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Abstract

Sediment microbial communities are responsible for a majority of the metabolic activity in river and stream ecosystems.
Understanding the dynamics in community structure and function across freshwater environments will help us to predict
how these ecosystems will change in response to human land-use practices. Here we present a spatiotemporal study of
sediments in the Tongue River (Montana, USA), comprising six sites along 134 km of river sampled in both spring and fall for
two years. Sequencing of 16S rRNA amplicons and shotgun metagenomes revealed that these sediments are the richest
(,65,000 microbial ‘species’ identified) and most novel (93% of OTUs do not match known microbial diversity) ecosystems
analyzed by the Earth Microbiome Project to date, and display more functional diversity than was detected in a recent
review of global soil metagenomes. Community structure and functional potential have been significantly altered by
anthropogenic drivers, including increased pathogenicity and antibiotic metabolism markers near towns and metabolic
signatures of coal and coalbed methane extraction byproducts. The core (OTUs shared across all samples) and the overall
microbial community exhibited highly similar structure, and phylogeny was weakly coupled with functional potential.
Together, these results suggest that microbial community structure is shaped by environmental drivers and niche filtering,
though stochastic assembly processes likely play a role as well. These results indicate that sediment microbial communities
are highly complex and sensitive to changes in land use practices.
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Introduction

Water-saturated sediments that underlie a stream channel

(benthic and hyporheic zones), often harbor the majority of

biomass in a riverine system, primarily in the form of microbial

biofilms [1]. These sediment microbial communities dominate

riverine biogeochemical cycling and can be responsible for 76–

96% of total respiration [2–6]. Despite their importance, these

microbial communities are poorly characterized [7,8]. Mapping

the spatial and temporal distribution of taxonomic and functional

diversity in different lotic (river and stream) biomes, and

understanding how this diversity is modulated by environmental

and anthropogenic drivers, is vital for integrating microbes into

predictive biogeochemical models [9].

Initial culture-independent studies investigating sediment mi-

crobial phylogenetic structure (e.g. PLFA, TRFLP, DGGE, clone

libraries, etc.), have demonstrated that microbial communities are

extremely sensitive to changes in the physicochemical state of

freshwater sediments [10–13], and can be used as indicators of

ecological degradation [14]. Although few metagenomes have

been published from freshwater sediments [15], a handful of

recent studies have examined water-column-associated microbial

communities in river systems [16–18]. For example, signatures of

allochthonous carbon mineralization were found in an Amazonia

River metagenome [16], and novel functional genes have been

identified in these underexplored environments [17,18]. However,

given the limited number of datasets and their spatial and

temporal coverage, it is not yet possible to identify common

themes governing the composition and functioning of freshwater

communities, particularly those in river sediments.

Here we focus on the Tongue River, which flows out of the Big

Horn Mountains of Wyoming and into southeastern Montana,

past the Northern Cheyenne Indian Reservation, where it

eventually empties into the Yellowstone River near Miles City,

Montana. It passes through the geologically distinct Powder River

Basin [19], which contains significant coal and natural gas

deposits. Due to the geological heterogeneity and extensive fossil

fuel extraction in this region, the Tongue River provides a useful

model for understanding relationships between microbial taxo-

nomic and functional diversity and physical geography and human

land-use practices. Further, it allows us to test whether microbial

community structure is shaped primarily by environmental

selective factors or by stochastic fluctuations across space and time.
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Here we examine freshwater sediment microbial diversity and

function using replicated 16S rRNA amplicon sequencing (V4

region) and whole genome shotgun sequencing. We sampled six

locations spanning 134 km of river for two years, both spring and

fall seasons. Two main hypotheses were tested: first, that

phylogenetic and functional beta diversity vary with specific

environmental factors, rather than stochastically across space or

time [20]; and second, that land use practices such as coalbed

methane extraction and human settlements alter microbial

community structure and function in stream sediments.

Methods

Sample Collection
Six sampling locations (Fig. 1; Table S1) along ,140 km of

the river were sampled each Fall and Spring over a two year

period (October 2010/2011 and March 2011/2012). Spring and

fall time points were chosen for practical purposes (e.g. the river

was frozen over in winter), and because these seasons are

qualitatively different from one another (spring is characterized

by snow-melt and flooding, while fall is characterized by lower

flow rates and higher organic matter inputs). No specific

permission was required for sampling these sites, and no

endangered or protected species were involved in this study.

