ClustalW25.

Molecular homology, dynamics and structural analyses.  The TcMVK structure was homology mod-
eled, with YASARA Software (www.yasara.org), based on two Leishmania major MVK structures (2HFU and 
2HFS). Preparation of TcMVK structure for dynamics began by adding hydrogen atoms. Proteins were then sub-
sequently added in a water box and charges neutralized by adding sodium and chlorine atoms. Initially the system 
was submitted to solvent energy minimization followed by protein energy minimization and, finally, total system 
energy minimization. After stabilization, the system was submitted to molecular dynamics for 30 ns at 298 K 
for stability evaluation measured via the root-mean-square deviation (RMSD) value in Angstroms (Å). High 
RMSD values were considered indicative of instability or high variation of atom position that may result in model 
dissociation. Molecular dynamics results were visually examined using the VMD program (Visual Molecular 
Dynamics). The volume of catalytic pocket was measured using KVFinder26, and the volume of the mevalonic 
acid was measured using UCSF Chimera27.

Statistical analysis.  Statistical analysis of invasion assays was performed with GraphPad Prism employing 
Student’s t test. Data are present as mean standard deviation (SD). *P <  0.05 and ***P <  0.001 mean significance.

Results
Molecular characterization of T. cruzi MVK.  In T. cruzi (clone CL Brener) genome there are two anno-
tated TcMVK genes (XM_797435 and XM_809535) which differ from each other by the presence, in the large 
TcMVK variant (XM_797345), of a 5′  terminal extension containing two in frame putative ATG initiator codons 
(Figure SM1). The region immediately after the first ATG (on XM_797345) encodes a predicted 19-amino acid 
signal peptide that is missing from the short TcMVK copy (XM_809535) (Figure SM1). The nucleotide sequence 
encoding the putative signal peptide lies in a polypyrimidine tract followed by an AG trans-splicing accep-
tor dinucleotide suggesting that this region could correspond to the 5′ -UTR of the TcMVK gene. In fact, this 
trans-splicing acceptor site is also present in the intergenic region of the copy encoding the short TcMVK variant 
(Figure SM1, sequence XM_809535 extent). To investigate more carefully this possibility, we performed RT-PCRs 
on mRNA of CL Brener epimastigotes (EPs) using an internal TcMVK reverse oligonucleotide and a mini-exon 
as forward oligonucleotide.

Analysis of ten cDNA clones revealed that most of the MVK mRNAs (n = 9) start immediately after an alterna-
tive AG splicing acceptor site which is only present in the intergenic region of the copy encoding the short MVK 
variant (Figure SM1, cDNA clones E500A and E500B). This alternative AG is located 14 nt upstream from that 
indicated in the XM_797435. We found only one cDNA clone (Figure SM1, clone E500C) starting immediately 
after the AG splicing-acceptor site of the large TcMVK (XM_797435) indicating that the polypyrimidine-rich 
region encoding the putative signal peptide is indeed pointing out the intergenic region that will undergo 
trans-splicing reaction. Given that this mapped AG is common to both the large and short copies of TcMVK we 
cannot rule out an alternative splicing event on the short TcMVK copy. The results suggest a preferential tran-
scription of TcMVK lacking the signal peptide either from the large or short TcMVK copies. Differences in the 
TcMVK large/short copy ratio could be due to a bias during the RT-PCR or cloning process. Analysis of a larger 
number of clones would be necessary to estimate the TcMVK copies ratio more precisely. The nucleotides on the 
predicted CDS of both copies of TcMVK amplified by RT-PCR are 99% identical with only six differences and no 
gaps.

Finally, analysis on NCBI’s SRA database containing sequence data from next-generation sequencing experi-
ments allowed us to identify only one read of TcMVK containing the spliced-leader in poly(A)+ selected mRNAs 
isolated from metacyclic trypomastigotes (MTs) of T. cruzi Dm28c. The read (SRR1587296.10777788.1) mapped 
on the AG splicing-acceptor site of the large TcMVK (XM_797435). Taken together, the above results offer strong 
evidence that the predicted signal peptide of MVK is indeed an artifact derived from the algorithm used to pre-
dict the CDS from a genomic sequence.

