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Abstract: Clear cell renal cell carcinoma (ccRCC) is the most common type of renal carcinoma. It is
particularly important to accurately judge the prognosis of patients. Since most tumor prediction
models depend on the specific expression level of related genes, a better model therefore needs
to be constructed. To provide an immune-related lncRNA (irlncRNAs) tumor prognosis model
that is independent of the specific gene expression levels, we first downloaded and sorted out the
data on ccRCC in the TCGA database and screened irlncRNAs using co-expression analysis and
then obtained the differently expressed irlncRNA (DEirlncRNA) pairs by means of univariate anal-
ysis. In addition, we modified LASSO penalized regression. Subsequently, the ROC curve was
drawn, and we compared the area under the curve, calculated the Akaike information standard
value of the 5-year receiver operating characteristic curve, and determined the cut-off point to es-
tablish the best model to distinguish the high- or low-disease-risk group of ccRCC. Subsequently,
we reassessed the model from the perspectives of survival, clinic-pathological characteristics, tumor-
infiltrating immune cells, chemotherapeutics efficacy, and immunosuppressed biomarkers. A total
of 17 DEirlncRNAs pairs (AL031710.1|AC104984.5, AC020907.4|AC127-24.4,AC091185.1|AC005104.1,
AL513218.1|AC079015.1, AC104564.3|HOXB-AS3, AC003070.1|LINC01355, SEMA6A-AS1|CR936218.1,
AL513327.1|AS005785.1, AC084876.1|AC009704.2, IGFL2-AS1|PRDM16-DT, AC011462.4|MMP25-
AS1, AL662844.3I|TGB2-AS1, ARHGAP27P1|AC116914.2, AC093788.1|AC007098.1, MCF2L-AS1|
AC093001.1, SMIM25|AC008870.2, and AC027796.4|LINC00893) were identified, all of which were
included in the Cox regression model. Using the cut-off point, we can better distinguish patients
according to different factors, such as survival status, invasive clinic-pathological features, tumor
immune infiltration, whether they are sensitive to chemotherapy or not, and expression of immuno-
suppressive biomarkers. We constructed the irlncRNA model by means of pairing, which can better
eliminate the dependence on the expression level of the target genes. In other words, the signa-
ture established by pairing irlncRNA regardless of expression levels showed promising clinical
prediction value.

Keywords: immune; ccRCC; lncRNA; prognosis; bioinformatics

1. Introduction

Clear cell renal cell carcinoma is one of the most common pathological types of renal
cell carcinoma (RCC). Along with the increase in physical examination rate and detection
methods, the incidence rate is increasing and its mortality rate is still high [1]. At present,
the first line of treatments in a clinical setting is partial or radical nephrectomy for patients
with stage I or II ccRCC, and a combination of targeted therapy and/or immunotherapy
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for those with stage III or IV [2]. It is well-known that gene mutation is one of the initial
factors of tumors. In ccRCC, more than 70% of patients were found to have the VHL gene
mutation in gene testing [3]. Loss of VHL function can induce hypoxia inducible factors,
such as increasing the HIF-1α or HIF-2α increased expression level [4], and through its
nuclear transcription factor function, it leads to the abnormal transcription and expression
of downstream genes such as VEGF, PDGF, TGF-β, etc. [5]. Therefore, many TKIs and
monoclonal antibodies inhibiting VEGFR are used to treat ccRCC patients as first-line
drugs, such as sunitinib and sorafenib, etc. [6]. Since a high level of immune cell infiltration
was found in ccRCC tissues, the immune sensitivity of ccRCC was further verified by
immunological therapy [7]. It is noteworthy that both the INF-α and IL-2 or immune
checkpoint inhibitors (ICI) such as PD-1/PD-L1 blockers can significantly improve the
overall survival rate (OS) of patients with ccRCC [8]. Recently, the technique of using PD-
1/PD-L1 monoclonal antibodies combined with vascular targeted therapy has attracted the
attention of many researchers, and it has been demonstrated to be effective in prolonging
OS in patients with ccRCC [9]. However, a great deal of research has shown that expression
of PD-L1 on the membranes of cancer cells is not an indicator of the clinical outcomes
of immunotherapy for ccRCC patients [10], which poses uncertainty regarding when
or which immunotherapy drugs should be used. Therefore, it is particularly important
to find effective and accurate biological markers to help formulate an individualized
treatment schedule.