Spatial distance (in kilometers) between sampling sites was

estimated by tracing a path along the river using the ruler tool

in Google Earth (http://www.google.com/earth/) (Table S1). All

sites except B are downstream of the Tongue River Reservoir

Dam. Sites B, E and S are each downstream of small towns

(Ranchester, Birney, and Ashland, respectively). The B site is

closest to the Decker Coalmine, and downstream from irrigated

farmland. The C and BG sites are near coal bed methane

extraction wells, and extraction water is piped directly into the

river from adjacent wells. The W site is downstream of irrigated

farmland.

Temperature, conductivity, salinity, and dissolved oxygen were

measured in situ during sampling using a YSI85 probe (YSI

Incorporated, Yellow Springs, OH) and pH was measured in situ

using an UP-10 UltraBasic portable pH meter (Denver Instru-

ments, Denver, CO). Sample sites were selected at riffles, where

the water becomes shallow, with abundant fine-grained gravel.

Two replicate sediment samples (,15 g per sample) were collected

from the top 20 cm of the streambed at each site, and sieved using

sterile 2.36 and 1.76 mm sieves (stacked on top of one another), to

obtain a homogeneous sediment particle size [14]. Samples were

stored in sterile 50 mL centrifuge tubes on wet ice during transport

for up to 6 hours and then stored at 280uC at Chief Dull Knife

College (CDKC) prior to DNA extraction.

DNA extraction and Sequencing
DNA was extracted using the PowerSoil kit (MoBio, California,

USA), according to the manufacturer’s instructions, at Chief Dull

Knife College (Lame Deer, MT). Genomic DNA was stored at 2

20uC. Duplicate samples from all six sites and four time points,

were used for amplicon sequencing (excluding sites BG and B for

fall 2010, for a total of 44 amplicon samples; Supplemental Data

File 1). Samples from the 2010/2011 sampling year with sufficient

yield (at least 1 mg of gDNA) were also chosen for metagenomic

sequencing (Table S2; 25 total metagenomes). Amplicon

sequencing of the 16S rRNA gene V4 region was done using

Earth Microbiome Project (EMP) standard protocols at Argonne

National Laboratory (Argonne, IL), on the Illumina MiSeq

platform (http://www.earthmicrobiome.org/emp-standard-

protocols/). Shotgun metagenome library preparation and se-

quencing were carried out by HudsonAlpha (Huntsville, AL) on

the Illumina HiSeq-2000 platform (100 bp paired end; insert size

= 150 bp). Metagenomic data is publically available on the MG-

RAST server (MG-RAST IDs 4481969.3 - 4481980.3; Table S2).

Amplicon data can be accessed in the EBI database under

accession number ERP004510.

Sequence Data Processing
Amplicon Data. All amplicon sequence analysis was per-

formed using QIIME 1.6.0 [21]. A two-step open-reference

operational taxonomic unit (OTU) picking workflow was used, as

described in a previous study [22]. Briefly, reads were first

clustered with a reference database, in this case the December

2012 Greengenes database [23] pre-clustered at 97% identity.

Second, reads that did not group with any sequences in the

reference collection were clustered de novo. Clustering at 97%

identity was carried out using the UCLUST algorithm [24].

Representative sequences were chosen for each OTU (cluster

centroids) and aligned against the Greengenes core set with

PyNAST [25]. All OTUs whose representative sequences failed to

align were discarded. A phylogenetic tree was built from this

alignment using FastTree v2 [26], and taxonomy was assigned to

each representative sequence, and by extension to the entire OTU

cluster, using the RDP classifier [27] retrained on Greengenes.

The number of sequences per sample (after default quality filtering

and demultiplexing in QIIME) ranged from 55,444 to 88,272

(3,123,192 total). To obtain an equal number of sequences across

samples, the amplicon OTU table was resampled to an even depth

of 55,000 sequences per sample.