The presence of TcMVK genes in clone CL Brener was experimentally confirmed by genomic PCR amplifica-
tion. Sequences from G (GenBank KR350584) and CL (GenBank KR350585) strains were obtained with the same 
approach and compared to that of CL Brener showing that MVK is conserved across these strains (Fig. 1A). The 
alignment of TcMVK with those of other trypanosomatids showed that MVK is conserved among trypanoso-
matid species (identity of 64% and 58% with Trypanosoma brucei and Leishmania major, respectively) (Fig. 1A). 
Similar to other organisms T. cruzi MVK protein contains two GHMP kinase domains most likely involved in 
ATP binding (Fig. 1B).

Structure of TcMVK protein.  The TcMVK tridimensional structure was modeled by YASARA. The 
best model was created based on the Leishmania major MVK crystals, PDB ID: 2HFS and 2HFU. The TcMVK 
amino acid sequence has 58% of identity with both structures. The best model is shown in Fig. 2A; in yellow 
the predicted position of mevalonic acid in the catalytic pocket. Figure 2B shows the predicted region of the 
catalytic pocket in blue. The pocket volume is 340 Å3 and mevalonic acid volume is 119 Å3. Figure 2C shows the 
amino acids likely to be involved in mevalonic acid binding based on their positions in relation to the substrate 
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conformation. Figure 2D shows the result of molecular dynamics of TcMVK model performed by YASARA  
(www.yasara.org). This analysis shows a small destabilization at the first 5 ns followed by stabilization at the fol-
lowing 25 ns indicating that the proposed 3D structure is viable.

The dimeric, not monomeric, TcMVK fraction has a high enzymatic activity.  The gene assigned 
encoding a putative TcMKV was amplified by PCR, cloned into E. coli and expressed as a recombinant protein 
(rTcMVK) tagged with poly-histidine (Figure SM5). The E. coli strain over-expressing rTcMVK presented a slow 
growth and low enzyme over-expression in most of the commonly used culture media. The use of the medium 
ZYM5052 resulted in a very high increase of the expression and a high yield of pure protein (in relation to other 
media), with a final amount of 15 mg of protein, in 1L of expression medium. After the size exclusion chroma-
tography to separate the oligomerization states we obtained three peaks with molecular weight corresponding to 
tetramer (a), dimer (b) and monomer (c) (Figure SM6A).

The monomeric samples, fresh collected, presented very low activity as compared with the dimeric fraction 
(fresh) (Figure SM6B). Even more, after 15 days stock of the monomeric enzyme, a new run on the gel filtration 
column has shown that more than 60% of the protein moved to large aggregates or dimeric form (less than 20%). 
We measured the specific activity of dimeric state resulting in 74 μM/(min.mg) (SM6 B and Table 1).

Thus, we have concluded that the monomeric samples have not shown any catalytic activity (SM6 B), as 
already observed by Sgraja et al.28 for Leishmania and T. brucei recombinant enzymes28. Moreover, the dimeric 
samples have shown a high enzymatic activity over the sensibility of the method and comparable to other known 
species (Table 1).

Expression and subcellular distribution of TcMVK.  The TcMVK of all T. cruzi forms is found in gly-
cosomes, as deduced from its partial colocalization with aldolase (Fig. 3A). Additional immunofluorescence 
experiments with endoplasmic reticulum, acidic compartments or mitochondrial markers indicated no colocali-
zation with TcMVK (Figure SM7). Expression of T. cruzi native TcMVK proteins was also analyzed by subjecting 
EAs and MTs whole extracts to SDS-PAGE and immunoblotting analysis. Anti-TcMVK antibodies reacted with a 
34 kDa protein in both developmental forms, in agreement with the predicted molecular mass of 34 kDa (Fig. 3B). 