In recent decades, the emergence of long noncoding RNAs (lncRNAs), a type of
RNA strand with nucleotide sequences longer than 200 bases, has received more and
more attention [11]. The production method of lncRNAs is similar to that of coding
genes and includes a variety of regulatory pathways, such as histone modification and
alternative splicing, etc. [12]. Because there is no effective open reading frame, it does
not encode any protein [13]. However, this does not affect its biological functions as
mRNA or protein expression regulator, the latter including DNA transcription regulation,
post transcriptional modification, protein translation, and even participation in epigenetic
modification [14]. Therefore, lncRNA is considered to play an indispensable role in the
physiology and pathology of organisms, especially in cancer [15]. Recently, increasing
evidence has indicated that lncRNAs are involved in the entire progression of ccRCC via
a variety of molecular mechanisms, such as alterations of the genomic, transcriptomic,
and tumoral immune microenvironment (TIME) [16]. According to reports, the biological
markers of a risk model constructed based on the expression of lncRNAs have been
demonstrated to predict the OS of patients with cancer, including ccRCC [17].

As immunotherapy, which is a common treatment that is administered in clinical
settings to patients with tumors, provides ongoing benefits, signatures that can be used
to predict the outcomes of the treatment are receiving increasing focus [18]. For example,
signatures such as the infiltration score of immune cells and the expression of immune
checkpoints and immune-related genes, etc., have been investigated and reported [19]. In
recent studies, immune-related lncRNAs (irlncRNAs) were also considered to establish
a signature to predict the prognosis of patients with cancer, for example, hepatocellular
cancer [20], gastric cancer [21], pancreatic cancer [22], and even ccRCC [23]. However,
these previous characteristics depend on the risk score based on the expression of relevant
lncRNAs. Recently, Hong W constructed a novel signature independent of the expression of
irlncRNAs in HCC, which was used to predict the prognosis of patients and its correlation
with tumor-infiltrating immune cells [24]. However, the application prospects in ccRCC
remain to be further studied.

In this study, we utilized a novel modeling algorithm using pairing and iteration to
construct an irlncRNA signature that did not require any specific expression levels. Then,
we estimated its predictive value among patients with KIRC, as well as its diagnostic
effectiveness, chemotherapeutic efficacy, and tumor immune infiltration.
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2. Result
2.1. Screening of Differential Expression of irlncRNA

We conducted this study in accordance with the following steps. First, we obtained
the transcriptome expression profile data of KIRC (as known as ccRCC) from the TCGA
database, including 72 normal and 539 tumor samples. Next, we annotated the date accord-
ing to gene transfer format (GTF) files from Ensembl to convert the gene ID into gene sym-
bols. Soon afterwards, we carried out a co-expression analysis among lncRNAs and known
immune-related genes. Finally, we obtained 433 irlncRNAs (correlation coefficient = 0.7,
p < 0.001, shown in Supplementary Materials S1—irlncRNAs), and 90 were considered as
DEirlncRNAs (FDR = 0.001, logFC = 2, Figure 1A), including 74 which were upregulated
and 16 which were downregulated (Figure 1B, Supplementary Materials S2—DEirlncRNAs).
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2.2. Identification of DEirlncRNA Pairs and a Risk Assessment Model

To obtain the DEirlncRNA pairs, we screened the matrix among 90 DEirlncRNA
through an iteration loop and a 0-or-1 method. Finally, we obtained 2667 DEirlncRNA
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pairs (Supplementary Materials S3—DEirlncRNAs pairs). Then, a single-factor analysis
was performed, followed by modified LASSO regression analysis; 369 DEirlncRNA pairs
were identified, among which 17 were included in the Cox proportional hazard model
(Figure 1C). After that, the ROC curve of 17 pairs was drawn, showing that the area under
the curve (AUCs) was 0.792 (Figure 2A). To validate our results, we plotted the 1-, 3-,
and 5-year ROC curves, respectively, which showed that all of the AUC values were over
0.792 (Figure 2B), and then the 5-year ROC curves were compared with other clinical
characteristics (Figure 2C). We recognized the maximum inflection point as the cut-off point
on the 5-year ROC curve using the Akaike information criterion (AIC) values (Figure 2D).
We collected data of 526 acceptable cases of patients with KIRC from TCGA and calculated
the risk scores for all of them. We used the identified cut-off point to re-distinguish high-
and low-risk groups in the cohort for validation.
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Figure 2. Construction of a risk assessment model using DEirlncRNA pairs. (A) The ROC of the
optimal DEirlncRNA pair model. (B) The 1-, 3-, and 5-year ROC of the optimal model suggested that
all AUC values were over 0.792. (C) A comparison of 5-year ROC curves with other common clinical
characteristics showed the superiority of the riskScore. (D) RiskScore for 539 patients with KIRC; the
maximum inflection point is the cut-off point obtained by the AIC.
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2.3. Application of Risk Models in Clinical Evaluation