Shotgun Metagenome Data. Twenty-three samples were

shotgun-sequenced to a depth of 15–23 million reads, and two

samples were also sequenced to a higher depth (,60 million reads;

MG-RAST IDs 4481963.3 and 4481964.3). The two deeply

sequenced samples allowed us to test how sequencing depth

affected our results. Metagenomic data were quality-filtered and

annotated through the MG-RAST pipeline [28,29]. Processed

metagenomic data were downloaded using the matR package

(http://metagenomics.anl.gov) in R v2.15.2 [30]. For protein-

coding genes, annotations were based on SEED Subsystems L3

[31]. The metagenome table contained 18,990,778 annotated

reads, grouped into 474 functional categories. Functional anno-

tations were rarefied to 311,760 hits (SEED Subsystems L3

annotations, - each representing an individual sequence) per

sample, for all samples.

Predicted Metabolic Turnover Analysis (PRMT)
A PRMT analysis [32] was used to evaluate the community

metabolic potential between samples as a function of gene

abundances. Enzyme commission (EC)-based gene abundances

were extracted from the SEED Subsystems L3 annotations, as

described previously [31]. Gene abundances were quantile-

normalized and log2-transformed before analysis. The details of

this method are given in [32]. Briefly, sample enzyme gene

abundances are transformed by a weighted matrix of possible

metabolic reactions (the environmental transformation matrix

[ETM]) collected from the KEGG database (Ogata et al. 1999) as

of September, 2010, and then compared to a ‘reference’ sample,

which was also transformed by the ETM. This results in a set of

metabolites with attributed PRMT scores for a given sample.

Positive PRMT score values represent the consumption of a

particular metabolite, and negative scores represent the accumu-

lation of a particular metabolite. In this analysis, the ‘reference’

sample was an average of all samples, allowing PRMT scores to be

directly compared across samples. Because these scores were
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calculated relative to the average metagenome, they cannot

predict net production or consumption of each metabolite, only

the relative flux [32]. To interpret the PRMT scores, metabolites

were annotated back to KEGG functional pathways. For a given

sample, PRMT scores from replicates were averaged. For a given

KEGG pathway, the positive PRMT scores were summed to give

a ‘net positive’ PRMT pathway value and the negative PRMT

scores were summed to give a ‘net negative’ PRMT pathway

value. The ‘net difference’ or ‘pathway flow’ was found by adding

the ‘net positive’ and ‘net negative’ pathway values for each

functional pathway in the sample. To test differences among sites,

samples were grouped based on their location: ‘‘Coalbed’’ sites BG

and W are downstream from coalbed extraction wells; ‘‘Small-

town’’ sites B, E, S are downstream of small towns; and ‘‘Tongue

Reservoir’’ site C is downstream of the Tongue Reservoir. Groups’

‘pathway flows’ were compared for a particular pathway using a

Kruskal-Wallis test. Only significant (p,0.05) pathways are

discussed.

Statistical Analyses
All statistical analyses, dimensional reduction, and plot

construction were preformed using QIIME v1.6.0 and R v2.15.2

[21,30]. Beta diversity was estimated using the weighted UniFrac

metric for 16S rRNA amplicon data [33] and the Hellinger

transformation for shotgun metagenome datasets [34]. The

Hellinger metric, unlike Bray-Curtis, minimizes the contribution

of unshared factors (i.e. unique taxa/functions) to differentiating

samples.

Non-parametric analysis of similarity (ANOSIM) was used to

test for significant differences in community structure based on

categorical variables, while Mantel tests (permutation-based) were

used to test for significant correlations between community

composition and numerical vectors. Mantel tests were performed

using the Pearson product-moment correlation coefficient. BEST

analysis (http://cc.oulu.fi/,jarioksa/softhelp/vegan/html/

bioenv.html) was used to determine the optimal set of environ-

mental variables for explaining variation in microbial community

structure. Analysis of variance (ANOVA) was used to determine

whether there were significant differences in OTU or gene

abundances between samples or categories. Procrustes analysis was

used to determine whether the distributions of two equivalent sets

of samples based on amplicon and metagenome data were more

similar than could be expected due to chance alone [35]. Further

information on ANOSIM and BEST analyses can be found in the

documentation for the vegan package in R (http://cran.r-project.

org/web/packages/vegan/index.html).

Heatmap plots and hierarchical clustering were carried out

using the heatmap.2 function from the gplot package in R (http://

cran.r-project.org/web/packages/gplots/index.html).

