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Abstract 
  Cardiolipin (CL) is a phospholipid exclusively localized in inner mitochondrial membrane where it is required 
for oxidative phosphorylation, ATP synthesis, and mitochondrial bioenergetics.  The biological functions of CL 
are thought to depend on its acyl chain composition which is dominated by linoleic acids in metabolically active 
tissues. This unique feature is not derived from the de novo biosynthesis of CL, rather from a remodeling process 
that involves in phospholipases and transacylase/acyltransferase. The remodeling process is also believed to be 
responsible for generation of CL species that causes oxidative stress and mitochondrial dysfunction. CL is highly 
sensitive to oxidative damages by reactive oxygen species (ROS) due to its high content in polyunsaturated 
fatty acids and location near the site of ROS production. Consequently, pathological remodeling of CL has 
been implicated in the etiology of mitochondrial dysfunction commonly associated with diabetes, obesity, heart 
failure, neurodegeneration, and aging that are characterized by oxidative stress, CL deficiency, and abnormal CL 
species.  This review summarizes recent progresses in molecular, enzymatic, lipidomic, and metabolic studies that 
support a critical regulatory role of pathological CL remodeling as a missing link between oxidative stress and 
mitochondrial dysfunction in metabolic diseases and aging.
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INTRODUCTION
Mitochondrial dysfunction has recently been 

identified as a common metabolic defect associated 
with obesity and its metabolic complications[1, 2]. A 
number of early studies suggest that mitochondrial 
oxidative function was compromised in diabetic and 
prediabetic humans as evidenced by reduced levels 
of fatty acid oxidation[3], insulin-stimulated ATP 
synthesis[4-6], and expression of genes involved in 
oxidative phosphorylation[7]. However, this hypothesis 
has recently been challenged by findings that 
mitochondrial hyperactivity is associated with severe 
insulin resistance in Asian Indians[8]. Attenuation 
of oxidative phosphorylation activity prevents the 
onset of diet-induced obesity and its related insulin 
resistance in mice with targeted deletion of AIF, 
a mitochondrial flavoprotein apoptosis inducing 
factor[9].  Furthermore, all of the insulin sensitizers, 
including some of the most popular antidiabetic drugs 
thiazolidinediones and metformin,  have been shown 
to suppress mitochondrial complex I activity[10-13].  
Therefore, the molecular mechanisms underlying a 
causative role of mitochondrial dysfunction in diabetes 
and obesity remain to be elucidated. 

Cardiolipin(CL) is polyglycerophospholipid 
exclusively localized in the mitochondria where it 
regulates mitochondrial function and oxidative stress 
in species from yeast to mammals[14-16]. This role is 
mediated by the acyl composition of the side chains 
of CL, which is dominated by linoleic acid in insulin 
sensitive tissues[17]. This unique acyl composition is 
not derived from de novo synthesis of CL, rather from 
a remodeling process that involves phospholipases 
and  acyl t ransfe rase / t r ansacylases [18 -20].  This 
remodeling process is also believed to be responsible 
for generating CL species that are highly sensitive to 
oxidative damage by reactive oxygen species (ROS), 
further exacerbating CL peroxidation and oxidative 
stress. CL is sensitive to damage of its double bonds 
by oxidative stress due to its rich content in linoleic 
acid and its location near the site of ROS production 
in the inner mitochondrial membrane. CL is the 
only phospholipid in mitochondria that undergoes 
early oxidation during apoptosis[21]. Consequently, 
pathological CL remodeling has been implicated in 
etiology of mitochondrial dysfunction associated with 
a host of pathophysiological conditions including 
diabetes, obesity, heart failure, hyperthyroidism, 
neurodegeneration, and aging, all of which are 
characterized by increased levels of oxidative stress, 
CL deficiency, and enrichment of docosahexaenoic 
acid (DHA) content in CL[22-26]. Recent progress 

in molecular cloning of enzymes involved in CL 
synthesis and remodeling, combined with the latest 
development in lipidomic profiling of CL, have 
implicated an important role of CL remodeling in 
regulating health and diseases.

