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Abstract
We study the regulating mechanism of p53 on the properties of cell cycle dynamics in the

light of the proposed model of interacting p53 and cell cycle networks via p53. Irradiation
(IR) introduce to p53 compel p53 dynamics to suffer different phases, namely oscillating

and oscillation death (stabilized) phases. The IR induced p53 dynamics undergo collapse of

oscillation with collapse time Δt which depends on IR strength. The stress p53 via IR drive

cell cycle molecular speciesMPF and cyclin dynamics to different states, namely, oscillation

death, oscillations of periods, chaotic and sustain oscillation in their bifurcation diagram. We

predict that there could be a critical Δtc induced by p53 via IRc, where, if ΔthΔtc the cell cycle

may come back to normal state, otherwise it will go to cell cycle arrest (apoptosis).

Introduction
p53 is well known for its abnormally long stability in response to the stress available against ge-
nomic integrity [1]. It conglomerated with its negative inhibitorMDM2 in the nucleus due to
their strong interaction [2]. When the cell is in stress condition (due to irradiation, stress in-
ducer molecule etc), p53 concentration level rises which leads to cell cycle arrest until repair or
doctoring takes place of the impaired DNA. If the repair is not successful the system goes to-
wards the apoptosis [3–6]. The transcriptional ability of the p53 is kept under controlled level
at normal state due to its negative feedback interaction withMDM2 [7]. The hyperbolized con-
centration ofMDM2 helps in degradation of the p53 protein because of its E3-ligase activity,
causing adherence of ubiquitin to the lysine rich C-terminal of the p53 molecule [8–10]. Intro-
duction of stress in the system is sensed by the activation of ARF protein, initially situated in
nucleolar region in the form of nucleophosmin shifts to the nucleoplasm in its independent
and active cast, to markMDM2 for its degradation, thus assisting the p53 stability [11–13].
Triggering of p53 in response to stress leads to the expression of several downstream genes
apart from theMDM2.

p21 protein is one of the most important proteins which is found to be expressed due to p53
accumulation in the cell [14]. p53 acts as a transcription factor for p21. It is also reported that
p21 expression is directly proportional to the level of p53 in the system [15]. The role of p21 in
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controlling G1 phase checkpoint has been widely studied but its role in controlling G2 phase
checkpoint is comparatively less studied [16–18]. The G2 phase checkpoint interruption leads
to the disruption of cell cycle that leads to halt mitosis [14]. The cyclin-cdk interaction leads to
the formation ofMPF (Maturation Promoting Factor) [19]. The formation ofMPF is very im-
portant for transition of G2 phase to mitosis phase [20]. The p21 protein is reported as antago-
nist for the formation ofMPF. Several experimental results suggest that p21 directly interacts
with cdk and also with cyclin leading to the inhibition of both cdk as well as cyclin [21]. It is
also reported that the interaction of cdk and p21 causes to halt in DNA replication [20, 22].

Cyclin, in cell cycle process, is an important protein which interacts with cyclin dependent
kinases and formsMPF. TheMPF is responsible for the activation of pRb (Retinoblastoma pro-
tein), and helps the liberation of transcription factor E2F from its inhibitory. This E2Fmain-
tains the expression profile of genes required to ingress the S-phase of the cell division cycle
[23–25]. Further, it is reported by several experimental results that p21 can directly interact
withMPF and forms complex and then dissociate [16, 18]. Hence, p53 can able to cross talk
withMPF and cyclin through p21.

There have been various experimental and theoretical studies on p53 regulatory network
and cell cycle model to understand their regulatory mechanisms and cell fate. p53 –Mdm2 reg-
ulatory network has been modeled in order to study the impact of irradiation and change in
DNA on cell variability and cell fate [26]. Further, it has also been shown that this DNA dam-
age force the cell to select its fate (DNA repair, cell cycle arrest, apoptosis) via activating p53
[27]. On the other hand, variation in DNAmethylation specially in neuronal cells in central
nervous system may induce better response to developmental and environmental changes [28].
Moreover, this cell fate in tumor cells can probably be triggered by p53 dependent PUMA accu-
mulation and p53 signal strength [29, 30]. Other method, say, recurrent artificial neural net-
work model has also been implemented to study such network to understand DNA damage
responses due to damage signal and parameter modeling to incorporate the changes [31, 32].
Studies in NF-kB model has been done in order to understand how the model system responses
to the cellular signal which may trigger to different states like chaos in the dynamics and phase
synchronization [33].