Results and Discussion

Phylogenetic and Functional Diversity
In total, over all sites, 64,858 non-singleton OTUs (97%

similarity cutoff) were identified from 3,137,798 reads. Strikingly,

93% of these OTUs are ‘novel’ (i.e. not found in the December

2012 Greengenes database [23]). Compared to other environ-

ments sampled by the Earth Microbiome Project (EMP) at an

equivalent depth of sequencing (1,000,000 reads per sample), the

average OTU richness in Tongue River sediments is approxi-

Figure 1. Location of sampling sites along the Tongue River. The upper left inset panel highlights the study region in southeastern Montana.
The main panel shows a ,140 km stretch of the Tongue River (blue line) that was sampled for this study. The direction of water flow is south to
north. Notable features include the Tongue River Reservoir Dam (orange triangle), small towns (red dots), and the Decker Coalmine (blue square). The
sites are described further in the text (Methods). The satellite image was obtained from the USGS Map Viewer website (http://viewer.nationalmap.
gov/viewer/).
doi:10.1371/journal.pone.0097435.g001
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mately 48,000, while EMP marine sediment and soils – on

average, the most diverse biomes studied by the EMP – have

average richness values of ,19,000 and ,13,000, respectively

(www.microbio.me/emp). Thus, the Tongue River is the most

diverse ecosystem studied by the EMP to date. Moreover, the

proportion of novel diversity is higher in Tongue River samples

(93% of OTUs) than in any other environment analyzed by the

EMP; by comparison, only ,50% of marine sediment and ,40%

of soil OTUs are ‘novel’ (https://github.com/

EarthMicrobiomeProject/emp). This preponderance of ‘novel’

diversity reflects the poor representation of freshwater sediment

communities in existing sequence databases [36,37].

In addition to unprecedented taxonomic diversity, Tongue

River sediments also harbor extremely high functional gene

diversity, as revealed by shotgun metagenomics. Metagenomic

richness varied from 2,800–4,300 functional gene (SEED)

annotations per sample, higher than the metagenomic diversity

detected in a recent soil meta-analysis (1,200–2,500 functional

gene annotations per sample) using comparable techniques [38].

While soils are often recognized as the most heterogeneous and

diverse microbial ecosystems on the planet [39], recent work has

revealed that sediments and microbial mats are much more

diverse than previously thought [40]. Indeed, our results

demonstrate that river sediment microbial diversity rivals or

exceeds that of soil. As in soils, the high taxonomic and functional

diversity of Tongue River sediments is likely due to the

heterogeneous nature of the sediment environment.

Community Structure Varies Along Temporal, Spatial,
and Environmental Gradients

Average beta diversity distances were significantly smaller

within a site than between sites (ANOVA, p,0.0001; Fig. 2a).

BEST analysis [41] was used to construct the optimal multi-

parameter model for the amplicon data (parameters included in

the calculation: distance, temperature, DO, salinity, conductivity,

and pH). After 1000 permutations, a two-parameter model

produced the highest correlation statistic, with distance between

sites and salinity as the most important variables (rho = 0.385).

Individually, both salinity and distance were significantly corre-

lated with community structure (Mantel-p ,0.01). Spatial distance

produced the optimal single-parameter model for explaining the

variance in community structure (rho = 0.377), indicating that sites

nearest in space were also most similar in community structure.

When distance was removed from the analysis, salinity provided

the most explanatory power as a single parameter (rho = 0.197).

However, even when controlling for changes in salinity, spatial

distance remained the strongest correlate with beta-diversity

distance (partial Mantel, controlling for salinity: r = 0.29,

p = 0.001). It is difficult to say how much of this correlation with

distance represents neutral community assembly processes (e.g.

dispersal limitation), and how much is confounded by qualitative

(land use practices and geological heterogeneity) and quantitative

(physical and chemical) site characteristics that differ along the

river and often co-vary among adjacent sites. For example,

adjacent sites E and S are both downstream from small towns, as is

site B, at the opposite end of our transect. Sites W and E are

adjacent and both downstream from irrigated farmland (as is site

B); sites BG and C are both close to coalbed methane extraction

wells. Future work to tease apart the contributions of spatial

proximity and shared environmental characteristics will require

intensive sampling of physicochemical parameters along the

transect.