Figure 1.  TcMVK is similar to MVK from other trypanosomatids. (A) Multiple sequencing alignment 
demonstrates that TcMVK is approximately 60% similar to MVK from other trypanosomatids. Tc: Trypanosoma 
cruzi: CLB: clone CL Brener (XP_802528); G: G strain; CL: CL strain; Tb: Trypanosoma brucei brucei (XP_844 
557, 64% identity); Lm: Leishmania major (XP_001685041, 58% identity). Shade code: Black, 100% identity; 
dark gray, 80% identity; light gray, 60% identity. (B) Schematic drawing of the primary structure of TcMVK 
proteins from T. cruzi clone CL Brener generated with SMART24. Similar to other MVKs, TcMVK presents two 
kinase domain (blast.ncbi.nlm.nih.gov).
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To investigate whether TcMVK is secreted into the extracellular medium, EA and MT forms were incubated over-
night in RPMI medium and the supernatants collected. Western blot analysis of secreted products in conditioned 
medium carried out with anti-TcMVK antibodies showed that T. cruzi EAs and MTs secreted 34 kDa-TcMVK 
(Fig. 3B left and right panel respectively).

Recombinant TcMVK affects parasite invasion of HeLa cells.  Previous observations have indicated 
that T. cruzi proteins involved in host cell interactions usually bind to the host cell surface in a dose-dependent 
manner22,29. Adhesion assays using rTcMVK and fixed HeLa cells showed a non-saturable dose-dependent 
increase of bound enzyme to HeLa cell surface (Fig. 4A). The specificity of the assay was confirmed using a recom-
binant enolase of Candida albicans which did not bind to HeLa cells (Fig. 4A). To determine if rTcMVK could 
modulate T. cruzi internalization, HeLa cells were treated for 1 h with 300 nM (lowest concentration tested of rTc-
MVK that bound to HeLa cells), washed and incubated with either EAs or MTs of G strain for 2 h and the number 
of internalized parasites counted. TcMVK plays a role in parasite cell invasion but it has essentially opposite 

Figure 2.  TcMVK homology modeling and structural analysis. (A) TcMVK cartoon representation (cyan) 
and mevalonic acid (yellow). (B) TcMVK cartoon representation (cyan) and catalytic pocked (blue). (C) Amino 
acids predicted to be involved in mevalonic acid binding and their positions in relation to mevalonic acid. 
The interaction model was generated based on similarities with the crystal structure of L. major MVK bound 
to mevalonic acid (yellow). (D) Molecular dynamics analysis of the TcMVK proposed model generated by 
YASARA (www.yasara.org). The carbon alpha RMSD in angstroms (Å, Y axis) is presented in relation to time 
(ns, X axis). 

Organism
Specific kinase activity 

[μmol/min/mg] Reference

Methanocaldococcus jannaschii 387.0 23

Trypanosoma cruzi 72.8 This study

Homo sapiens 37.0 78

Rattus novergicus 37.2 79

Enterococcus faecalis 24.0 80

Staphylococcus aureus 12.4 81

Trypanosoma brucei Inactive 28

Leishmania major Inactive 28

Table 1.   rTcMVK specific activity compared to MVKs from different organisms available via BRENDA 
server (http://www.brenda-enzymes.info/); MVK entry number: EC 2.7.1.36.

http://www.yasara.org
http://www.brenda-enzymes.info/
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effects in EA and MT forms. The invasion of HeLa cells by EAs was significantly increased (Fig. 4B) whereas it was 
significantly inhibited in MTs (Fig. 4B). Even when rTcMVK was used at concentrations up to 1200 nM, no addi-
tional effects were detected (not shown). Additionally, invasion assays performed in the presence of anti-TcMVK 
resulted in opposite effects to those described above (MTs invasion increased, EAs decreased), further evidencing 
that the enzyme modulates parasite invasion (Figure SM2).

Control experiments showed that enolase, even at higher concentrations did not interfere in the parasite inva-
sion rate (Figure SM3).

Signaling pathways activated by TcMVK.  Considering that TcMVK is secreted into extracellular 
medium we hypothesized that this protein may interfere with different host cell signaling pathways such as 
cytoskeletal remodeling and cell migration thereby assisting in parasite invasion. Exposing HeLa cells to rTcMVK 