The experiments on mammalian cells show that p21-cyclin signaling pathway control the
decision of cell cycle fate [34]. The other studies in cell cycle dynamics in mammalian cells fur-
ther show the positive feedback as controlling mechanism of cell cycle regulation [35], role of
noise in regulation and exhibition of bifurcation in cell cycle dynamics [36].

Our model incorporates the integration of both p53-Mdm2 regulatory network and cell
cycle network in order to study the impact of p53 in deciding the fate of cell cycle dynamics
and vice versa. We focus in this work to study and find out the behaviour of different molecular
species which are actively involved in the checking of cell cycle at G2 phase regulated by p53.
We proposed an integrated model of p53 and cell cycle network to find out the impact of p53
regulator on cell cycle via p21 protein. We organized our work as follows. We hope that the
study may open up important behaviors in the dynamics of both p53 and cell cycle oscillators
and in the decision making mechanism of cell fate via p53. We explained our proposed model
in section II. The result of the large scale simulation of the model is given in section III with dis-
cussion. The conclusion based on our results is provided in section IV.

Materials and Methods

Model of cell cycle regulated by p53
We present a model which brings together p53 –MDM2 regulatory network [37] and cell cycle
[38–40] via p21 protein (Fig 1) in the light of various theoretical and experimental reports. The
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model is described briefly as follows. The main component of p53 –MDM2 regulatory network
is the feedback loop between p53 andMDM2 [37]. p53 andMDM2 interact to form p53 –
MDM2 complex with a rate constant k17 [37], followed by dissociation of the complex to its re-
spective components with a rate constant k18 [41, 42]. The transcription rate ofMDM2 gene to
itsmRNA (MDM2 –mRNA) is takes place with rate constant k20, followed by translation of
MDM2 –mRNA toMDM2 with a rate constant k22 [37, 43] and its (MDM2 –mRNA) self-deg-
radation with a rate constant k21 [44]. The ubiqiutination ofMDM2 protein occurs with rate
constant k23. The p53 synthesis is taken placed with a rate constant k16, and gets ubiquitinized
at the rate constant k19 [43]. The DNA damage in system is introduced via irradiation with an
estimated rate constant of k24 [37]. Irradiation is reported to be a major cause of DNA damage.
The severity of the DNA damage is depended on the dose of exposure of irradiation [34]. The
repair of the DNA damage is then occurred at a rate constant k25 [45, 46]. The activation of
ARF due to DNA damage takes place at a rate constant k26 [37]. Further, this activated form of
ARF interacts withMDM2 protein and forms ARF –MDM2 complex with a rate constant k27
[47]. The degradation of ARF protein is reported to occur at a rate constant k28 [48]. ARF
based degradation of theMDM2 takes place by getting targeted to the complex via proteasome
recognition with a much faster rate constant k29 than individual degradation rates [49]. The
p53, being a transcription promoting factor for many of the proteins, also transcribes the gene
responsible for the manufacture of p21 protein with a rate constant k30 as presumed by the ap-
proximations made to attain the appropriate oscillations and arrests [14, 50, 51].

The p21 protein is capable of making complex with the cell division promoting factorMPF
with a rate constant k31 [16, 18] with respect to the amount of concerned molecules present in
the system [19]. Then the inhibition ofMPF, or more appropriately G2 associated Cyclin – Cdk
complex, by p21 is approximated with a rate constant k32 [50, 52]. p21 then gets degraded by
the virtue of its half-life in the system with a rate constant k33 [18, 23]. The cyclin is assumed to
translate at the rate constant k1 [53]. Further, ubiquitin dependent cyclin degradation or prote-
ase independent degradation of the cyclin is reported to happen at a rate constant k� [54]. The

Fig 1. The schematic diagram of interaction of p53-Mdm2 reaction network cell cycle oscillator. The interaction between different molecular species
are shown with respect to their rate constant. The blue and black dots indicate creation and decay of the respective molecular species.

doi:10.1371/journal.pone.0129620.g001
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degradation of the cyclin due to effect of protease activation during cyclin accumulation and
interaction between inactive form ofMPF with cyclin takes place with a rate constant k4 [38].
Formation of activated form ofMPF (M) occurs due to interaction of cyclin with inactiveMPF
(M�) with a rate constant k�� [38, 55–57]. Further this activated form ofMPF (M) converts to
inactivated form (M�)with a rate constant k��� [55, 57]. The activated form ofMPF(M) interact
with inactive protease(X�) to generate activated form of protease (X) with a rate constant k����

[38, 58, 59]. The generation of activated form of cyclin protease (X) occurs due to interaction
of cyclin protease with inactive X� with a rate k����� [38, 55]. The activated form of protease
(X) can convert into inactive form (X�) with a rate constant k������ [38, 57]. In Fig 1, The blue
dots indicates creation and black dots indicates decay of the respective molecular species. The
lists of molecular species and biochemical reaction channels involved in this proposed model
are listed in Tables 1 and 2 respectively.