Although samples were collected in both Spring and Fall, season

did not appear to be a strong driver of community structure.

There was no significant difference between spring (5–13uC) and

fall (6–16uC) temperatures (ANOVA p.0.1; Table S3). Likewise,

there was no significant correlation between season and commu-

nity structure (ANOSIM p.0.3; Fig. 2b; weighted UniFrac).

However, community structure and time did show a significant

relationship (i.e. collection date over the two-year sampling period;

Mantel r = 0.14, p = 0.004), and this relationship may be driven in

part by a significant positive correlation between salinity and time

(Mantel r = 0.12, p = 0.03).

Specific Taxa Vary with Environmental and
Anthropogenic Drivers

A large number of individual taxa (337 OTUs) showed

significant differences in abundance across sampling locations

(ANOVA, Bonferroni-corrected p,0.05). Some of these OTUs

were completely novel and could not be assigned even to phyla

(n = 55, 16%). Of the remainder, 51% were Proteobacteria, 10.6%

Acidobacterium, 6.7% Bacteroidetes, 6% Planctomycetes, 5% Nitrospira,

3.9% Verrucomicrobia, 3.5% Chloroflexi, and 3.1% candidate phylum

WS3, along with several low-abundance phyla that together

represented 10.2% of the OTUs. Figure 3 shows the behavior of

the 85 most abundant OTUs ($500 reads) that differed

significantly in abundance among sites. Several clusters of taxa

showed markedly higher abundance at a single site: clusters 1 and

4 at site B, the furthest upstream, including particular members of

Methylophilaceae, Burkholderiales, and Sphingobacteriales; clusters 3, 6,

and 10 at site C, just downstream of the reservoir; and clusters 5

and 9 at site BG near the coalbed methane extraction wells,

including members of the Betaproteobacteria and Chromatiales

(purple sulfur bacteria). Overall, OTUs more abundant at the BG

site fell into the Proteobacteria, Acidobacteria, Nitrospirae, and GN04

phyla (Fig. 3). One large cluster of OTUs (cluster 12, Fig. 3)

increased in abundance along the transect (upstream to down-

stream), peaking at the final site. This pattern mirrors an increase

in salinity and human population density at the downstream sites

and leads to the hypothesis that these taxa may be sensitive to

these dual gradients. Finally, two OTUs from the Crenarchaeaceae

family (within the Thaumarchaeota) were found in highest abun-

dance at the E and S sites (varying as much as 13-fold across the

sample sites), which are both downstream of small towns (Birney

and Ashland, respectively; see cluster 7 in Fig. 3). The

Thaumarchaeota include autotrophic ammonia oxidizers, which

suggests potential ammonium oxidation downstream of Birney

and Ashland. No individual OTUs were significantly correlated

with DO or pH, and only four OTUs were significantly correlated

with salinity (ANOVA, Bonferroni-corrected p,0.05). However,

these results may be overly conservative, due to the multiple-test

correction. Nonetheless, this suggests that dispersal and/or

unmeasured environmental factors that vary across sites are

stronger drivers of OTU abundance in this system than measured

physicochemical parameters.

Microbial Functional Potential Varies Along
Environmental Gradients and with Land Use Practices

As with taxonomic composition, community functional gene

composition was significantly correlated with distance (Mantel

R = 0.34, p = 0.015), but not with season. Again, the correlation

with spatial distance may be due to a combination of dispersal and

environmental filtering processes. There were no individual

functional categories (SEED Subsystems L3) that differed signif-

icantly between seasons. Across sites, however, there were 37

functional categories that showed significantly different abundanc-

es (ANOVA, Bonferroni-corrected p,0.05; Fig. 4). Figure 4
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shows the abundance patterns of functional genes that vary