Figure 3.  Intracellular distribution of TcMVK. (A) TcMVK partially co-localized with aldolase. 
Immunofluorescence images acquired with confocal microscope show that TcMVK is localized in glycosomes 
of T. cruzi epimastigotes (EP), extracellular amastigotes (EA) and metacyclic trypomastigotes (MT). Differential 
interference contrast (DIC);  DAPI (blue); rabbit anti-aldolase (green); mouse anti-TcMVK (red) and 
colocalized pixels (CP, white). Bar: 4 μm. Images are representative of three independent experiments. (B) 
Western blot analysis of EA (left panel) and MT (right panel) conditioned medium confirming secretion of 
TcMVK; EAs and MTs were incubated for 16 h in RPMI at 37 °C (1 ×  108 parasites/ml). After centrifugation, the 
supernatant from 1 ×  108 parasites was precipitated with trichloroacetic acid and subjected to SDS-PAGE (13% 
gel). The cell pellet was solubilized in Laemmli buffer and the equivalent of 1 ×  108 parasites was submitted 
to SDS-PAGE (13%). Anti-MVK was raised in mice using recombinant TcMVK and used at a dilution of 
1:1000. EA and MT: whole cellular lysate (centrifugation pellet) from extracellular amastigotes and metacyclic 
trypomastigotes respectively; 0 h: Incubation time point zero; 16 h: Extracellular amastigotes or metacyclic 
trypomastigotes 16 h conditioned medium; (− ): Empty lanes; 34 kDa: TcMVK expected molecular mass. These 
results are representative of two independent experiments.
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for various periods of time revealed that TcMVK induced a time-dependent activation of Src (Y416), a protein 
associated with actin microfilament rearrangement30–32, FAK (Y397) and PAK (S144), a protein known to be 
regulated by Rac1, subsequently modulating actin cytoskeleton reorganization, lamellipodium formation33,34 
(Fig. 5A).

Another signaling cascade associated with cytoskeletal rearrangement is the mitogen-activated protein kinase 
(MAPK) pathway30,35. Incubation with rTcMVK for varying time periods induced activation of the MAPK com-
ponents, ERK1/2 (T202/Y204), at 1 min, reaching a maximum at 30 min, and p38 (T180/Y182) in a gradual 
manner (Fig. 5B). All observed phosphorylated residues are implicated in protein activation.

Discussion
T. cruzi host cell invasion is triggered partially by binding of membrane molecules of both cells responsible for 
mutual and specific signaling leading to parasite internalization2,36. In addition to surface molecules, T. cruzi 
forms can also secrete factors that interfere with host signaling to promote or inhibit parasite invasion22,37,38. In 
this study we found that T. cruzi MVK, an ergosterol biosynthesis essential enzyme, is secreted to extracellular 
medium and modulates host cell signaling during parasite invasion.

Using 3D molecular modeling and molecular mechanics we have evidence that TcMVK maintained struc-
tural requirements for substrate coupling, despite nucleotide and/or amino acid differences comparing to the 
others crystallized MVK (Fig. 2) (L. major, T. brucei28). In vitro assays using synthetic mevalonic acid confirmed 
enzymatic activity of recombinant TcMVK corroborating modelling data. Together these results were crucial to 
support the use of recombinant TcMVK in further biological observations – invasion and signaling assays.

MVK is located in peroxisomes in mammals and other eukaryotes39,40. Accordingly, in L. major and T. brucei 
MVK is confined to glycosomes, structures related to peroxisomes8. While L. major and T. brucei MVKs dis-
played complete colocalization to glycosomes8, our findings indicated that TcMVK partially colocalized with 
aldolase suggesting that TcMVK may also be located in other intracellular compartments. The fact that TcMVK 
is not present in mitochondria, acidic compartments and endoplasmic reticulum may indicate the participation 
of intracellular compartments related to non-canonical secretory pathways, such as microvesicules in TcMVK 
secretion41.

T. cruzi secretome analysis indicated that only approximately 9% of the 367 identified proteins have a signal 
sequence and are predicted to be secreted by classical pathways while 48% of them would be secreted by non-
classical pathways41. Secretome analysis revealed that L. donovani secretes several proteins classically involved 