The biochemical reaction network shown in Fig 1 are represented by the twenty five reac-
tion channels listed in Table 2, which are participated by thirteen molecular species (Table 1)
defined by a vector at any instant of time t, x(t) = {x1(t), x2(t), . . ., xN(t)}

T, where, T is the trans-
pose of the vector and N = 13. The variables are the concentrations of the molecular species.
The time evolution of these variables can be translated from the twenty five reaction channels
into the following set of nonlinear ordinary differential equations (ODE) based on Mass action
law of chemical kinetics,

dx1
dt

¼ k1 �
k2x1x3
k3 þ x1

� k4x1

dx2
dt

¼ k5ð1� x2Þ
x6 þ ð1� x2Þ

� k7x2
k8x2

� k31x12x2

dx3
dt

¼ k9ð1� x3Þ
k10 þ ð1� x3Þ

� k11x3
k12 þ x3

dx4
dt

¼ k16 þ k18x6 � k17x4x5

dx5
dt

¼ k22x7 þ k19x6 þ k18x6 � k23x5 � k17x5x4

�k27x5x8
dx6
dt

¼ k17x4x5 � k18x6 � k19x6

dx7
dt

¼ k20x4 � k21x7

dx8
dt

¼ k26x11 þ k29x9 � k27x5x8 � k28x8

dx9
dt

¼ k27x5x8 � k29x9

dx10
dt

¼ �k24x10

dx11
dt

¼ k24x10 � k25x11

dx12
dt

¼ k30x4 � k31x2x12 þ k32x13 � k33x12

dx13
dt

¼ k31x12x2 � k32x13
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where, the expressions forM� and X� in the Fig 1 are given by,M� = 1-x10 and X� = 1-x11.
The set of coupled ODEs can be solved using Runge Kutta method of standard numerical inte-
gration algorithm [60].

Results and Discussion
We numerically simulate the proposed model and the results demonstrate new phenomena in
bifurcation diagram which may be significant to correlate with various experimental situations.
The interaction of p53 regulatory network and cell cycle network highlights different form of
signal processing between non-identical networks which could be the way of regulating one an-
other. We study the complicated way of this interaction in order to understand some of the
basic mechanisms of network interaction.

Dynamics of p53 driven by irradiation
We first present the spatio-temporal behaviour of p53 upon exposure of irradiation in Fig 2.
The p53 dynamics maintains minimum concentration level at IR = 0 (normal condition). As IR
dose increases p53 start showing damped oscillatory behaviour (Fig 2 second and third panels)
indicating stressed behaviour of p53. The increase in IR dose induces increase in time to attain
stability of p53 dynamics (amplitude death) indicating increase in unstability of p53 dynamics
(Fig 2 third panel). This could be due to the fact that the increase in IR dose may cause high
DNA damage leading to more stress in p53.

However, if the IR dose is comparatively strong (IR = 5), the damage within the DNA is also
high which may cause the collapse of the p53 oscillatory behaviour (Fig 2 fourth panel) and
then repaired back the DNA damage to come back to p53 oscillatory condition. We also found
that the time of collapse (Δt) increases as IR dose increases (Fig 2 fifth panel) and it becomes
difficult to repair back the DNA damage. In general p53 will collapse forever and will not be re-
covered back if Δt!1 (probable case of apoptosis). However, in real situation, one probably
can define a critical Δtc such that, if ΔthΔtc, p53 could come back after DNA repair, and other-
wise it will go to apoptosis. Nevertheless, it is very difficult to find out this Δtc.

Similarly, we also present the plots of temporal variation of the concentration ofMDM2 due
to exposure of irradiation in right panels of Fig 2. We observed similar kind of behaviour as

Table 1. List of molecular species.