CL SYNTHESIS, REMODELING, AND 
MITOCHONDRIAL FUNCTION

CL is a mitochondrial membrane phospholipid 
initially identified from beef heart, and is required 
for optimal mitochondrial respiration as a cofactor of 
enzymes involved in oxidative phosphorylation. CL 
is synthesized by three consecutive steps beginning 
with the biosynthesis of CDP-diacylglycerol. The 
committed and rate-limiting step is catalyzed by 
phosphatidylglycerophosphate synthase (PGS) 
(Fig. 1). CL is required for the reconstituted activity 
of a number of metabolic enzymes and carrier proteins 
in the mitochondria[17]. CL in the inner mitochondrial 
membrane serves as a Ca2+-binding site, through 
which Ca2+ triggers mitochondrial  membrane 
permeabilization[27]. Additionally, CL is required for 
cell survival, and dissociation of cytochrome c from 
CL triggers apoptosis[28,29]. In the yeast S. cerevisiae, 
mutation of the crd1 gene encoding CL synthase 
results in impaired viability, a decrease in membrane 
potential, and defective oxidative phosphorylation[30]. 
Similarly, CL deficiency in Chinese hamster ovary 
(CHO) cells results in stringent temperature sensitivity 
for cell growth in glucose-deficient medium and by 
reduced ATP production[31]. The mutant CHO cells 
demonstrate an increased glycolysis, reduced oxygen 
consumption, and defective respiratory electron 
transport chain activity.

CL is the only known dimeric phospholipid, 
consisting of four fatty acyl chains, which is restricted 
to C18 chains dominated by the linoloeyl group 
(C18:2) in skeletal muscle and heart[32]. The unique 
fatty acyl composition is believed to be important 
for its proper biological function. The hydrophobic 
double-unsaturated linoleic diacylglycerol species is 
required for high affinity binding of CL to proteins[33]. 
Thus, alteration in molecular species composition of 
CL affects the activities of cytochrome c oxidase and 
other electron transport chain enzymes[29, 34]. However, 
the formation of the unique fatty acyl composition 
of CL does not occur during de novo biosynthesis, 
because the enzymes of the CL biosynthetic pathway 
lack appropriate substrate selectivity[35-37]. This 
is further confirmed by the recent cloning of the 
human CL synthase gene from our lab and others[38-40]. 
Thus, newly synthesized CL is believed to undergo 
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a remodeling process to achieve its appropriate acyl 
content.  In addition to CL synthesis, we have recently 
demonstrated that the human CLS1 is also involved in the 
remodeling of phosphatidylglycerol[41]. The recombinant 
hCLS1 protein expressed in COS-7 cells and Sf-9 
insect cells exhibited a strong acyl-CoA dependent 
lysophosphatidylglycerol acyltransferase activity[41].

Two distinct mechanisms have been posited to carry 
out the CL remodeling process. The first mechanism 
involves  t ransacylat ion of acyl groups  f rom 
phosphatidylcholine or phosphatidylethanolamine to 
CL, which is partly catalyzed by tafazzin, an enzyme 
that when mutated causes defective CL remodeling 
and Barth syndrome[18] (see below). The alternative 

pathway involves deacylation by phospholipase A2 to 
lysoCL followed by reacylation to CL by acyl-CoA 
dependent Lyso-CL acyltransferases (Fig. 2)[17]. Two 
acyltransferases has been characterized so far, and 
they differ in substrate specificity and intracellular 
localization. In the search for a gene encoding an 
acyltransferase responsible for CL remodeling, we 
have recently identified and characterized the first 
CL reacylation enzyme, named acyl-CoA:lysoCL 
acyltransferase (ALCAT1)[19]. The recombinant 
ALCAT1 enzyme is localized in endoplasmic 
reticulum and recognizes both MLCL and dilysoCL 
as substrates. The second acyltransferase was a 
monolysoCL acyltransferase initially purified from pig 

Fig. 2  Proposed remodeling pathway for CL. CL is first deacylated to monolysoCL by phospholipase A2 (PLA2), and then 
reacylated to CL with ALCAT. 

H2O        FA Acyl-CoA       CoA

Fig. 1  CL biosynthetic and remodeling pathways. The indicated reactions of CL biosynthetic pathway are catalyzed by 
the following enzymes: CTP-phosphatidic acid cytidylytransferase (CPC), phosphatidylglycerolphosphate synthase (PGS),  
phosphatidylglycerolphosphate phosphatase (PP), and CL synthase (CLS).  In addition to CL synthesis, CLS is also involved 
in phosphatidylglycerol remodeling by catalyzing acylation of lysophosphatidylglycerol (LPG) to phosphatidylglycerol.  
Phosphatidylglycerol remodeling can also by catalyzed by LPG acyltransferase (LPGAT1). The CL remodeling pathway is catalyzed by 
phospholipase (cPLA) and acyl-CoA:lysoCL acyltransferase (ALCAT).
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liver mitochondria, known as MLCL AT, that catalyzes 
the synthesis of tetralinoleoyl-CL (L4CL)[42]. The 
gene encoding MLCL AT has recently been identified 
to share the same sequence homology with the 
mitochondrial trifunctional protein[20]. In comparison 
to the MLCL AT, ALCAT1 lacks preference for 
linoleic acid as substrate, suggesting a possible role 
of ALCAT1 in pathological remodeling of CL[19, 20]. 
This is corroborated by our recent reports that 
ALCAT1 expression is up-regulated in mammalian 
cells exhibiting tetralinoleoyl-CL deficiency and in 
heart and liver of mice suffering from oxidative stress 
induced by hyperthyroidism[43]. However, it remains to 
be identified whether ALCAT1 plays a causative role 
in pathological remodeling of CL.