On the basis of the above cut-off point, 273 cases were assigned into the low-risk
group and 253 cases were assign to the high-risk group. Figure 3A,B show the risk scores
and survival of each case. These results suggest that patients in the low-risk group have
a better clinical prognosis. Kaplan–Meier analysis further confirmed the above results
(p < 0.0001) (Figure 3C). Then, we analyzed the relationship between the risk of KIRC
and clinicopathological features using a chi-square test. The strip chart (Figure 4A) and
consequent scatter diagrams obtained by the Wilcoxon signed-rank test showed that age
(Figure 4B), tumor grade (Figure 4C), clinical stage (Figure 4D), T stage (Figure 4E), N stage
(Figure 4F), and M stage (Figure 4G) were significantly related to the risk, while gender
was not (Figure 4H). Then, through the univariate Cox regression analysis, we found that
age (p < 0.001, HR = 1.029, 95% CI [1.016–1.043]), clinical grade (p < 0.001, HR = 2.286, 95%
CI [1.862–2.807]), clinical stage (p < 0.001, HR = 1.897, 95% CI [1.660–2.167]), and risk score
(p < 0.001, HR = 1.270, 95% CI [1.229–1.312]) had significant statistical differences (Figure 4I),
whereas in the multivariate Cox regression analysis, risk score (p < 0.001, HR = 1.197, 95%
CI [1.152–1.245]) was an independent prognostic predictor (Figure 4J). Table S1 shown the
specific results of univariate and multivariate Cox regression analyses.
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2.4. Risk Assessment Model of Tumor-Infiltrating Immune Cells and Immunosuppressive Molecules

Since lncRNAs and immune-related genes were initially linked together, we studied
whether this model was related to the tumor immune microenvironment. Our study
demonstrated that the high-risk groups have a higher correlation with tumor-infiltrating
immune cells such as Myeloid dendritic cells, NK cells, CD4+ Th1, and T cell NK, whereas
they were negatively associated with hematopoietic stem cells, macrophages, and resting
memory CD4+ cells, as revealed by the Wilcoxon signed-rank test (see Figure S1). Then, we
conducted a Spearman correlation analysis, and the resulting diagram shows a lollipop
shape (Figure 5A, Table S2). It is well-known that ICIs plays an important role in the
treatment of ccRCC; we investigated whether the risk model was related to ICI-related
biomarkers and discovered that high risk scores were positively correlated with a high
expression of PDCD1 (p < 0.001, Figure 5B) and CTLA4 (p < 0.001, Figure 5C). However,
they were negatively correlated with a low expression of EGFR (p < 0.001, Figure 5D),
MTOR (p < 0.001, Figure 5E), FLT3 (p < 0.01, Figure 5F), and CD274 (p < 0.05, Figure 5G).
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Figure 5. Evaluation of tumor immune cells and immunosuppressive molecules using the risk
assessment model. (A) Spearman correlation analysis showed the correlation between patients in the
high- or low-risk group and immune cells. (B,C) High risk scores were positively correlated with
upregulated (B) PDCD1 and (C) CD274; (D–F) high risk scores were negatively correlated with low
expression of (D) EGFR, (E) MTOR, (F) FLT3, and (G) CD274 levels in patients with KIRC. * p < 0.05;
** p < 0.01; *** p < 0.001.

2.5. Correlation Analysis between Risk Model and Chemotherapy Drugs

Excluding checkpoint blockade therapy, we sought to determine the association be-
tween the risk and efficacy of conventional chemotherapy for KIRC in the TCGA project
using the KIRC dataset. We discovered that there is an inverse ratio between the risk
score and the half inhibitory concentration (IC50) of chemotherapy agents, for instance,
cisplation (p = 0.01), paclitaxel (p < 0.001), KU.55933 (p < 0.001), sunitinib (p < 0.001) and
gefitinib (p = 0.022) (Figure 6A–E), which showed that the model can be used as a potential
predictor of chemosensitivity. However, sorafenib (p = 0.74) (Figure 6F, Table S3) was not
statistically significant.
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model acted as a potential predictor for chemosensitivity, as high−risk scores were related to a lower
IC 50 for chemotherapeutics such as (A) cisplatin, (B) paclitaxel, (C) KU.55933, (D) sunitinib, and
(E) gefitinib. However, (F) sorafenib was not statistically significant.

