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Abstract: This study investigates the disruptive activity of environmental toxicants on sex hormone
receptors mediating type 2 diabetes mellitus (T2DM). Toxicokinetics, gene target prediction, molecular
docking, molecular dynamics, and gene network analysis were applied in silico techniques. From
the results, permethrin, perfluorooctanoic acid, dichlorodiphenyltrichloroethane, O-phenylphenol,
bisphenol A, and diethylstilbestrol were the active toxic compounds that could modulate androgen
(AR) and estrogen-α and –β receptors (ER) to induce T2DM. Early growth response 1 (EGR1),
estrogen receptor 1 (ESR1), and tumour protein 63 (TP63) were the major transcription factors, while
mitogen-activated protein kinases (MAPK) and cyclin-dependent kinases (CDK) were the major
kinases upregulated by these toxicants via interactions with intermediary proteins such as PTEN,
AKT1, NfKβ1, SMAD3 and others in the gene network analysis to mediate T2DM. These toxicants
pose a major challenge to public health; hence, monitoring their manufacture, use, and disposal
should be enforced. This would ensure reduced interaction between people and these toxic chemicals,
thereby reducing the incidence and prevalence of T2DM.

Keywords: in silico; disruptive activity; environmental toxicants; type 2 diabetes mellitus; molecular
docking; molecular dynamics; gene network analysis

1. Introduction

Endocrine-disrupting compounds (EDC) are natural and synthetic environmental
toxicants that alter the endocrine system through numerous mechanisms, inducing adverse
health effects in the exposed individuals and populations [1]. The introduction of these
structurally diverse chemicals led to their increased use as well as domestic, occupational,
and environmental exposure by humans. They are classified as different groups such as
phthalates, polychlorinated biphenyls, polyaromatic hydrocarbons, dioxins, and other
major groups distributed in different pesticides, chemicals used in industries, plastics, com-
ponents of packaging, fuel, and so on [2,3]. Due to the reported numerous applications of
over 500 of these compounds daily, they were implicated in the pathogenesis of numerous
health effects. There is a strong cause and effect correlation between endocrine disruption,
obesity, and type 2 diabetes mellitus (T2DM). Insulin resistance, hyperinsulinemia, dyslipi-
daemia, and hyperglycaemia are characteristic symptoms of impaired glucose and lipid
homeostasis known to develop because of exposure to these compounds [4].

T2DM is mainly characterised by disrupted glucose homeostasis, with genetic and
environmental factors implicated in its aetiology in addition to insulin resistance [5].
Recently, sex hormones (such as androgens and estrogens) and their receptors in peripheral
tissues were reported to play an important role in gene regulation, insulin resistance, and
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glucose homeostasis [6,7]. Environmental toxicants, which are analogues of these hormones,
bind to these receptors, alter their structure, and function concomitantly disrupting glucose
homeostasis, insulin release, and action leading to the occurrence of T2DM [8,9]. Genomic
studies corroborated the environmental, genetic, and epigenetic processes of T2DM, which
steadily evolves during the lifetime of a patient. Nonetheless, accurate prediction for
personalised medicine using genomic information is a challenge as drug discovery is
driven by a complex interaction of proteins and cells working with environmental factors
rather than genetic code. Also, genome-wide mRNA assesses cellular conditions under
different states; they do not provide information on downstream mechanisms [10]. There
is a paucity of information on the diabetic downstream effect of sex hormone receptor
binding by EDC and cell signalling networks at a molecular level. This study aims to
investigate the sex hormone receptors that are targeted and disrupted by environmental
toxicants to mediate type 2 diabetes mellitus. It also identifies the downstream metabolic
signatures that are upregulated upon disruption by the toxicants.

2. Methods
2.1. Toxic Ligand Preparation

A list of 19 environmental toxicants was identified from literature [4,11]. They were
retrieved from PubChem Compound Database in their canonical simplified molecular
input line entry specification (SMILES) format as shown in Table 1.

Table 1. List of selected environmental toxicants associated with sex hormone receptors implicated in type 2 diabetes
mellitus (T2DM).