O X I D A T I V E  S T R E S S  A N D  C L 
PEROXIDATION

One of the common defects associated with 
metabolic diseases (diabetes, obesity, cardiovascular 
diseases), aging, and neurodegeneration is an 
increased level of oxidative stress. Increased level 
of ROS production has been implicated in the onset 
of mitochondrial dysfunction and is believed to the 
primary causes of diabetic complications[44].  CL is 
particularly sensitive to oxidation of its double bonds 
by ROS due to its location near the site of ROS 

production in the inner mitochondria membrane[28]. The 
mitochondrial electron transport chain is considered a 
major intracellular source of ROS including hydroxyl 
radicals, peroxy radicals, superoxides, and the 
dismutation product, H2O2 (Fig. 3). All of these ROS 
are generated both during physiologic respiration 
and during disrupted electron transport[28, 29]. Oxygen 
free radicals are highly reactive species capable of 
causing oxidation of CL, a process also known as 
lipid peroxidation. Non-oxidized CL is required 
for the mitochondrial bioenergetics and the activity 
of key mitochondrial proteins[28]. Consequently, 
CL peroxidation by ROS disrupts its binding with 
cytochrome c and affects the activity of complex Ⅰ, 
Ⅲ, and Ⅳ of the mitochondrial respiratory chain[45]. 
A burst of ROS damages mitochondria by causing 
profound loss of CL[46]. CL deficiency in ischemia 
and reperfusion results in mitochondrial dysfunction 
manifested by a decreased oxidative capacity, loss of 
cytochrome c, and generation of ROS. CL, but not 
its peroxidized form, is able to almost completely 
restore the ROS-induced loss of cytochrome c 
oxidase activity[47]. In support of a key role of CL 
peroxidation in mitochondrial dysfunction, CL is the 
only phospholipid that undergoes oxidation during the 
onset of apoptosis[21].
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Fig. 3  ROS and lipid peroxidation. ROS contain free radicals from atoms that have one or more unpaired electron(s) (right panel). 
The imbalance in electrons results in the high reactivity of the free radicals. The process of lipid peroxidation (left panel) begins 
with the ROS attack on double bounds of PUFA. The carbon radical tends to be stabilized by a molecular rearrangement to form a 
conjugated diene. Under aerobic conditions conjugated dienes are able to combine with O2 to produce a peroxyl radical, ROO-.
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PATHOLOGICAL CL REMODELING AS A 
COMMON DEFECT IN MITOCHONDRIAL 
DYSFUNCTION IN METABOLIC AND 
AGING-RELATED DISEASES

Bath Syndrome(BTHS)
One of the best examples that underscores the 

importance of CL remodeling in metabolic diseases 
is BTHS, an X-linked recessive disorder manifested 
by cardiomyopathy, skeletal myopathy, growth 
retardation, and neutropenia[48]. BTHS is caused 
by mutations in the tafazzin (TAZ) gene encoding 
an acyltransferase involved in the remodeling 
of phospholipids[49].  The lipid composition of 
cells from patients with BTHS shows a dramatic 

rearrangement
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decrease in CL levels and reduced incorporation 
of linoleic acid (18:2) into CL and its precursor 
phosphatidylglycerol, even though their biosynthetic 
capacity to synthesize CL remains unchanged[50,51]. 
In addition, tetralinoleoyl-CL, the most predominant 
CL species in mitochondria from normal skeletal 
and heart muscle, is almost completely absent in 
BTHS, whereas the content and the acyl composition 
o f  o the r  phospho l ip ids  a re  no t  a f fec ted [52 ]. 
Mitochondria of BTHS patients exhibit abnormal 
ultrastructure and respiratory chain defects in muscle 
and fibroblasts[48, 53].
Diabetes and obesity