3. Discussion

Along with the rapid development of genomics, an increasing number of genes, in-
cluding coding genes and lncRNAs, are regarded as novel biomarkers to assist clinicians to
formulate therapeutic schedules and evaluate the clinical outcomes of ccRCC patients after
different treatments such as surgical operation, targeted therapy, and/or immunological
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therapy [25]. A recent study suggested that coding genes may be a promising prognostic
biomarker of ccRCC because there is a significant positive correlation between their expres-
sion and the low survival of ccRCC patients [26]. Meanwhile, other studies pointed out that
lncRNAs may act as novel biomarkers for ccRCC diagnosis [27], prognosis [28], and even in
targeted therapy [29] and immunological therapy [30]. Previous studies usually explored
the TIME and the curative effect of immunotherapy treatment via the signatures established
by immune-related genes (irGs) and irlncRNAs. Recently, a study proposed, for the first
time, a novel signature based on the irlncRNAs pairs to predict the prognosis of patients
with HCC [24], along with lung adenocarcinoma [31,32] and colon adenocarcinoma [33].
We are the first to explore the prospects of this novel model in ccRCC.

In this study, we extracted the expression data of ir-genes and lncRNAs from TCGA
database and further obtained 90 DEirlncRNAs, including 74 which were upregulated
and 16 which were downregulated, from 433 irLncRNAs by performing a differential
co-expression analysis (Figure 2). Then, 17 lncRNA pairs, identified by an iteration loop
and the 0-or-1 method from 2667 pairs, were applied to create the ROC curve, and in this
way we obtained the most ideal pairs. Third, these results were further validated by the
1-, 3-, and 5-year ROC curves and 5-year clinical ROC curves with clinical characteristics,
and then, the best cut-off point was determined according to the maximum AUC value
(Figure 3). Finally, we established a risk model according to the cut-off point and divided
526 patients with ccRCC into the high (n = 253) and low-risk group (n = 273) and analyzed
the relationship between the risk score and the overall survival (OS) of patients and clinical
pathological characteristics, respectively (Figures 4 and 5). These results revealed that the
high-risk subgroups with ccRCC possessed worse OS compared to the low-risk subgroups,
as well as higher grades and T- and M-stages, implying the effectiveness of the novel model
and the usefulness of the significant irlncRNA pairs as the prognostic biomarker.