Mol No. Environmental Toxicants SMILES

1 4-bromodiphenylether C1=CC=C(C=C1)OC2=CC=C(C=C2)Br
2 4-nonylphenol CCCCCCCCCC1=CC=C(C=C1)O
3 4-octylphenol CCCCCCCCC1=CC=C(C=C1)O
4 4-tert-butylphenol CC(C)(C)C1=CC=C(C=C1)O
5 Bisphenol A CC(C)(C1=CC=C(C=C1)O)C2=CC=C(C=C2)O
6 Dichlorodiphenyldichloroethane C1=CC(=CC=C1C(C2=CC=C(C=C2)Cl)C(Cl)Cl)Cl
7 Dichlorodiphenyltrichloroethane C1=CC(=CC=C1C(C2=CC=C(C=C2)Cl)C(Cl)(Cl)Cl)Cl
8 Dichlorodiphenyldichloroethylene C1=CC(=CC=C1C(=C(Cl)Cl)C2=CC=C(C=C2)Cl)Cl
9 Diethylhexyl phthalate CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC

10 Diethylstilbestrol CCC(=C(CC)C1=CC=C(C=C1)O)C2=CC=C(C=C2)O
11 Dimethyl phthalate COC(=O)C1=CC=CC=C1C(=O)OC
12 Heptachlor C1=CC(C2C1C3(C(=C(C2(C3(Cl)Cl)Cl)Cl)Cl)Cl)Cl
13 Methoxychlor COC1=CC=C(C=C1)C(C2=CC=C(C=C2)OC)C(Cl)(Cl)Cl
14 O-phenylphenol C1=CC=C(C=C1)C2=CC=CC=C2O
15 Perfluorooctanoic acid C(=O)(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)O
16 Permethrin CC1(C(C1C(=O)OCC2=CC(=CC=C2)OC3=CC=CC=C3)C=C(Cl)Cl)C
17 Tetrachlorodibenzodioxin C1=C2C(=CC(=C1Cl)Cl)OC3=CC(=C(C=C3O2)Cl)Cl
18 Tetrachloroethylene C(=C(Cl)Cl)(Cl)Cl
19 Triphenyltin C1=CC=C(C=C1)[Sn](C2=CC=CC=C2)C3=CC=CC=C3

Mol No.: Molecule Number.

2.2. Toxicokinetic and Sex Hormone Receptors Target Prediction

The absorption, distribution, metabolism, and excretion (ADME) prediction of the tox-
icants were carried out using SwissADME server [12,13]. The identification of the toxicants
as potential sex hormone receptor targets was predicted using the SwissTargetPrediction
server with Homo sapiens selected as the target organism [14]. The toxicants’ SMILES format
was inputted into both servers for toxicokinetic and target prediction.

2.3. Protein Preparation, Molecular Docking, Bioactivity, and Molecular Dynamics

Androgen (AR) and estrogen-α and -β receptor (ER) protein structures were down-
loaded from protein data bank (www.rcsb.org, accessed on 11 February 2021), with 1T5Z,
5KRJ, and 5TOA as the respective identification codes. The protein structures’ energy level

www.rcsb.org
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without their complexed ligands was minimised by 3D refine server [15]. The toxicants’
SMILES format was converted to 3D protein data bank (pdb) format using Open Babel [16].
AutoDock Tools 4.2 was used to prepare ligands, remove water and heteroatoms from
protein structures, add Gasteiger charges, and set grid box coordinates and size parameters
for molecular docking, as shown in Table 2 at 1 Å space while molecular docking was
carried out with AutoDock Vina, as previously reported [17–19]. The interactions between
high-ranking toxicants (based on their binding score) and their respective receptors were
visualised using BIOVIA Discovery Studio Visualizer, 2017 [20].

Table 2. Grid box coordinates and size parameters used for molecular docking.

Dimension Dimension (Å) Centre (Å)

AR ER-α ER-β AR ER-α ER-β

x 22 20 26 4 13 20
y 26 20 24 60 0 40
z 24 24 26 5 4 13

AR: Androgen receptor; ER: Estrogen receptor.

Metrics of binding effectiveness and toxicant bioactivities such as ligand efficiency [21],
binding efficiency index [22], and lipophilic efficiency [23] were calculated as shown in
Equations (1)–(3). The original ligand of AR, ER-α, and ER-β was deleted and redocked in
the active site for accuracy and reliability verification of the molecular docking protocol
used in Table 2.

LE = −BE ÷ HA (1)

BEI =
pIC50

MW (kDa)
(2)

LipE = pIC50 − logP (3)

LE: ligand efficiency, BEI: binding efficiency index, LipE: lipophilic efficiency, BE: bind-
ing energy, HA: heavy atoms, MW: molecular weight, pIC50: predicted IC50. The binding
energies were converted to pIC50 which can be interchanged with (Ki) and dissociation
constant (Kd).

Molecular dynamics simulation of AR-perfluorooctanoic acid, ER-α-diethylstilbestrol,
and ER-β-diethylstilbestrol were evaluated on LARMD server set to run at 1 ns in an
explicit water model [24]. The root mean square deviation (RMSD), the radius of gyration
(Rg), fraction of native contacts (Q), root mean square fluctuation (RMSF) and principal
component analysis (PCA) of the ligand-protein complexes along the simulation trajectory
were calculated and analysed. The binding free energy of these ligand-protein complexes
was calculated using molecular mechanics Poisson–Boltzmann or Generalized Born surface
area (MM-PB/GBSA) method as shown in Equation (4) [24].

