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A Commentary on

Phyllostomid bat microbiome composition is associated to host phylogeny and feeding

strategies

by Carrillo-Araujo, M., Tas, N., Alcantara-Hernandez, R. J., Gaona, O., Schondube, J. E., Medellin,
R. A., et al. (2015). Front. Microbiol. 6:447. doi: 10.3389/fmicb.2015.00447

In their article, Carrillo-Araujo et al. show that Phyllostomidae (NewWorld leaf-nosed bat family)
gut microbiome composition is closely associated with host phylogeny. They provide evidence that
feeding-strategy plays a role in the microbiome composition of these bats (Carrillo-Araujo et al.,
2015). We were particularly intrigued by their detection of deoxyribonucleic acid (DNA) from
Firmicutes in intestinal sections from these bats. The authors use a previously published approach
of sequencing 16s rRNA for taxonomic assignment of the microbial community (Caporaso et al.,
2012). 16s rRNA is a good predictor of taxonomic classification (Mizrahi-Man et al., 2013;
Chaudhary et al., 2015), but it is not foolproof (reviewed here by Janda and Abbott, 2007). Data on
the probability of correct taxonomic assignment will bolster the findings in this article and allow
researchers to confidently design follow-up studies. Although not necessary for this study, testing
a subset of the microbial population using an alternate sequencing-taxonomic grouping pipeline
would further substantiate the taxonomic classification of microbial communities.

Mollicutes (Phylum Firmicutes) are a class of microorganisms that include phytoplasmas
(‘Candidatus Phytoplasma’) that are being increasingly recognized for their role in plant diseases
such as sapodilla little leaf, yellow leaf roll disease of peach, strawberry green petal and sugarcane
white leaf syndrome. These diseases affect a diverse array of economically and ecologically
important plant hosts around the world (Vesterinen et al., 2013; Pérez-López et al., 2016, 2017).
Mollicutes are highly diverse and aremade up of five orders, Acholeplasmatales, Anaeroplasmatales,
Entoplasmatales, Haloplasmatales, and Mycoplasmatales. All members of these orders are obligate
parasites. Genera ‘Candidatus Phytoplasma’ and Spiroplasma, from the Order Acholeplasmatales
and Entoplasmatales, respectively, consist of plant pathogens. ‘Candidatus Phytoplasma’ and
Spiroplasma represent 18% of the ClassMollicutes (Zhao et al., 2015).

‘Candidatus Phytoplasma’ consists of over 40 species that are known to be pathogenic in plants
(Miyazaki et al., 2018). In the Genus Spiroplasma, at least two species have been identified as plant
pathogens, Spiroplasma citri, the causative agent of citrus stubborn disease (Saglio et al., 1973) and
Spiroplasma kunkelii, which is associated with corn stunt disease (Whitcomb et al., 1986).
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FIGURE 1 | Distribution of phytoplasmas and bats. (A) Phytoplasma distribution in the Americas (Lee et al., 2000; Pérez-López et al., 2016). (B–E) Geographical

distribution of A. jamaicensis (Miller et al., 2016), C. perspicillata (Barquez et al., 2015a), L. yerbabuenae (Medellin, 2016), and G. soricina (Barquez et al., 2015b;

IUCN, 2018) sampled in this study by Carrillo-Araujo et al. (F) Schematic representation of the possible role of bats as vectors and sentinels of phytoplasmas. Fruit

and nectivorous bats could potentially move phytoplasmas around through guano or seeds that are part of the guano. Alternatively, microbiome analysis of

insectivorous bats that feed on fruit eating insects could allow us to monitor phytoplasma prevalence and spread.

In their article, the authors indicate that Artibeus jamaicensis
have the highest relative abundance of Mollicutes in their
intestinal contents (Carrillo-Araujo et al., 2015). In their article,
supplementary Table S1 also indicates the presence of nucleic
acids from Firmicutes in all bat species that were sampled.
Looking at their data from a plant disease perspective, we
wondered if frugivorous and nectivorous bats could play a role
in the transmission of plant pathogens. Could this data set
and the sampling methods established allow us to monitor bats
as sentinels of plant pathogens? Here, we speculate upon the
role of frugivorous and nectivorous bats as possible vectors
of plant pathogens. We outline limitations of this study that
do not allow us to fully establish the dynamics of plant
pathogen-bat interactions. We also discuss future directions to
firmly establish the role of bats as potential vectors of plant
pathogens.