significantly across sample locations (ANOVA, Bonferroni-cor-

rected p-value ,0.05), grouped by hierarchical clustering. Most of

the differences were due to the E site, which had higher

abundances of over 20 functions, including oxidative stress

tolerance genes (Table S4), DNA repair enzymes, and Staphylo-

coccus phage genes and pathogenicity islands. The E site is located

directly downstream of a small town and a saline tributary

(Hanging Woman Creek), which may explain why it is so

divergent from the other sites. There was a cluster of DNA repair

and replication genes, along with a DNA competence pathway,

which all exhibited similar behavior across sites (highest abun-

dances at the E site; Fig. 4), which could suggest higher rates of

horizontal gene transfer at the E site. Archaeal RNA polymerase

was found to be most abundant at the E site, suggesting higher

levels of archaeal abundance there (Fig. 4), consistent with the

amplicon data. In addition to site E, sites B and S also showed

enrichment in putative human-associated functions (staphylococ-

cal prophage genes; SaPI) (ANOVA, Bonferroni-corrected p-value

,0.05). This is not surprising, as B, E and S sites were all located

downstream from human settlements. SaPI (pathogenicity island)

genes behaved similarly to genes coding for bacterial transcription,

ATP production, and chaperones at the E and S sites (Fig. 4),

suggesting correlations with gene expression, energy metabolism,

and stress response. Alkylphosphonate utilization genes were

higher in abundance through the middle-stretch of the Tongue

River (Fig. 4), downstream from coalbed methane extraction

wells. This may reflect the fact that phosphonates are known

constituents of a foam that is used to clear coal bed methane well

pipes [42], and we observed the water from these wells being piped

directly into the Tongue River. Ammonia assimilation potential

was lower above the reservoir and was consistently higher at all

sites downstream of the dam. This relative increase in ammonia

assimilation genes was complemented by a significant decrease in

nitrogen fixation genes (ANOVA, p,0.05) and a non-significant

trend showing higher levels of nitrate utilization pathways and

ammonification functional potential downstream of the reservoir.

If community structure and functional gene complements co-

vary across space and time, it suggests that particular functions are

coupled to particular taxa, indicating that there is phylogenetic

conservatism of functional traits. To test this, we compared the

core amplicon 16S rRNA community structure (only those taxa

that were abundant [.200 reads] and present across all samples)

and the functional gene structure (based on Hellinger distances

calculated from abundance counts of SEED L3 annotations across

samples) via Procrustes analysis. We used the core community

amplicon data (which also reflects the most abundant taxa), rather

than the total community, because our shotgun metagenomes only

capture the most abundant taxa. Procrustes analysis revealed that

patterns in the taxonomic structure and functional potential were

significantly similar to one another (Fig. S1; M2 = 0.491, p,

0.043), although there was a large average distance between

equivalent points (indicated by a high the M2 value). The high M2

value suggests considerable functional variation at the strain level,

in addition to large-scale phylogenetic conservatism. This result

appears to be consistent with recent work based on whole

genomes, showing that certain metabolic functions are strongly

coupled to organismal phylogeny (e.g. oxygenic photosynthesis),

while others functions seem to be almost completely decoupled

from phylogeny (e.g. carbon substrate metabolism) [43].

To further understand patterns in functional gene diversity

along the transect, we used Predictive Relative Metabolic

Turnover (PRMT), which predicts the relative turnover of

metabolites based on functional gene abundances. This analysis

generated 2205 predicted metabolites, associated with 264 KEGG

pathways. For each pathway, ‘net pathway flow’ was predicted (see

Methods), which is a function of the total consumption and

production of all the metabolites in a given pathway, relative to the

Figure 2. Principal coordinate plot (PCoA) of weighted UniFrac distances between Tongue River amplicon samples. Panel A is colored
by sample location: sites B (blue), C (orange), BG (red), W (yellow), E (green), S (purple). Panel B is colored by season: fall (red) and spring (blue).
doi:10.1371/journal.pone.0097435.g002
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Figure 3. Relative abundance profiles of 85 abundant OTUs (more than 500 reads each) whose abundance varies by site (ANOVA,
Bonferroni-corrected p,0.05). For each OTU, abundance across sites is normalized to give a mean of zero and a standard deviation of 1.0 (Z-
scores denote the number of standard deviations from the mean in either direction). Dendrogram on the left represents the results of hierarchical
clustering of OTUs. Grey boxes indicate clusters of OTUs with similar abundance patterns (identified as clusters #1–12). Pie charts show relative
proportion of phyla within each cluster. Yellow represents higher normalized abundance and red represents lower normalized abundance.
doi:10.1371/journal.pone.0097435.g003