∆Gbind = ∆Ebind − T∆Ssol − T∆Scon f (4)

∆Gbind: binding free energy, ∆Ebind: binding energy, T∆Ssol: solvation entropy, and
T∆Sconf: conformational entropy.

2.4. Target Gene Expression and Phylogenetic Analysis

The upstream regulatory networks from signatures of differentially expressed genes
obtained from toxicants’ target prediction were determined by transcription factor en-
richment analysis, protein–protein interaction network expansion, and kinase enrichment
analysis, using the predicted target genes on eXpression2Kinases (X2K) [10].
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3. Result and Discussion
3.1. Toxicokinetic Prediction of Toxicants

The toxicants’ pharmacokinetic properties are shown in Figure 1, with perfluorooc-
tanoic acid reported as an outlier due to its WLog P value of 10.75. Dimethyl phthalate,
4-bromodiphenylether, 4-nonylphenol, 4-octylphenol, 4-tert-butylphenol, bisphenol A,
diethylstilbestrol, methoxychlor, tetrachloroethylene, and O-phenylphenol were predicted
to have a high probability of permeating through the blood-brain barrier (BBB) and pas-
sively be absorbed by the gastrointestinal tract (GIT), while diethylhexyl phthalate and
permethrin were both predicted to have high GIT but low BBB permeability. All other
toxicants were not predicted to be either GIT or BBB permeants. All toxicants were pre-
dicted to be nonsubstrates of P-glycoprotein (Pgp) except diethylhexyl phthalate and
tetrachlorodibenzodioxin.

Figure 1. Boiled egg graph of toxicants showing predicted pharmacokinetic properties. HIA: human intestinal absorption,
BBB: blood-brain barrier, PGP: p-glycoprotein, +: substrate, −: nonsubstrate.

In Table 3, all the toxicants inhibited one or more isoforms of cytochrome P450 (CYP450).
Some of these toxicants’ solubility was previously reported, corroborating this finding [25].
This could further suggest these toxicants can easily be bioaccumulated in tissues where
they can induce oxidative stress, insulin resistance, and elicit neurotoxicity [11]. The
inhibition of CYP450 isoforms by these toxicants will lead to reduced metabolism of drugs,
resulting in drug metabolism malfunctioning, drug resistance phenomenon, and elevated
toxicity [20]. The synthetic accessibility score of these toxicants suggests that they are easily
synthesised, available, and incorporated into different products. This accounts for the
increased incorporation of these compounds in various products used daily by people [4].
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Table 3. Predicted metabolic profile of toxicants.

Environmental Toxicants
Cytochrome P450 Isoform Inhibition

SP (cm.s−1) BA SA
1A2 2C19 2C9 2D6 3A4

4-bromodiphenylether Yes Yes Yes No No −4.77 0.55 1.81
4-nonylphenol Yes Yes No Yes No −3.55 0.55 1.63
4-octylphenol Yes No No Yes No −3.85 0.55 1.53

4-tert-butylphenol Yes No No No No −4.87 0.55 1
Bisphenol A Yes No No Yes No −5.34 0.55 1.43

Dichlorodiphenyldichloroethane Yes Yes Yes Yes No −3.98 0.55 2.37
Dichlorodiphenyldichloroethylene No Yes Yes No No −3.62 0.55 2.08
Dichlorodiphenyltrichloroethane Yes Yes Yes No No −3.56 0.55 2.37

Diethylhexyl phthalate No No Yes No Yes −3.39 0.55 4.12
Diethylstilbestrol Yes Yes Yes Yes Yes −4.34 0.55 2.35

Dimethyl phthalate Yes No No No No −6.35 0.55 1.55
Heptachlor Yes Yes Yes No No −5.49 0.55 4.75

Methoxychlor Yes Yes Yes Yes No −4.8 0.55 2.43
O-phenylphenol Yes Yes Yes No No −5.14 0.55 1.27

Perfluorooctanoic acid No Yes Yes No No −5.33 0.85 2.47
Permethrin Yes Yes Yes Yes Yes −4.07 0.55 3.73

Tetrachlorodibenzodioxin No No Yes No No −3.44 0.55 2.71
Tetrachloroethylene No No No No No −4.9 0.55 2.59

Triphenyltin Yes No No Yes No −4.66 0.55 1.81

SP, BA, and SA represent skin permeation, bioavailability, and synthetic accessibility, respectively.