Figure 4.  rTcMVK adheres to HeLa cells and modulates parasite invasion. (A) Binding of rTcMVK on the 
HeLa cells. Paraformaldehyde fixed HeLa cells were incubated with increasing concentrations (nM) of rTcMVK 
(circle). As a His-tag negative control, HeLa cells were also incubated with rCaEnolase (square), a His-tag 
recombinant protein from Candida albicans that does not adhere to HeLa cells. This result is the mean of two 
independent experiments performed in triplicates ±  standard deviation (SD). ***P <  0.001. Statistical analysis 
was performed by Two-way ANOVA method. (B,C) Opposite effects of rTcMVK in the cell invasion by EAs 
and MTs. rTcMVK enhances EA (B) but inhibits MT invasion (C). Giemsa staining of HeLa cells treated for 
1 h with 300 nM of rTcMVK and incubated with EAs or MTs for 2 h. The multiplicity of infection was 10:1 or 
20:1 for EA and MT forms, respectively. The negative control was carried out in the absence of rTcMVK. X 
axis: rTcMVK treated (rTcMVK) and non-treated (Ct) groups; Y axis: percentage of internalized parasites. The 
data correspond to the mean of six experiments performed in triplicates ±  SD. *P <  0.05 and ***P <  0.001. 
Statistical analysis was performed by Student t test method.
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in diverse intracellular functions, including metabolic pathways, protein folding, regulation or biosynthetic pro-
cesses and RNA metabolism42,43. In addition, T. brucei and T. cruzi secrete proteins classically involved in cell 
cycling, catabolic process, cell signaling, transporting and protein synthesis44. Interestingly, several secreted pro-
teins may also be involved in parasite virulence, facilitating host cell internalization41,42. Finally, enolase, a key 
glycolysis enzyme found in L. donovani, T. brucei and T. cruzi secretomes41,42,44 has been reported to be a possible 
important factor in trypanosome virulence43.

In the present study, rTcMVK is acknowledged to be highly active and to bind to HeLa cells similarly to 
previously observed to other T. cruzi proteins22,45. There is evidence that T. cruzi secretes proteins which may 
participate in host cell signaling pathways and modulate parasite invasion. For instance, the cysteine protease, 
cruzipain, is secreted41 and participates in parasite invasion46. Another T. cruzi protein, 21 kDa protein (P21) is 
secreted and interferes with HeLa cell invasion by EAs and MTs, acting as a phagocytosis inducer22,47. In addi-
tion, tissue culture trypomastigote forms (TCTs) secrete collagenase that loosens host cell extracellular matrix to 
achieve tissue migration37.

In addition to adhering to the host cell surface, we demonstrated that rTcMVK positively modulates EAs 
invasion whilst negatively regulating MTs invasion. A mechanistic link between cell signaling and cell invasion 
may be driven by the reorganization of cytoskeletal elements, particularly actin filaments, given that the uptake 
of EAs depends on actin cytoskeleton48,49.

Accordingly, we observed that rTcMVK can activate the actin related kinases Src/FAK and PAK and the 
MAPKs, ERK and p3832,33,50. Upon phosphorylation by integrins, Src associates and activates FAK to regulate 
several actin-related processes, including phosphorylation of key substrates such as paxillin and cortactin32,51–55. 
It has also been shown that activation of host cell Src and FAK is correlated to the actin dependent internalization 
of bacterial pathogens56–59. The serine-threonine kinase, PAK, acts as an effector of Rac1 and other GTPases60,61 
and previous results from the author’s group demonstrate that cells expressing constitutively active Rac1 are more 
susceptible to EAs invasion62. Due to the close relation of Rac1 to PAK activation and consequent actin cytoskel-
eton rearrangements33,63, the increased PAK phosphorylation in HeLa cells treated with rTcMVK observed in the 
current study supports the notion that the secretion of this enzyme may trigger Rac1/PAK activation, leading to 
increased EAs internalization.

In addition, ERK and p38 were activated in HeLa cells incubated with rTcMVK. ERK mediates the activation 
of proteins that regulate microfilament remodeling such as calpain, FAK and cortactin30,31. Moreover, activation 
of ERK has also been associated with increased T. cruzi TCT invasion64. Despite this, the involvement of these 
proteins in actin related processes remains poorly characterized35 and their involvement in actin independent 
mechanisms cannot be ruled out. Collectively, these results suggest several mechanisms by which rTcMVK treat-
ment of HeLa cells increases EAs uptake.