Figure 4. Relative abundance patterns of 37 functional groups (SEED Subsystems L3) that fluctuate significantly across sites
(ANOVA, Bonferroni-corrected p,0.05). For each function, abundance across sites is normalized to give a mean of zero and a standard
deviation of 1.0 (Z-scores denote the number of standard deviations from the mean in either direction). Dendrogram shows hierarchical clustering of
functions based on profile similarity across sites. Yellow indicates higher abundance, while red represents lower abundance.
doi:10.1371/journal.pone.0097435.g004
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average metagenome (all samples pooled together). Net pathway

flow values were then compared across groups of sites (‘Small-

town’, ‘Tongue Reservoir’, and ‘Coalbed’; Fig. 5). Thirty-three

pathways had statistically significant differences in predicted net

pathway flow (p#0.05) between groups of sites. Net positive flow

(i.e. metabolite consumption) was significantly higher for an

antibiotic metabolism pathway, butirosin and neomycin biosyn-

thesis, in the Smalltown group, relative to the other groups (mean

net flow 1.66, compared with 1.16 and 0.15 for Tongue Reservoir

and Coalbed groups, respectively; p = 0.018). This result implies

that the metabolic potential for antibiotic metabolism was higher

near small towns, which may be due to the anthropogenic release

of antibiotics into the ground water. Two pathways of carbohy-

drate metabolism, glyoxylate and dicarboxylate metabolism and

the citric acid (TCA) cycle, both had higher positive pathway flow

in the Tongue Reservoir site compared to the other groups of sites

(p,0.01) (Fig. 5), indicating higher relative flux through these

pathways directly downstream of the reservoir. Pathways related to

aromatic compound and hydrocarbon degradation also differed

among sites, including Polycyclic aromatic hydrocarbon degrada-

tion, Nitrotoluene degradation, Naphthalene family, and Xylene

degradation. In particular, Polycyclic aromatic hydrocarbon

degradation showed much higher relative fluxes in the Smalltown

and Coalbed groups than in the Tongue Reservoir site. These

model results suggest that hydrocarbons are traveling downstream

of the Decker coalmine, where they are being metabolized by the

microbial community. Similarly, build-up of coal-tar associated

metabolites [44,45] was predicted at the Tongue Reservoir site, in

close proximity to the Decker Coalmine, by pathway flow values

for Nitrotoluene degradation and Benzoate degradation (mean net

flow of 25.43 and 29.048, respectively), suggesting that coal

substrates were present in the river.

The Core Community and Wider Community Exhibit
Similar Ecological Patterns

The core microbial community – OTUs present in all samples –

consisted of 434 OTUs, which accounted for 49.9% of the reads in

the original data set. As shown previously for marine ecosystems

[22], these core OTUs were also all abundant (.200 reads),

suggesting that our ability to detect even more core community

members will increase with deeper sequencing. Moreover, the

community structures of the core taxa and of the full dataset were

highly correlated (Fig. S2; Procrustes analysis M2 = 0.037, p,

0.0001), which would not be expected if beta-diversity patterns

were driven by endemic taxa at particular sites along the river.

This result suggests that these sediments are similar enough in

environmental parameter space to select for a consistent set of

taxa. Further, because of the large amount of rare diversity present

in this system, it is unlikely that this core set of OTUs is assembled

by stochastic processes, as they are consistently selected for across

Figure 5. Net pathway flow analysis for Tongue River sediments. Nodes on the exterior (gray circles) are KEGG pathways that contain the
metabolites predicted from PRMT analysis. Central nodes represent sample sites, grouped into Coalbed (sites BG, W; green), Smalltown (sites B,E,S;
pink), and Tongue Reservoir (site C; blue). Edges between sites and pathways represent the average flow for that pathway across the given sites. Edge
width is the magnitude of the flow; darker colors represent positive average flow, while lighter colors are negative average flow. Exterior pathway
nodes are scaled according to their p-values (i.e. the significance of their deviation from the average metagenome), where larger nodes represent
smaller p-values.
doi:10.1371/journal.pone.0097435.g005
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the transect, which suggests niche filtering. The most abundant

OTU (also a core taxon shared across all sites) was classified in the

order Rhodocyclales, which contains many metabolically versatile

taxa that are often involved in xenobiotic degradation or alkane

metabolism; organisms from this order are commonly used for

remediation of contaminated substrates [46]. This organism was

the most abundant taxon at all sampling locations, but its

abundance was highest at the upstream sites (B, C, and BG),

peaking in site C. Sites B, C, and BG are the most proximate sites

to the Decker Coalmine.