3.2. Sex Hormone Receptor Activity of Toxicants

In SwissTargetPrediction, the similarity principle via reverse screening is the ba-
sis through which the probable protein targets of small molecules are predicted [14].
Dichlorodiphenyldichloroethylene, dichlorodiphenyldichloroethane, tetrachloroethylene,
dimethyl phthalate, 4-bromodiphenylether, tetrachlorodibenzodioxin, and triphenyltin
were not predicted to target any of the sex receptors. Estrogen receptor-α (ER-α) was
predicted to be a highly probable target of 4-nonylphenol, 4-octylphenol, and diethylstilbe-
strol, while estrogen receptor-β (ER-β) was predicted to be a highly probable target of
diethylstilbestrol. Diethylstilbestrol showed a high probability of targeting ER-α and -β,
while bisphenol A showed a high probability of targeting all three receptors. All other
toxicants had a weak probability of targeting one or more of the sex receptors (as illustrated
in Table 4). ER-α, ER-β, and AR are important receptors involved in peripheral tissue glu-
cose metabolism. They promote glucose and energy homeostasis upon androgen/estrogen
binding in these tissues by reducing lipogenesis and increasing insulin secretion and sen-
sitivity [7]. Since these receptors are targets of these toxicants, they are likely to alter
glucose homeostasis and insulin release mechanism [4]. These toxicants were reported to
be highly lipophilic; thus, they can permeate the membrane and bind to these receptors in
the cytoplasm, nuclear membrane, or cell membrane [26].

3.3. Molecular Docking of Toxicants

Molecular docking is a conventional structure-based computational method used
for analyzing binding interactions between protein–ligand complexes. In toxicity, this
method is relevant in predicting the binding poses of toxicants in their various molecular
targets’ binding pockets. The predicted activity between sex hormone receptors and envi-
ronmental toxicants were previously reported in Table 4. Hence, Table 5 shows the docking
scores of environmental toxicants in binding pockets of their predicted receptors of activity.
From the docking scores shown in Table 5, the sex hormones (α-estradiol, β-estradiol,
and dihydrotestosterone (DHT)) had high binding scores in the pocket of their respective
receptors (ER-α, ER-β, and AR respectively) with bisphenol A and diethylstilbestrol ex-
hibiting comparable affinity in the binding pocket of all three receptors. However, in AR’s
binding pocket, high docking scores were recorded for dichlorodiphenyltrichloroethane,
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O-phenylphenol, and perfluorooctanoic acid, while in ER-β, a similar observation was
made for permethrin (as illustrated in Table 5).

Table 4. Predicted activity between sex hormone receptors and environmental toxicants.

Environmental Toxicants Androgen Receptor Estrogen Receptor-α Estrogen Receptor-β

4-bromodiphenylether - - -
4-nonylphenol * ***** *
4-octylphenol * ***** *

4-tert-butylphenol * * *
Bisphenol A ***** ***** *****

Dichlorodiphenyldichloroethane - - -
Dichlorodiphenyldichloroethylene - - -
Dichlorodiphenyltrichloroethane * - -

Diethylhexyl phthalate * - -
Diethylstilbestrol * ***** *****

Dimethyl phthalate - - -
Heptachlor * - -

Methoxychlor * * *
O-phenylphenol * * *

Perfluorooctanoic acid * - -
Permethrin - - *

Tetrachlorodibenzodioxin - - -
Tetrachloroethylene - - -

Triphenyltin - - -

- (0%), * (1–20%), ** (21–40%), *** (41–60%), **** (61–80%), ***** (81–100%) probability of receptor binding.

Table 5. Docking scores (kcal/mol) of environmental toxicants in binding pockets of receptors.

Environmental Toxicants Androgen Receptor Estrogen Receptor-α Estrogen Receptor-β

4-nonylphenol −7.1 −5.8 −6.9
4-octylphenol −6.6 −5.9 −7.0

4-tert-butylphenol −6.3 −5.9 −6.3
Bisphenol A −8.3 −7.7 −7.9

Dichlorodiphenyltrichloroethane −7.9 ND ND
Diethylhexyl phthalate −6.4 ND ND

Diethylstilbestrol −8.6 −8.5 −8.6
Heptachlor −5.9 ND ND

Methoxychlor −6.0 −7.0 −5.4
O-phenylphenol −7.8 −7.0 −7.4

Perfluorooctanoic acid −8.9 ND ND
Permethrin ND ND −7.9
α-estradiol ND −9.1 ND
β-estradiol ND ND −8.5

Dihydrotestosterone −9.2 ND ND

ND: Not determined. Binding energy in bold signifies compounds that are past the threshold of −7.5 kcal/mol.