In contrast to EAs, rTcMVK inhibited MT invasion of HeLa cells. As MTs present distinct mechanisms to 
invade cells compared to EAs49,62, it was hypothesized that different signaling pathways are triggered during 

Figure 5.  TcMVK induces phosphorylation of HeLa cell cytoskeletal modulators. (A) rTcMVK triggered 
time-dependent phosphorylation of Src (arrow), reaching a maximum phosphorylation at 90 min (asterisks). 
FAK displays increased TcMVK-dependent phosphorylation, noticeable at 5, 30 and 120 min (asterisks). PAK 
activation time-dependent increases up to 120 minutes. (B) rTcMVK induced the start of phosphorylation of 
MAPK components, ERK and p38, at 1 and 5 min, respectively. ERK displayed maximum activation at 30 min 
(asterisk), decreasing at 60 min and almost disappearing after 120 min. In contrast, p38 activation showed a 
time-dependent increase up to 120 min. Numbers under actin bands refer to the densitometric quantitation: 
protein/actin. Nt: negative control of cells without rTcMVK incubation. Arrows: time dependent increase; 
asterisks: phosphorylation peaks. Anti-actin was used as loading control. Band densitometry measurements 
were performed using UVIBAND® , UVITEC. Blots are representative of five independent experiments.
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MT invasion in rTcMVK treated cells. Whilst it has been reported that HeLa cell invasion by MTs (G strain) is 
dependent upon the polymerization of actin filaments65, there is no relation to Src/FAK or PAK activation by 
rTcMVK observed in the present study. Conversely, activated ERK and p38 have been shown to prevent plasma 
membrane wounds caused by mechanical damage or bacterial toxins66–68. It is important to note the results of a 
study reporting that TCTs secrete (yet unknown) factors that decrease p38 and ERK activation69 hindering mem-
brane wound repair, a mechanism known to be directly involved in parasite internalization70.

It is well known that MTs induce lysosomal exocytosis in HeLa cells71, a key event in membrane wound heal-
ing that drives parasite invasion70,72. Therefore, TcMVK activation of p38 and ERK in HeLa cells may help to 

Figure 6.  Schematic view of signaling pathways induced by TcMVK secretion. (A) EA invasion. TcMVK 
induces Src/FAK phosphorylation which is important to cytoskeleton remodeling which is also involved in 
invasion process of diverse intracellular pathogens. PAK, which is activated by Rac1, displays an important role 
in actin cytoskeleton rearrangements, culminating in T. cruzi EA invasion62. TcMVK induces ERK and p38, 
both involved in activation of pathways that culminates in cytoskeleton remodeling. Additionally, ERK mediates 
the activation of proteins that regulate microfilament remodeling such as calpain, FAK and cortactin30,31.  
(B) MT invasion. The inhibition of MT invasion in the presence of rTcMVK can be explained by ERK and p38 
activation which prevent the mechanism of membrane repair (wound healing)66–68, described as essential to 
trypomastigote invasion69. Src/FAK and PAK activation by rTcMVK in MT invasion was not investigated in this 
study.
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stabilize membrane integrity and thus inhibit wound healing-driven internalization of parasites. A proposed 
model of HeLa signaling pathways induced by TcMVK secretion by both EAs and MTs is shown in Fig. 6.

As demonstrated in this study, TcMVK participates in parasite internalization, a process unrelated to the 
canonical activity of MVK. Similar to TcMVK, other proteins in several organisms have been shown to perform 
different functions aside from their traditional ones73. Plasmodium spp. enolase, Trichomonas vaginalis aldolase 
and GAPDH have been identified as adhesins to the host cell membrane9,74,75. In trypanosomatids, it has been 
described that L. mexicana enolase, in addition to its usual location in glycosomes, is found in the cytosol and the 
outer cell surface, assisting in plasminogen capture by the parasite11,76. Finally, L. donovani hexokinase, usually 
located in glycosomes, can be found at the flagellar pocket acting as a hemoglobin receptor, most likely partici-
pating in heme or iron acquisition77.

The results of the present study showed that the ergosterol biosynthesis enzyme, TcMVK, is secreted. It is 
hypothesized that TcMVK accesses the extracellular medium and diverse mechanisms such as microvesicle extru-
sions may also be involved, requiring further investigation. Finally, this kinase plays an unexpected role since it 
adheres to the cell surface, stimulating and regulating host cell responses towards EA and MT internalization, 
indicating that this kinase may be a new virulence factor in T. cruzi-host cell biology.
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