Diabetes and obesity are characterized by systemic 
oxidative stress which is believed to be a principal 
causative factor of insulin resistance and other obesity-
related metabolic complications[44,54-57]. ROS production 
was significantly increased in obesity and diabetes from 
elevated expression of NADPH oxidase and decreased 
expression of antioxidative enzymes[55,56,58]. The level 
of superoxide dismutase, the enzyme responsible for 
inactivating the superoxide radical, along with the 
levels of antioxidants are decreased in uncontrolled 
diabetes[59]. Oxidative stress impaired glucose uptake in 
muscle and fat[60,61], and was recently shown to be the 
primary cause of various forms of insulin resistance[57]. 
Consistent with the notion of mitochondria as the 
primary source of ROS, employment of mitochondrial-
targeted antioxidants ameliorated insulin resistance 
associa ted  with  obes i ty  in  both rodents  and 
humans[54,57,62]. Many of the mitochondrial defects 
associated with diabetes were reversed by transgenic 
overexpression of catalase in mice[62].

Pathological CL remodeling contributes to the 
onset of mitochondrial dysfunction and metabolic 
complications associated with obesity. Diabetes 
and obesity are associated with CL depletion in 
myocardium and linked with altered substrate 
uti l ization and mitochondrial  dysfunction [22]. 
Defective CL remodeling in the diabetic heart 
results in enrichment of DHA (22:6n3) in CL[63], 
which is known to cause mitochondrial dysfunction. 
Accumulat ion of DHA and other  long  chain 
polyunsaturated fatty acid(PUFA) in CL increases 
oxidant production and mitochondrial proton leakage 
in cultured mammalian cells[64,65]. Treatment of 
diabetic mice with rosiglitazone, an insulin sensitizing 
drug, significantly increases CL levels and causes 
a substantial remodeling of CL toward an elevated 
linoleic acid (18:2n6) and a reduction of DHA 
content[63,66]. Such a shift is believed to improve 
electron transport efficiency and decrease proton 

leakage[31,65]. For example, when acyl composition 
of rat heart CL switched from 18:2n6 to 22:6n3, the 
activity of cytochrome c oxidase decreased by 50%, 
concurrent with a lower oxygen consumption rate of 
rat heart mitochondria[67].
Hyperthyroidism

Thyroid hormone is  a  major physiological 
modulator of oxidative stress and mitochondrial 
respiration[68]. Thyroid hormone has been shown 
to increase mitochondrial mass, mitochondrial 
cytochrome c content, respiratory rate, and capacity 
of oxidative metabolism[69]. Hyperthyroidism is 
associated with significant mitochondrial dysfunction.  
Cardiovascular tissues are particularly sensitive 
to ROS damage associated with hyperthyroidism, 
because of the high energy demand of the heart. For 
example, hyperthyroid hearts displayed tachycardia 
and low functional recovery. Their mitochondria 
exhibited higher level of H2O2 production and 
susceptibility to swelling during reperfusion[70]. Both 
the levels of CL and lipid composition are profoundly 
altered by thyroid hormone status. Hyperthyroidism 
and hypothyroidism reciprocally affect the level of 
oxidative stress, lipid peroxidation, CL synthesis and 
remodeling[71,72]. The hepatic and cardiac CL contents 
were elevated in rats treated by thyroxine, which was 
accompanied by an increase in CL synthase activity 
and level of ROS production[73,74]. Moreover, cardiac 
mitochondrial MLCL AT activity was stimulated 
in hyperthyroid rats[75], and decreased in rats made 
hypothyroid[76]. Consistent with increased level of 
ROS production, hyperthyroidism is associated with 
a marked loss of C18:2, concurrent with a significant 
increases in polyunsaturated fatty acids such as 
arachidonic acid (C20:4) and DHA (C22:6)[72].  These 
changes increased the double bond index by 27% 
and CL peroxidizibility by 266%, which is likely to 
contribute to the elevated level of oxidative stress 
associated with hyperthyroidism[77]. In support of a 
possible role of ALCAT1 in pathological remodeling 
of CL, ALCAT1 mRNA expression was significantly 
up-regulated by hyperthyroidism and down-regulated 
by hypothyroidism[78].
Heart Failure