These high-binding affinities could suggest possible antagonism of these receptors ei-
ther by competitive or mixed mechanism due to the benzene rings present in these toxicants’
structure [27]. The binding energy of the endogenous ligands in the receptors was lower
than the toxicants as expected due to their role in the hormone system. This finding was sim-
ilar to that reported by Jeong et al. [28], where the endogenous ligands had better docking
scores than over 95% of the evaluated toxicants. The toxicants that their binding affinities
were not determined would probably utilise different mechanisms other than binding
to sex hormone receptors to elicit their toxic effect. Triphenyltin and tetrachlorodiben-
zodioxin were reported to bind to retinoid X receptor, peroxisome proliferator-activated
receptor gamma (PPARγ), and aryl hydrocarbon receptor [29,30], while others such as tetra-
chloroethylene, dichlorodiphenyldichloroethane, and dichlorodiphenyldichloroethylene
have neuronal nicotinic acetylcholine receptors [31] PPARγ, PPARα, and ryanodine recep-
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tors (type 1 and 2) [32–34] as their targets. The LE and LipE of the top-ranking toxicants
were ≥0.3 and 3, respectively. However, the LipE of dichlorodiphenyltrichloroethane and
perfluorooctanoic acid was less than 3 (as illustrated in Table 6). These values (0.3 and 3)
were identified as the respective ideal threshold cutoff of LE and LipE. These values further
buttress these toxicants’ effectiveness to bind to these receptors and elicit their toxic tenden-
cies such as T2DM [25]. These toxicants were experimentally validated to exhibit estrogenic
and androgenic properties in different model systems and cell lines [35–37]. In utero [38],
perinatal [39] and late-life exposure [40,41] of rodents to BPA and DDT were reported to
result in reduced insulin secretion and impaired glucose tolerance. Studies carried out by
Lee et al. [42] and Wolf et al. [43] revealed that exposure to these environmental toxicants
is associated with increased T2DM risk via endocrine disruption in humans. Some other
reports presented a similar association in the elderly [44,45] and middle-aged women [46].

Table 6. Binding effectiveness of top-ranking environmental toxicants in binding pockets of receptors.

Environmental Toxicants
Androgen Receptor Estrogen Receptor-α Estrogen Receptor-β

LE a BEI LipE LE a BEI LipE LE a BEI LipE

Bisphenol A 0.49 40 6 0.45 38 5 0.46 39 5
Dichlorodiphenyltrichloroethane 0.42 25 2 - - - - - -

Diethylstilbestrol 0.43 35 4 0.43 34 4 0.43 35 4
O-phenylphenol 0.60 51 6 - - - - - -

Perfluorooctanoic acid 0.36 23 1 - - - - - -
Permethrin - - - - - - 0.30 23 3

LE: ligand efficiency, BEI: binding efficiency index, LipE: lipophilic efficiency, a: kcal/mol.

Similar to DHT interaction in AR binding pocket, bisphenol A and O-phenylphenol
were stabilised by one hydrogen bond interaction with GLN711, while diethylstilbestrol
hydrogen bond interaction was with MET745. On the other hand, dichlorodiphenyl-
trichloroethane and perfluorooctanoic acid exhibited 0 and 2 (ARG752 and THR877) hydro-
gen bond interactions, respectively, with AR (as illustrated in Figure 2).

Also, unlike other toxicants, perfluorooctanoic acid was stabilised by halogen bond
interaction with 5 amino acid residues (LEU704, ASN705, GLN711, MET745, and PHE764)
in AR binding pocket (as illustrated in Figure 2E). Halogen bonds are usually short and
numerous, forming strong noncovalent interactions [47]; hence the multiple halogen in-
teraction observed in the perfluorooctanoic acid–AR complex could be attributed to the
low-binding energy observed. Halogen interactions were also identified to play a role
in substrate specificity [48]. This could be a reason perfluorooctanoic acid was predicted
to target only AR. Some of the amino acid residues such as LEU704, LEU707, MET742,
and PHE764 were common π-π alkyl interactions stabilising DHT and the top-ranking
toxicants, while ASN705 and GLY708 were the most common observed Van der Waals
interactions with AR (as illustrated in Figure 2). Contrary to other toxicants, the amino acid
residues involved in π-π alkyl and Van der Waals interactions between O-phenylphenol
and AR were different (as illustrated in Figure 2D). This study further substantiates pre-
vious reports where LEU701, LEU704, ASN705, MET742, and PHE764 were amino acid
residues in AR-binding pocket that interacted with toxicants [49,50].