S.No. Species Name Description Notation

1. Cyclin Unbounded Cyclin protein x1
2. MPF Maturation promotion factor x2
3. Cyclin – Protease Unbounded Cyclin Protease x3
4. p53 Unbounded p53 protein x4
5. Mdm2 Unbounded Mdm2 protein x4
6. Mdm2_p53 Mdm2 with p53 complex x6
7. Mdm2_mRNA Mdm2 messenger mRNA x7
8. ARF Unbounded ARF protein x8
9. ARF_Mdm2 ARF_Mdm2 complex x9
10. IR Irradiation x10
11. DamDNA Damaged DNA x11
12. p21 p21 protein x12
13. p21_M p21 and M complex x13

doi:10.1371/journal.pone.0129620.t001
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Table 2. List of Chemical Reactions, Rate constants and their values.

S.No. Biochemical
reaction

Description Rate Constant Values of Rate Constant Ref.

1 � !k1 x1 Synthesis of Cyclin k1 0.000416667 × 10−2 sec−1 [38–40]

2 x1 !k
�
� Decay of Cyclin k�hx1i;where; k� ¼ k2x1x3

k3þx1
k2 = 0.004166667sec−1, k3 =
0.02sec−1

[38, 54]

3 x1 !k4 � Cyclin decay k4hx1i 0.0000167sec−1 [38]

4 � !k�� x2 Creation of MPF k��;where; k�� ¼ k5ð1�x2Þ
k6þð1�x2Þ ; k5 ¼

k14x1
k13þx1

k6 = 0.01, k13 = 0.5, k14 =
0.00sec−1

[16, 38,
57]

5 x2 !k
���

� Decay of MPF k���hx2i;where; k��� ¼ k7x2
k8x2

k7 = 0.0025sec−1, k8 = 0.01sec−1 [16, 55,
57]

6 x2 þ x12 !k31 x13 Formation of MPF_p21
complex

k31hx2ihx12i 0.0001mol−1 sec−1 [16, 18,
19]

7 � !k7 x3 Activation of protease molecule k����;where; k���� ¼ k9ð1�x3Þ
k10þð1�x3Þ ; k9 ¼ x2k15 k10 = 0.01, k15 = 0.001667 [38, 58,

59]

8 x3 !k
�����

� Inactivation of protease
molecule

k�����hx3i;where; k����� ¼ k11x3
k12þx3

k11 = 0.0008333, k12 = 0.01 [38, 57]

9 � !k16 x4 creation of p53 k16 0.078 [37, 42,
43]

10 x4 þ x5 !k17 x6 synthesis of p53_MDM2
complex

k17hx4ihx5i 1.155 × 10−3 mol−1 sec−1 [37, 42]

11 x6 !k18 x4 þ x5 Dissociation of p53_MDM2
complex

k18hx6i 1.155 × 10−5 sec−1 [37, 41,
42]

12 x6 !k19 x5 ubiquitination of p53 k19hx6i 8.25 × 10−4 sec−1 [37, 42,
43]

13 x4 !k20 x4 þ x7 creation of MDM2_mRNA k20hx4i 1.0 × 10−4 sec−1 [37, 42,
44]

14 x7 !k21 � decay of MDM2_mRNA k21hx7i 1.0 × 10−4 sec−1 [37, 42,
44]

15 x7 !k22 x5 þ x7 synthesis of MDM2 k22hx7i 4.95 × 10−4 sec−1 [37, 42,
43]

15 x5 !k23 � decay of MDM2 k23hx5i 4.33 × 10−4 sec−1 [37, 42,
43]

16 x10 !k24 x11 creation of DNA damage k24hx10i 1.0sec−1 [37, 45]

17 x11 !k25 � recovery of damaged DNA k25hx11i 2.0 × 10−5 sec−1 [37, 46]

18 x11 !k26 x8 Activation of ARF k26hx11i 3.3 × 10−5 sec−1 [37]

19 x5 þ x8 !k27 x9 synthesis of MDM2_ARF
complex

k27hx5ihx8i 0.01mol−1 sec−1 [37, 47]

20 x8 !k28 � decay of ARF k28hx9ihx8i 0.001sec−1 [37, 48]

21 x9 !k29 x8 degradation of MDM2 k29hx9i 0.001sec−1 [37, 49]

22 x4 !k30 x4 þ x12 synthesis of p21 k30hx4i 0.001sec−1 [14, 50,
51]

23 x2 þ x12 !k30 x13 synthesis of p21_MPF
complex

k31hx4i 0.0001sec−1 [14, 50,
51]

24 x13 !k32 x12 dissociation of p21_MPF
complex

k32hx13i 0.002sec−1 [16, 18,
50]

25 x12 !k33 � decay of p21 complex k33hx12i 0.005sec−1 [16, 50]

doi:10.1371/journal.pone.0129620.t002
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obtained in case of p53 protein dynamics. This is probably due to intercorrelation between p53
andMDM2 in the system via feedback mechanism. It is also noted that corresponding varia-
tions in the behaviours of both p53 andMDM2 (as observed by comparing panels in Fig 2) are
due to their positive as well as negative feedback regulations prescribed to them.