Mitochondria in the adult mammalian heart have 
a tremendous capacity for oxidative metabolism, and 
the conversion of energy by these pathways is critical 
for proper cardiac function. Mitochondrial ROS in 
the heart has been reported to increase with age[79]. 
A number of endogenous mitochondrial antioxidant 
defenses may also diminish with age and thus reduce 
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strongly correlated with rates of formation of 
mitochondrial reactive oxygen and nitrogen species[89]. 
CL levels in the brain decrease with aging, which is 
likely to be caused by peroxidation from oxidative 
stress[96,97]. In contrast to metabolically active tissues, 
such as skeletal muscle and heart, the tetralinoleoyl 
CL is not the predominant form of CL in the brain, 
representing less than 5% of the total CL[98]. Hence, 
CL from mouse brain is dominated by long chain 
PUFA, including DHA (C22:6) and arachidonic 
acids (C20:4) which contribute to 40% of the acyl 
side chains of CL[98,99]. Although the biological 
significance of the acyl composition remains elusive, 
the high content in PUFA renders CL in the brain 
highly sensitive to oxidative damage. Consequently, 
traumatic brain injury has been shown to selectively 
increase the content of DHA in CL and cause CL 
peroxidation[100]. This selective CL peroxidation 
preceded peroxidation of other phospholipids and the 
onset of apoptosis[100]. Furthermore, mice with targeted 
inactivation of presynaptic protein, α-synuclein, a 
protein implicated in Parkinson's disease, exhibited 
CL deficiency and a reduction in both tetralinoleoyl 
CL content and mitochondrial complex Ⅰ/Ⅲ activity 
of the electron transport chain[99]. The knockout mice 
also exhibited deficiency of PG, the precursor for CL 
synthesis.

CONCLUSION
There is now a growing body of evidence that 

supports a causative role of pathological remodeling 
of CL in mitochondrial dysfunction in metabolic and 
neurological disorders and aging.  Collectively, the 
information presented in this review has implicated 
an important role of pathological CL remodeling 
as a missing link between oxidative stress and 
mitochondrial dysfunction associated with various 
pathological conditions, including diabetes, obesity, 
hyperthyroidism, heart failure, BTHS, neurological 
diseases, and aging (Fig. 4). Although much of the 
evidence accumulated thus far remains circumstantial 
and descriptive, the latest development in highly 
sensitive analytical methods for CL profil ing 
combined with major progress in the identification 
and cloning of genes encoding CL remodeling 
enzymes signals a new dawn of this exciting field 
of research.  It can be envisaged that pathological 
remodeling of CL might be the common denominator 
of mitochondrial dysfunction of all the aging-related 
diseases.  Consequently, targeting enzymes involved 
in pathological remodeling of CL by chemical 
compounds could provide novel treatments for 
metabolic diseases and aging.

the capacity for efficient management of ROS[80]. CL 
is one of the principle phospholipids in the mammalian 
heart, a tissue that has perpetually high energy 
demands and is particularly sensitive to oxidative 
stress and mitochondrial dysfunction. Consequently, 
CL deficiency in ischemia and reperfusion results in 
mitochondrial dysfunction manifested by a decrease 
in oxidative capacity, loss of cytochrome c, and 
generation of ROS[47,81,82]. CL, but not the peroxidized 
form, was able to almost completely restore the ROS-
induced loss of cytochrome c oxidase activity[47]. CL is 
also an immunogenic phospholipid, and development 
of anti-CL antibodies is associated with the onset 
of thrombosis[83]. Loss of cardiac tetralinoleoyl CL 
has recently been identified to be a major defect in 
experimental heart failure[84].
Aging

Oxidative injury of mitochondria impacts critical 
aspects of the aging process and contributes to 
impaired physiological function, and has been 
proposed as the primary cause of aging. Mitochondrial 
dysfunction plays a central role in a wide range of 
aging-related disorders and various forms of cancer, 
resulting in a reduced life span[85,86]. In support of a 
causative role of oxidative stress in aging, ROS levels 
and phospholipid peroxidation index are inversely 
correlated with life span, from mice to human[87-89]. 
Oxidative stress is also believed to contribute to an 
aging-associated decline in CL. Consistent with an 
increased level of ROS production, aging is associated 
with CL deficiency and profound remodeling of CL 
similar to that observed in metabolic diseases. Aging 
and physical exercise reciprocally affect mitochondrial 
and cardiac function by regulating CL levels in the 
heart. Exercise increases insulin sensitivity and the 
level of tetralinoleoyl CL, whereas aging decreases 
tetralinoleoyl CL level with concurrent increase in the 
DHA content in CL[25,26,84]. Aging has been shown to 
decrease CL content in heart, liver, and kidney. Aging 
related loss of CL impairs mitochondrial function by 
decreasing the activity of mitochondrial phosphate 
transporter, pyruvate carrier, adenine nucleotide 
transporter, and cytochrome oxidase, all of which 
requires CL for optimum activity[90-94]. These defects 
can be restored by supplementation of acyl-carnitine 
which is believed to restore CL levels[16].
Neurological Diseases

Oxidative damage of mitochondrial function is 
implicated in the neurodegenerative process, and 
contributes to the onset of Parkinson's and Alzheimer's 
diseases[95]. The rates of neurodegeneration are 
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