The interaction of the top-ranking toxicants in Figure 3 depicted bisphenol A, di-
ethylstilbestrol, and α-estradiol all interacting with GLU353 in ER-α binding pocket via
hydrogen bond interaction, while ARG394 and MET421 were other hydrogen interactions
with bisphenol A and α-estradiol, respectively. Common π-π alkyl (ALA350, LEU384,
LEU384, and LEU391) and Van der Waals interactions (PHE425 and LEU428) were ob-
served stabilising α-estradiol and the toxicants. It was also observed that diethylstilbestrol
interacted with similar amino acid residues (MET343, LEU349, ARG394, GLY521, and
LEU525) as α-estradiol. These interactions were not observed for bisphenol A, which
accounted for the low binding energy recorded for diethylstilbestrol (as illustrated in
Figure 3). In the binding pocket of ER-β, ARG346 was depicted as the common hydrogen
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bond interaction between the receptor, β-estradiol, and two toxicants (diethylstilbestrol
and permethrin). However, other hydrogen interactions were observed for bisphenol A
(GLU305 and HIS475) and diethylstilbestrol (MET295, LEU339, and HIS475).

Figure 2. Cont.
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Figure 2. 3D and 2D binding mode of (A) bisphenol A, (B) dichlorodiphenyltrichloroethane, (C) diethylstilbestrol, (D) O-
phenylphenol, (E) perfluorooctanoic acid, and (F) dihydrotestosterone in affinity with androgen receptor. Hydrogen,
halogen, unfavourable, and π bonds are depicted as green, luminous blue, red, and any other coloured (purple, magenta,
orange, and pink) lines, respectively, while Van der Waals interactions appear as light green circles.
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Figure 3. 3D and 2D binding mode of (A) bisphenol A, (B) diethylstilbestrol and (C) α-estradiol in affinity with estrogen
receptor-α. Hydrogen and π bonds are depicted as green and any other coloured (purple, magenta, and pink) lines,
respectively, while Van der Waals interactions appear as light green circles.

Despite the difference in the amino acid residues involved in other binding interactions
between β-estradiol and the toxicants, similar π-π alkyl (ALA302 and LEU343) and Van
der Waals interactions (LEU298, GLU305, ILE373, PHE377 and GLY472) were identified in
the binding pose of β-estradiol and diethylstilbestrol in ER-β (as illustrated in Figure 4).
These common similarities and the increased number of hydrogen bond interaction with
ER-β binding pocket amino acid residues could be attributed to the slightly lower binding
energy observed for diethylstilbestrol. Comparing the binding pose of the toxicants and
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β-estradiol, permethrin had the least similarity. This observation might be ascribed to its
structure as it can be seen overlapping out of ER-β binding pocket.

Figure 4. Cont.
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Figure 4. 3D and 2D binding mode of (A) bisphenol A, (B) diethylstilbestrol, (C) permethrin and (D) β-estradiol in affinity
with estrogen receptor-β. Hydrogen, carbon-hydrogen, unfavourable, and π bonds are depicted as green, pale blue, red,
and any other coloured (magenta, orange, and pink) lines, respectively, while Van der Waals interactions appear as light
green circles.

Different studies reported similar amino acid residues such as GLU353, ARG394,
PHE404, and PHE425 that stabilise the binding of toxicants and EDCs in the active site
of ER, which corroborate this study [25,51,52]. The side chains of GLU and ARG en-
sures upon orientation that these amino acid residues form hydrogen bonds with the
ligands, while that of PHE is nonpolar, which makes it suitable for nonpolar interactions.
Figure 5 shows the redocked ligands in comparison with that of the experimental pose
after superimposition. The RMSD of the experimental and docked ligands in AR, ER-α,
and ER-β pocket was 0.77, 0.85, and 0.61 Å, respectively. This low deviation value (<2.0 Å)
credits the docking parameters rationality and docking method reliability used in this
study. It further infers the toxicants’ strong affinity in the receptors’ pockets [53].

Figure 5. Cont.
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Figure 5. 3D binding mode and superimposition of experimental (grey ligand) and docking (green
and brown ligand) pose in affinity with (A) 1T5Z, (B) 5KRJ, and (C) 5TOA.

3.4. Molecular Dynamics of Toxicants

Protein dynamics is an important technique that gives greater insight into the protein’s
dynamics at the atomic level and its relationship with the structure. In ligand-driven protein
dynamics, the effect of the protein’s internal dynamics variation on ligand binding is the
outcome [54]. The interactions between the top-ranking toxicants and their various docked
complexes (AR-perfluorooctanoic acid, ER-α-diethylstilbestrol, and ER-β-diethylstilbestrol)
were stable with <1.5 Å RMSD, while their radius of gyration (Rg) was within ±0.2 Å from
the start point over the simulation timestep (as illustrated in Figure 6i,ii).