Phase diagram of p53 compelled by IR
We simulate the maxima of p53 amplitudes after removing the transients as a function of IR
(Fig 3) to capture the different phases namely oscillation and oscillation death regimes. The be-
haviour of Δt as a function of IR follows the functional form Dt ¼ A

Bþe�IR with the values of

A = 6778 and B = 0.00887 (fitting values of the function to the data) (Fig 3 inset). The separa-
tion between two phases oscillation death and oscillating regimes are clearly visible after the
IR* 3.45 and Δt increases as IR increases.

Generally as Δt!1 when IR!1, but numerically we approximately found that after IR
= Rc* 11 Δt become Δtc* 79 hours and becomes constant (Fig 3 inset). This means that for
any ΔthΔtc, the p53 can able to recover back to normal stable state by repairing DNA damage,
otherwise, the system can’t able to come back to normal state, but will go to apoptosis.

Fig 2. Plot shows the temporal variation in the concentration and oscillatory pattern of p53 protein due to the effect of various exposure of IR (Gy)
i.e (0,0.1,1,5,10) in left panels. Similarly, temporal variation in the concentration and oscillatory pattern ofMDM2 protein due to the effect of various
exposure of IR (Gy) i.e (0,0.1,1,5,10) are shown in right panels.

doi:10.1371/journal.pone.0129620.g002
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Bifurcation in Cyclin regulated by p53
Since cell cycle and p53 regulatory networks are interacted through p21 (Fig 1), the temporal
behaviour of cyclin can be regulated by p53 via IR and p21. When IR = 0, the two networks
work in normal condition, leaving p53 dynamics at low level (stabilized state) (Fig 2 upper
panel) and sustain oscillation in cyclin dynamics (Fig 4 upper left panel). As IR increases, p53
will get activated through DNA damage giving oscillatory behaviour affecting the dynamics of
cyclin. When IR = 0.1, the cyclin dynamics shows chaotic behaviour upto t = 145 hours, and
then the dynamics becomes sustain oscillation (Fig 4 second left panel and upper right panel).
The chaotic behaviour in cyclin dynamics could due to the sudden activation in p53 dynamics
due to IR irradiation.

Now as IR increases (IR = 0.5), we get various situations in the cyclin dynamics, namely, the
emergence of period two (for t* [10–40] hours), period 3 (for t* [40–85] hours), chaotic re-
gime (for t* [85–175] hours) and sustain oscillation regime (for ti175 hours) (Fig 4 second
right upper panel). Further, as IR increases the emergence of oscillation death regime started to
exist in the cyclin dynamics (Fig 4 fourth right panel onwards) and the oscillation death regime
become larger. Further increase in IR compels the period 2 and 3 regimes to vanish after some
value of IR (IRi9) and the chaotic regime becomes larger.

The perturbation induced by p53 through IR to the cyclin via p21 clearly induces cyclin dy-
namics to various states shown by the bifurcation diagram (Fig 4 right panels). We also notice
that as one decrease or increase to cross over to sustain oscillation, the state just before it is

Fig 3. Plot for showing the impact of IR on p53maxima.Different p53 maxima observed at different values of IR (Gy) with respect to time. The p53
maxima verses IR dose is shown at left hand side inset and also IR dose verses time is shown in right hand inset.

doi:10.1371/journal.pone.0129620.g003
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chaotic regime. The emergence of oscillation death regime starts from IRi3 and then switches
to sustain oscillation after sometime. This oscillation death regime corresponds to the collapse
time due to strong sudden DNA damage. Once the DNA damage is recovered it comes back to
sustain oscillation. If the IR is very large then oscillation death regime is large enough that
DNA damage can not be repaired back halting the cell cycle permanantly and goes to
apoptosis.