Recently, bats have been implicated as the reservoirs of
several emerging viruses that cause serious disease in humans
and agricultural animals (Calisher et al., 2006; Moratelli and
Calisher, 2015; Zhou et al., 2018). These viruses fail to cause
disease symptoms in experimentally or naturally infected bats
(Munster et al., 2016; Hu et al., 2017; Schuh et al., 2017). We
and others have since identified several adaptations in innate
immune signaling molecules that might allow bats to control
virus propagation more effectively than other mammals (Zhou
et al., 2016; Banerjee et al., 2017; Xie et al., 2018). Bats are

also recognized as potential reservoirs of pathogenic bacteria
(Loftis et al., 2005; Becker et al., 2018). Plant pathogens do
not generally infect mammalian hosts, but after careful analysis
of the data in Carrillo-Araujo et al.’s article (Carrillo-Araujo
et al., 2015), the role of bats as potential vectors/carriers of
plant pathogens cannot be ruled out. We compared the extent
of spread of phytoplasmas in the Americas (Figure 1A) and
observed that it overlapped with the spread of frugivorous bats
A. jamaicensis (Figure 1B) and Carollia perspicillata (Figure 1C)
and nectivorous bats Leptonycteris yerbabuenae (Figure 1D) and
Glossophaga soricina (Figure 1E) that were sampled by the
authors. The authors mention that frugivorous and nectivorous
bats diverged 20–18 million years ago (MYA). Evolutionary
reconstructions show that the divergence of Mollicutes into two
major branches occurred about 470 MYA, placing phytoplasmas
and their closest ancestor, Ancholeplasma in the same branch
(Maniloff, 2002). There is further evidence that phytoplasmas
diverged from an Acholeplasma-like ancestor around 99 MYA
(Zhao et al., 2015). Thus, phytoplasmas and frugivorous bats
have co-existed for at least 18 million years. Could bats have
acquired phytoplasmas as part of their microbiome after their
divergence into frugivorous and nectivorous bats? Could bats
have played a role in the spread of phytoplasmas? We do
not know. Phytoplasmas have been detected in fruits in the
United States and Canada (Bagadia et al., 2013; Rosete et al.,
2015). There is a need to sample additional bat species to

Frontiers in Microbiology | www.frontiersin.org 2 November 2018 | Volume 9 | Article 2863

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Banerjee et al. Commentary: Bats and Phytoplasma

fully elucidate the overlap in the spread of phytoplasmas and
frugivorous bats.

Multiple studies have established the role of bats as reservoirs
of certain mammalian viruses (Corman et al., 2014; Plowright
et al., 2016; Ng and Tan, 2017; Noh et al., 2017; Widagdo
et al., 2017). Similar studies are needed for plant pathogens.
In this study, the authors analyzed the microbiome of bats
using DNA sequencing. The ability to culture Mollicutes
from bat intestinal samples would identify if these bacteria
remain viable while they pass through the harsh environment
of the digestive tract. Unfortunately, many of the plant
pathogenicMollicutes, including phytoplasmas, are unculturable
in axenic media. Although Mollicutes are unlikely to replicate
in bat gut cells, they could potentially proliferate within
the intestinal micro-community. However, this remains to be
tested.

Other questions about the possible excretion of viable bacteria
through bat guano and the ability to infect plants remain
unknown (Figure 1F). Seeds could be part of bat guano, but
phytoplasma transmission through seeds has not been confirmed
or disproved yet. Alongside birds, bats are capable of true flight.
The possibility to deposit phytoplasma-contaminated guano
from one area to another and within the same area is high.
Aryan et al. showed that phytoplasmas are transmissible through
graft (Aryan et al., 2016). Thus, mechanical transmission is
another possibility. This form of transmission occurs when

feeding animals cause tissue damage in plants, aiding the spread
of microorganisms.

While bats are speculated as reservoirs of multiple
microbes, this study brings up the possibility of using bat
microbiome data as predictors of pathogen spread and
prevalence (Figure 1F). Although our knowledge about
the bat microbiome is limited, it does provide us with an
opportunity to study bats as sentinels of plant pathogens.
This opportunity extends to insect-eating bats, since insects
such as leafhoppers and planthoppers are known vectors for
phytoplasmas (Weintraub and Beanland, 2006; Pérez-López
et al., 2018).

Future studies focused on identifying neglected vectors
of plant pathogens will elucidate the likely role played by
herbivorous wildlife in the dispersal of these microorganisms.
Results from such studies will have agricultural policy
implications for plant diseases. Phytoplasmas continue to
cause losses to local farmers and has an impact on the economy.
In our opinion, this study by Carrillo-Araujo et al. that identified
Mollicutes in the intestinal content of Phyllostomid bats opens
up an alternate and intriguing line of investigation in to wildlife
vectors and sentinels of plant pathogens.
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