The obtained RMSD and Rg values would suggest the complexes formed were equi-
librated and had low oscillation with a folded polypeptide structure that was relatively
stable. It can also be hypothesised that there is no shift in ligand position as contrarily
reported in a study by Ali [55], suggesting protein–ligand complex compactness. A steady
decline in the fraction of native contact was observed from 1.0 to 0.97 (AR-Perfluorooctanoic
acid and ER-β-Diethylstilbestrol) and 0.94 Q[X] (ER-α-Diethylstilbestrol) with RMSF fluctu-
ations being dominant majorly at the loop region (as illustrated in Figure 6iii,iv). The larger
fluctuations observed in the loops are normal as they are the most flexible protein structure
regions. From the docking analysis, they are not involved in binding the toxicants; hence,
they are surface loops, energetically favouring the decline in the fraction of native contact.
These RMSF values of the helical structures suggest a little variation of the ligands from
the initial binding pose after the MD simulation [56].
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Figure 6. Cont.
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Figure 6. Molecular dynamics simulation of (A) androgen receptor-perfluorooctanoic acid, (B) estrogen receptor-α-diethylstilbestrol, and (C) estrogen receptor-β-diethylstilbestrol showing
(i) root mean square deviation, (ii) radius of gyration, (iii) fraction of native contacts, (iv) root mean square fluctuation, and (v) principal component analysis.
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In AR-perfluorooctanoic acid PCA scree plot, PC1, PC2, and PC3 accounted for 19.2,
9.1, and 6.2% of the variance, respectively; subsequently, the individual PC’s contribution
dropped below 4.3%. From the PCA scree plot for ER-α-diethylstilbestrol, PC1 accounts
for more than one-quarter of the overall variance, strongly dominating the overall variance.
When computed with the next 2 PC’s, they made up 41.9% of the variance. After the
4th PC, individual component contributions were below 3.5%. PC1 accounted for more
than one-fifth of the overall variance, with PC2 and PC3 contributing a little over 10%,
strongly dominating the overall variance. A drop below 5% was subsequently observed
for other individual component contributions as depicted in ER-β-diethylstilbestrol PCA
scree plot (as illustrated in Figure 6v). PC1, PC2, and PC3 retained most of the variance
while providing a useful description of the original distribution’s atomic fluctuations. The
large initial intensive motions rapidly declined to more localised fluctuations. The first
3 PC’s were used from the cluster analysis to analyse conformational transitions of the
simulated systems by projecting their trajectories on a 2D subspace. The continuous colour
scale, which changed from blue to white and then red, indicates that the conformational
behavior of the three simulated systems exhibited no observable difference between the
blue and red conformations as projected along the direction of PC2–PC3, while a difference
along the direction of PC1–PC2 and PC1–PC3 between the 2 colour conformations were
observed (as illustrated in Figure 6v). The continuous colour scale changed from blue to
white and then red, indicating intermittent transitions between these conformations [57].
Electrostatic interactions contributed little, while Van der Waals interactions were the most
contributors to the total free energy and binding free energy in all 3 complexes. The total
free energy was counteracted by the entropy generated (as illustrated in Table 7). The
difference in the proportion of variance observed in the principal component analysis
(PCA) was evident in the predicted binding energy by MM-PB/GBSA (as illustrated in
Table 7). Studies reported a positive correlation between MM-PB/GBSA predicted binding
energy and experimental results [58,59]. The calculated MM-PB/GBSA binding energy
corroborates the docking analysis that was earlier reported, suggesting these toxicants
can interact with these receptors and elicit their toxic effects. The increased free binding
energy observed in ER-β-diethylstilbestrol may be due to lower Van der Waals energy
contribution [60].

Table 7. Predicted molecular mechanics Poisson–Boltzmann (Generalised Born) surface area (MM-
PB/GBSA) binding energy of (A) androgen receptor-perfluorooctanoic acid, (B) estrogen receptor-β-
diethylstilbestrol, and (C) estrogen receptor-β-diethylstilbestrol.

kcal/mol

EE VdW G PBSOL PBTOT GBSOL GBTOT TS ∆PB ∆GB

A −1.60 −36.96 −38.56 8.99 −29.57 1.76 −36.80 16.72 −12.85 −20.08
B −2.68 −41.75 −44.43 12.23 −32.20 4.44 −39.99 19.67 −12.53 −20.32
C −1.73 −51.66 −53.39 18.42 −34.97 7.23 −46.16 17.45 −17.52 −28.71

EE: Electrostatic energy, VDW: Van der Waals contribution, G: total gas phase energy, PBSOL: nonpolar solvation
contribution, GBSOL: polar solvation contributions, TS: entropy, PBTOT: Poisson–Boltzmann total energy, GBTOT:
Generalised born total energy, ∆PB/∆GB: Final estimated binding free energy.