There were 95 functional groups (SEED Subsystems L3) present

in all the metagenome samples, together comprising the core

metagenome. Most of the abundant functions were the same

between the core and full data sets (Fig. S3). This result is

consistent with the amplicon analysis, and indicates that, in

addition to phylogenetic structure, the differences in functional

potential between sites are predominantly due to changes in the

relative abundances of a shared set of core functions. Together, the

core community analyses show that changes in the phylogenetic

and functional composition of these microbial communities are

driven predominantly by ubiquitous taxa, and that ‘endemic’

microbes – present at a subset of sites – have little influence in

determining the overall community structure.

Conclusions
Given the sensitivity of sediment microbial communities to

changes in physicochemical parameters, we hypothesized a strong

dependence of microbial community structure and function on

environmental parameters – i.e. environmental niche filtering. In

support of this hypothesis, we found a significant, albeit weak,

coupling between phylogeny and functional potential and a

consistent core community of abundant taxa, suggesting that the

distribution of particular taxa is driven by their metabolic

capabilities in response to environmental drivers. However, the

large amount of unexplained variance in the phylogeny/function

correlation, along with significant correlations between distance

and community composition, both hint at a role for neutral

processes in structuring these sediment communities. In order to

better understand the relative contributions of stochastic and

deterministic processes in microbial community assembly in this

system, a more controlled experiment with measurements of a

larger diversity of environmental factors will be necessary. As for

our second hypothesis – that land-use practices are an important

driver of sediment microbial communities – we indeed found

evidence for human impacts on community structure and function

in stream sediments. Genes associated with pathogens (e.g.

Staphylococcus phage genes) were more prevalent downstream from

towns, and PRMT analysis predicted positive pathway flow for

antibiotic metabolism in these sites as well. Moreover, we found

evidence that resource extraction activities influence microbial

community functional potential, with larger numbers of genes

involved in phosphonate metabolism near coalbed methane

extraction wells and a build-up of hydrocarbon-associated

metabolites downstream of the Decker Coalmine.

Overall, we identified several environmental and anthropogenic

drivers that help shape lotic sediment microbial community

structure and functional potential. Our results suggest that both

deterministic and stochastic forces are important for community

assembly, and that beta diversity differences between sites are

predominantly due to changes in the relative abundances of a

shared core community. While much work remains to be done to

assess the drivers of freshwater community structure and function,

this work demonstrates the utility of metagenomic and amplicon

sequencing for understanding human impacts on freshwater

ecosystems.

Supporting Information

Figure S1 Procrustes analysis, comparing 16S rRNA-
based community structure to functional gene commu-
nity structure. Each circle represents either the taxonomic or

functional dataset; lines connect the two points for each sample.

Colors: B.spring (red); C.fall (orange); C.spring (green) BG.spring

(blue); W.spring (pink); W.fall (aquamarine); E.spring (purple),

S.spring (yellow).

(TIF)

Figure S2 PCoA of the core Tongue River community
overlaid with PCoA of the full data set (amplicon data).
Equivalent samples are connected by a black edge, which denotes

the distance between these points in the transformed coordinate

space. Points are colored by site: B (blue), C (orange), BG (red), W

(light blue), E (green), S (yellow), and pooled data across all sites

(purple).

(TIF)

Figure S3 The top 30 most abundant functional groups
in the combined (all data) and core (only functions that
are shared across all sites) metagenomes.

(TIF)

Table S1 Sampling location coordinates, and distances
between sites along the path of the river.

(XLSX)

Table S2 Metagenomes sequenced for this study,
showing MG-RAST identifier, site, season, and replicate
information. The bold MG-RAST IDs show the deeply

sequenced samples (,60 million reads per sample; compared to

,20 million sequences for the other samples).

(XLSX)

Table S3 Environmental metadata for Tongue River
samples.

(XLSX)

Table S4 Average relative abundance of 37 functional
groups (SEED Subsystems L3) that differed significantly
between sites.

(XLSX)
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