Dynamics ofMPF regulated by p53
We present the temporal behaviour ofMPF regulated by p53 as a function of IR (Fig 5) which
induces at different states inMPF shown by bifurcation diagrams. The impact upon theMPF
due to p53 via IR is not a direct phenomenon but through p21 molecule in the network. Vari-
ous studies reported that p21 directly interact with cyclin dependent kinases, which has very
important role in the formation of maturation promoting factor (MPF). The interaction of p21
with cdk leads to less availability of cdk due to the formation ofMPF. Moreover, various

Fig 4. Plot shows the temporal variation in the oscillatory pattern of cyclin due to the effect of various exposure of IR (Gy) i.e (0,0.1,1,5,10) at left
side panels and their corresponding bifurcation diagram are shown at right panels.

doi:10.1371/journal.pone.0129620.g004
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experimental results also reported that p21 directly interacts withMPF [16, 18]. It is observed
that an IR = 0, theMPF dynamics shows sustain oscillatory behaviour indicating no impact of
p53. Further, as IR dose increases the oscillatory behaviour ofMPF is abruptly changed induc-
ing different states ofMPF as we obtained in the case of cyclin. The increases in IR dose induce
different states oscillation death, period 1, 2, 3, chaotic and sustain oscillation regimes indicated
by the bifurcation diagram for various IR values. Moreover, as IR increases the width of oscilla-
tion death [16] regime also increases and if IR is not strong enough the DNA can able to repair
back otherwise the system will go to apoptosis.

Bifurcation inMPF and Cyclin
We study the regulation of cell cycle dynamics by p53 via IR. The maxima values ofMPF
(MPFM) and cyclin (CycM) as a function of IR are calculated for a range of time in the range [0,
50] hours (Fig 6). It is observed that for low IR dose,MPFM exhibits chaotic behaviour. Howe-
over, if IR dose is comparatively high,MPFM becomes almost constant. If the value of IR is

Fig 5. Plot shows the temporal variation in the oscillatory pattern of MPF(Maturation Promoting Factor) due to the effect of various exposure of IR
(Gy) i.e (0,0.1,1,5,10) at left side panels and their corresponding bifurcation diagram are shown at right panels.

doi:10.1371/journal.pone.0129620.g005
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Fig 6. Plot shows the impact of various IR dose (in Gy) on MPFmaxima (at upper panel) as well as
Cyclin maxima (at lower panel).

doi:10.1371/journal.pone.0129620.g006
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moderate, period 1, 2, 3 etc are exhibited in the bifurcation diagram. This indicates thatMPFM
is p53 dependent via IR and p53 controls theMPFM behaviour in the system.

Similarly, one can also observe the IR dependent maxima of cyclin CycM in the bifurcation
diagram (Fig 6 lower panel). The moderate values of IR induce different periods in CycM. Ex-
cess values of IR show different behaviour in CycM.

Conclusion
We study the way how p53, one of the largest hubs in cellular network, regulates and controls
cell cycle dynamics. We studied the behaviour of different molecules which are highly involved
in the checking of cell cycle at G2 phase driven by p53 via IR. The simulation results of the
model provided us to understand the biological phenomenon and mechanism of cell cycle ar-
rest due to DNA damage faced by the cell due to the irradiation. The results we got are closely
in agreement with the previous experimental reports [16, 17]. Our study suggests that the tem-
poral dynamics of molecular species involved in cell cycle, considered in the model, are con-
trolled by p53. The role of p21 protein in the delay of G2 phase was considered as a cross-talk
between p53 regulatory network and cell cycle. The sudden irradiation to the system with high
dose induces collapse of the system due to DNA damage, leading to cell cycle arrest. The cell
cycle is resumed again to normal situation by repairing back the DNA damage. Moreover, the
time of recovery from cell cycle arrest and then resumption of oscillation depends on the
amount of dose of IR exposed to the system.

During the process of regulation of cell cyle by p53 via IR we observed the emergence of dif-
ferent periods (1, 2, 3 etc) in the bifurcation diagram of oscillatory dynamics of cell cycle vari-
ables (MPFM and CycM) which may have various information of certain biological significance.
Further, the dynamics of these variables switched to various states, namely, chaotic, oscillation
death (stabilized state), bifurcating to various periods of oscillation and sustain oscillation
states during the process of time evolution. These states could be the different phases of the
variables to self-recover back to its normal condition from the sudden stress given to the sys-
tem. However, how these complicated states are used by the system dynamics when the system
is perturbed need to be investigated further.

The study also demonstrates the mechanism of cell cycle arrest induced by perturbed p53
via IR indicated by collapse of the oscillation (oscillation death) for certain interval of time
(Δt). This collapse time is a function of strength of the perturbation imparted to the system.
Our study shows that there is a minimum value of IR = Rc, below which the system comes back
to its normal state, otherwise the system will go to apoptosis. Our findings will probably be use-
ful for the further study on the impact of p53 on cell cycle checking at G2 phase and related
dynamics.
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