3.5. Gene Expression Network Modified by Toxicants

The expression of genes, proteins, and transcription factors upregulated by toxicants
upon sex hormone receptor binding from the gene network analysis is depicted in Figure 7a.

EGR1 (early growth response protein 1), ESR1 (estrogen receptor 1), VDR (vitamin D
receptor), SUZ12 (polycomb protein), PPARD (peroxisome proliferator-activated receptors
delta), NFE2L2 (nuclear factor erythroid 2-related factor 2), ZEB1 (zinc finger e-box binding
homeobox 1), NFYB (nuclear transcription factor y subunit beta), and TP63 (tumour
protein P63) were the transcription factors predicted to be induced by the toxicants upon
protein–protein interaction. They interacted with mitogen-activated protein kinase (MAPK),
casein kinase (CSNK), cyclin-dependent kinase (CDK), extracellular receptor kinase (ERK),
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homeodomain-interacting protein kinase (HIPK), tyrosine-protein kinase (ABL), and some
intermediate proteins, namely PTEN, JUN, AKT1, NfKB1, MYC, RB1, SP1, SMAD3 and
others as depicted in the interaction nodes. Some of these transcription factors, kinases, and
intermediate proteins were previously identified as key genes and pathways implicated in
T2DM prognosis and pathogenesis and potential pharmacological targets substantiating
the result [61,62]. EGR1 was identified upon analysis as the most enriched transcription
factor expressed by the toxicants followed by ESR1 and TP63, while MAPK1 was the most
enriched kinase expressed by the toxicants followed by casein kinase 2 alpha 1 (CSNK2A1)
and MAPK3 based on the hypergeometric p-value.

Figure 7. Cont.
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Figure 7. (a) Expression network of target transcription factors and kinases genes upregulated by toxicants. (b) Transcription
factor enrichment analysis for toxicants target genes. (c) Kinase enrichment analysis for toxicants’ target genes.

Upregulation of EGR1 in diabetes-related diseases was noted in numerous studies. It
enhances extracellular matrix production and proliferation of mesangial cells by interacting
with TGF-β1 and upregulation of downstream genes [63,64]. Glucose transporter type 1
(GLUT1) is a transcriptional target of TP63. Upon activation, there is an elevated expression
of GLUT1, which leads to GLUT1-mediated glucose influx and generation of nicotinamide
adenine dinucleotide phosphate (NADPH) from the pentose phosphate pathway (PPP) [65].
Upregulation of CSNK2A1 gene expression and protein concentration is associated with
T2DM and its associated pathologies [66]. Upregulation of important intermediary proteins
such as PTEN, AKT1, NfKB1, SP1, and SMAD3 was identified as a common occurrence in
T2DM and its vascular complications [67–69]. Various experimental studies showed that
binding of environmental toxicants to sex hormone receptors led to increased AKT and CREB
phosphorylation and increased PI3K and NfKβ activity and MAPK and ERK activation
while inhibiting PPAR, corroborating the results [70–77]. These molecular activities lead to
insulin action impairment and intermediary metabolism alteration [70,78,79].

4. Conclusions

This study identified some daily used environmental toxicants and plasticizers (such
as bisphenol A, diethylstilbestrol, and others) that utilize sex hormone receptors as their
metabolic target. These toxicants bind tightly to these sex receptors with binding scores
comparable to that of the endogenous substrates of these receptors while exhibiting similar
interactions. Dynamics of the protein-ligand structures further depicted stable binding
and equilibrated complexes between these toxicants and the sex receptors. The binding
may alter the downstream metabolic function of the receptors by upregulating certain
gene signatures such as MAPK, TP63, ERK, PTEN, AKT1, and NfKB1, which are key
transcription factors and kinases implicated in T2DM prognosis and pathogenesis. They
were also identified as playing a role in energy and intermediary metabolism. Despite
these findings, molecular docking using different docking algorithms and running multiple
replicas of the protein-ligand complex dynamics could be done to avoid making false-
positive conclusions. Regardless of these limitations and future directions, plasticizers
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and pharmaceuticals are the major products with these toxicants. Hence, monitoring how
these toxicants are manufactured, used, and disposed of should be enforced. It is necessary
to ensure reduced interaction between various communities and these toxic chemicals,
thereby reducing the incidence and prevalence of type 2 diabetes mellitus.
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