Previous research on lncRNAs as biomarkers is mainly divided into two areas. One is
concentrated in a single abnormally expressed lncRNA, considering that it may potentially
participate in the molecular mechanism of renal clear cell carcinogenesis and development.
For example, Hong et al. considered that lncRNA HOTAIR may pass through the mir-
217/HIF-1α/Axl signaling pathway, promoting the occurrence of ccRCC [34]. Hirata et al.
considered that lncRNA MALAT1 promotes the invasiveness of ccRCC through the miR-
205/EZH2 axis [35]. Dong et al. pointed out that lncRNA GAS5 may act as a competitive
endogenous RNA (ceRNA) in competitive binding with miR-223 and indirectly regulate
hZIP1, so as to regulate the progression of ccRCC [36]. Gang Wang et al. demonstrated
that lncRNA OTUD6B-AS1 not only indicates poor prognosis but also inhibits ccRCC
proliferation via the Wnt/β-catenin signaling pathway [37]. The other category pays more
attention to multiple abnormally expressed lncRNAs, believing that their combination may
better improve the predictive value of OS in ccRCC. For instance, Zeng et al. exploited a
risk model according to the expression of six novel lncRNAs (CTD-2263F21.1, LINC01510,
CTA-384D8.35, RP11-395B7.2, RP11-352G9.1, and RP11-426C22.4), which showed advan-
tageous prognostic value for ccRCC [38]. Qu et al. constructed a classifier based on the
expression of four lncRNAs (ENSG00000255774, ENSG00000248323, ENSG00000260911,
and ENSG00000231666), which has magnificent potential for predicting the OS of patients
with stage I-III ccRCC [39]. However, as previously mentioned, the efficiency of these
markers based on lncRNA is mainly affected by their own expression levels. To circumvent
this limitation, we performed a novel risk model dependent on the 17 irlncRNAs pairs
obtained through the iteration loop, 0-or-1 method, and LASSO regression analysis, of
which the critical value was acquired according to the cut-off point and implemented to
divide patients into different risk groups. This novel model was not only independent of the
expression level of irlncRNAs, but also did not distinguish risk groups just by the median
value of the risk score. Additionally, we found that the model had the advantage of clinical
applicability by analyzing the relationship between risk subgroups and clinicopathological
characteristics in ccRCC.
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Some studies have shown the potential function of lncRNAs to regulate the TIME in
ccRCC [40]. For instance, lncRNA MIR155HG is thought to be associated with immune
checkpoint expression and immune cell infiltration in ccRCC [41]. Furthermore, an increas-
ing number of irlncRNAs are used in the promising and important prognosis prediction
of ccRCC patients, including the potential clinical value of immunotherapy [42,43]. For
instance, Zhong et al. suggested that 14 irlncRNAs are a prognostic signature to evaluate
the OS of ccRCC patients because of their relationship to the level of immune cell infiltra-
tion [44]. Therefore, considering that the targeted genes in this study were the irlncRNAs
pairs, we consequently investigated the features of TIME in high/risk subgroups with
ccRCC produced based on the risk model. First, we estimated the immune cell infiltration
in high-risk subgroups using seven pieces of software and found that most types of immune
cells prefer to infiltrate in subgroups with high risk (Figure 6) (which was consistent with
previous research results [45]), indicating that more numerous immune cells infiltrate into
the tumor tissue of patients with more advanced ccRCC whether they are immune killer
cells (such as CD8+ T cell) or immunosuppressive cells (such as regulatory T cell). Mean-
while, we discovered that the classical immune checkpoint genes including PD-1 (PDCD1)
and PD-L1 (CD274) were present at a higher level in subgroups with high risk, which
hinted that immune cells infiltrating into tumor tissue may lose their immunogenicity,
resulting in the appearance of immunosuppression. As Braun DA argued, not all immune
killer cells infiltrating into ccRCC can fulfill effective lethality [46]. In addition, the model
also suggested that subgroups with high risk were non-sensitive to chemotherapeutics and
targeted therapeutics, which reflected the characteristics of ccRCC patients with regard to
drugs, consistent with this phenomenon in clinical settings.

In addition, our research still has a few limitations, similar to the previous studies.
First of all, the deviation of the consequences can not be ignored because all of the data were
obtained from public resources using the public R package. Second, there are currently
no ccRCC samples for the treatment of immunotherapy drugs in the TCGA database, so
the novel model can not reflect the sensitivity of ccRCC patients to immunotherapy drugs.
Finally, the 14 significant irlncRNAs pairs based on the risk model lacked clinical data
validation due to all of the data being obtained from public databases; this will be solved
in the future by recollecting ccRCC samples in clinical settings and further verifying the
validity of these signatures.

In conclusion, this study demonstrated that a novel signature constructed in irlncR-
NAs and that does not require the prediction of lncRNA expression levels could predict
prognosis for patients with KIRC and might help in distinguishing those who could benefit
from anti-tumor immunotherapy.

4. Materials and Methods
4.1. Obtained, Sorted, and Differential Expression Analysis of Transcriptome Data

First, we obtained the KIRC transcriptome data from the TCGA database, which is
consistent with fragment perkilobase million (FPKM). Next, for follow-up analysis, we
gained the GTF files from the Ensemble database to distinguish between lncRNA and
mRNA. After that, the known immune-related genes (ir-genes) were downloaded from
ImmPort database (http://www.immport.org, accessed on 14 Febrary 2022) to facilitate
the screening of immune-related lncRNA through co-expression methods. Finally, we
performed a co-expression analysis between all lncRNA and ir-genes. The lncRNAas with
a correlation coefficient greater than 0.7 and a p value less than 0.001 were assigned as
irlncRNAs. We used R-package limma to analyze the differential expression of irlncRNAs
to obtain DEirlncRNA. The thresholds were set to log fold change (FC) >2 and the false
discovery rate (FDR) <0.001.

4.2. Construction of DEirlncRNAs Pairs

The DEirlncRNAs were cyclically singly paired. In short, we divided the expression of
lncRNA-A by lncRNA-B to obtain the coefficient C. If C was greater than 1, it was marked

http://www.immport.org
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as 1, and otherwise it was 0, and so we could obtain a 0-or-1 matrix. Then, we further
analyzed the matrix. No relationship was considered between pairs and prognosis if the
expression quantity of lncRNA pairs was 0 or 1 because pairs without a certain rank could
not properly predict patient survival outcome. It was considered a valid match if the
amount of lncRNA pairs with 0 or 1 expression represented more than 20% of all the pairs.

4.3. Acquisition of Patients’ Clinical Data

We downloaded the clinical data of KIRC patients from the TCGA database. The valid
data were obtained by deleting data with a follow-up time of 0 days, as well as duplicates.

4.4. Construct of a Risk Model for Assessment of the Risk Score

First, univariate analysis was performed, followed by 10-fold cross-validation of
LASSO regression, with a p value of 0.05. LASSO regression was performed for 1000 cycles,
and 1000 times random stimulations were set in each cycle. Next, we recorded the frequency
of each pair in the 1000-times-repeated LASSO regression model, and pairs with a frequency
of more than 100 times were selected for Cox proportional hazards regression analysis, and
then we built the model. Then, we drew the ROC curve of each model and calculated its
AUC value. If the curve reached the highest point, meaning the maximum AUC value, the
calculation process was terminated, and the model was taken as the best candidate model.
The ROC curves of 1-, 3-, and 5-years were drawn. We calculated the risk score of the risk
model for all clinical cases by the following formula: RiskScore = ∑k

i=1 fiiSi. In order to
determine the maximum inflection, the AIC values of every point of the 5-year ROC curve
were evaluated, and these were defined as the cut-off point to distinguish between high or
low risk scores.

5. Validation of the Risk Model

To verify the cut-off point, Kaplan–Meier analysis was performed to show the dif-
ference between patients in the high- or low-risk group, as well as visualization of the
survival curve. The R tool was used to visualize the specific risk score values of each sample
in the model. The R packages applied in these procedures contain survminer, survival,
survivalROC, pbapply, glmnet, and pheatmap.

Next, we analyzed the relationship between the model and clinicopathological char-
acteristics by means of a chi-square test to better verify the availability of our model. The
bar chart was used for visualization and was marked as follows: <0.001 = ***, <0.01 = **,
and <0.05 = *. The risk score differences among different clinicopathological characteristics
were computed by the Wilcoxon signed-rank test. The results were shown with a box
diagram. Furthermore, we performed univariate and multivariate analysis among the
clinicopathological features and risk score, which confirmed that the model can be used as
an independent predictor of clinical prognosis, and the result was shown in a forest map.
The R packages used in these analyses were survival, pHeat-map, and ggupbr.

5.1. Studies on Tumor-Infiltrating Immune Cells

It is well-known that tumor immunization plays a significant role in the development
of tumors. In order to apply our risk model to tumor immune cells, we took currently
accepted algorithms into account to calculate the immune infiltration statuses among
the samples from the TCGA project of the KIRC dataset, including TIMER, CIBERSORT,
XCELL, QUANTISEQ, MCPcounter, EPIC, and CIBERSORT. The difference in the content
of immune-infiltrating cells between high- and low-risk groups was analyzed by Wilcoxon
signed-rank test; The results are shown in a box chart. The correlation between risk score
and immune infiltrating cells was analyzed by Spearman correlation analysis. The results
of the correlation coefficient were visualized by using a LollipopT chart, where p < 0.05 was
considered statistically significant. The R package used in these analyses was ggplot2.
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5.2. Guiding Significance of the Model for Clinical Treatment

To assess the clinical value of the model in the treatment of ccRCC, we calculated
the IC50 of commonly administrated chemotherapeutic drugs in the TCGA project based
on the KIRC dataset. Antitumor drugs such as cisplatin, paclitaxel, KU.55933, sunitinib,
gefitinib and sorafenib are recommended for liver cancer treatment by the AJCC guidelines.
The difference in IC50 between high- and low-risk groups was compared by the Wilcoxon
signed-rank test; the results are shown as box charts. The R packages used in these analyses
were pRRophetic and ggplot2.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/vaccines10071161/s1, Figure S1: The representative results of the
evaluation of tumor infiltrating immune cells with risk assessment model; Table S1: Univariable and
multivariable Cox regression analyses in KIRC; Table S2: The detail comparison results of correlation
ship between tumor infiltrating immune cells and risk sore.
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