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Nitrofuran antibiotics have been widely used in the prevention and treatment of animal
diseases due to the bactericidal effect. However, the residual and accumulation of their
metabolites in vivo can pose serious health hazards to both humans and animals. Although
their usage in feeding and process of food-derived animals have been banned in many
countries, their metabolic residues are still frequently detected in materials and products of
animal-derived food. Many sensitive and effective detection methods have been
developed to deal with the problem. In this work, we summarized various
immunological methods for the detection of four nitrofuran metabolites based on
different types of detection principles and signal molecules. Furthermore, the
development trend of detection technology in animal-derived food is prospected.
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1 INTRODUCTION

Animal-derived foods, including livestock and poultry meat, eggs, aquatic products, milk and dairy
products, are the main source for people to intake high-quality proteins, essential amino acids,
minerals, vitamins and biologically active peptides. (Berner et al., 1985; Sampels, 2014). Over the past
few decades, domestic animals have been infected by bacteria in the process of animal growth and
breeding, due to factors such as non-standard environmental sanitation on farms and insufficient
professional ability of farmers. Nitrofuran antibiotics can kill or inhibit germs, including Gram-
positive bacteria, negative bacteria, pathogens, and are often used to treat animal diseases such as
urinary and intestinal bacterial infections (Pontes and Groisman, 2020), or preventing diseases by
being added to animal feeds.

Nitrofurans are a class of broad-spectrum antibiotics, mainly including furazolidone (FZD),
nitrofurazone (NFZ), furaltadone (FTD), and nitrofurantoin (NFT). The structures are shown in
Figure 1. They are used for promoting animal growth, treating poultry, and are very effective against
gastrointestinal tract diseases and skin diseases of aquatic animals (Yu et al., 2013; Bacanli and
Başaran, 2019). Due to the good effectiveness and low-cost investment there are often cases of
excessive or illegal addition of these antibiotics. After acting on animals, such drugs can enter the
bacterial cytoplasm, interfere with bacterial protein synthesis and sugar metabolism, and play a role
in the antibacterial therapy (Calvo and Martínez-Martínez, 2009). Although the parent drugs
metabolize rapidly in vivo, the metabolites which bind to tissue proteins in the form of complexes
cannot be further metabolized, resulting in a large amount of metabolites remaining in the body.
Studies have shown that the metabolic complexes accumulated in the body can induce cell
carcinogenesis and affect animal health (Gong et al., 2020; Melekhin et al., 2021). The
metabolites in animal body are relatively stable during storage and conventional cooking
(Cooper and Kennedy, 2007). Common food processing methods (including grilling, microwave
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processing, cooking) are difficult to degrade the protein-bound
metabolites, which are harmful to human healthy, in large
quantities (Kennedy et al., 2000). Therefore, strict monitoring
and detection of nitrofuran drugs and their metabolites residues
in food are required.

Compared to the parent drugs, the metabolites are often
employed as markers for the detection of nitrofuran antibiotics
because of their long-term stability. The detection markers of
furazolidone, nitrofurazone, furaltadone, and nitrofurantoin are

3-amino-2-oxazolidinone (AOZ), semicarbazide (SEM), 3-
amino-5-morpholinomethyl-1, 3-oxazolidinon (AMOZ) and 1-
aminohydantoin (AHD), respectively. The corresponding
relations between nitrofurans and their metabolites, and their
structures are shown in Figure 2. Furazolidone, furaltadone and
nitrofurantoin are the only sources of their corresponding
metabolites, indicating that we can detect the residues of AOZ,
AMOZ, and AHD to reflect the amount of the parent drugs.
However, the sources of SEM are diverse. There are three proven

FIGURE 1 | Schematic diagram of the detection methods of nitrofurans and the delivery process in the food chain.

TABLE 1 | Comparison of various immunization methods (Yan et al., 2020a; Wang et al., 2018c; Zhang et al., 2018; Yang et al., 2012).

Detection
Method

Advantage Insufficient External
Light

Source

Interpretation
of Results

Detection
Time

LOD Sample
Matrix

References

ELISA Simple, high,
sensitivity

Professional operation, Prone
to false positives and false
negatives, low repeatability

No Enzyme labeled
instrument

2.5–3 h 0.01 pork liver Yan et al.
(2020a)μg/L

LFIA Simple, fast low sensitivity, Prone to false
positives and false negatives

No Naked eye/Reader 15–30 min 0.5–0.75 μg/
L

fish,
chicken

(Wang et al.,
2018c)

FIA High, Sensitivity,
Reagent safety

High requirements for
instruments, Unstable reagent

Yes Fluorescence reader 15–30 min/
2.5–3 h

0.021 μg/L fish,
shrimp

Zhang et al.
(2018)

CLIA high sensitivity,
Wide linear range

Short luminescence process,
High background value

No Chemical luminescence
immunity analyzer/
Ammeter

15–30 min/
2.5–3 h

0.09 μg/L shrimp Yang et al.
(2012)
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sources of SEM: first, it can be produced by the metabolism of
nitrofurazone; second, it is naturally present in small amounts in
some algae, shrimps and eggs; third, azodicarbonamide or
hypochlorite added in flour, canned food and dairy products
can be chemically changed in reactions to form SEM during
processing (Hoenicke et al., 2004). Therefore, it is not rigorous to
use SEM as a detection marker for nitrofurazone, but there are no
better substitutes until now. Due to their potential health risks, it
is not only necessary to strictly inspect the situation of nitrofuran
drug residues, but also to strengthen controls at the source.

Since 1995, the European Union, the United States, China,
Japan and many other countries have enacted laws and
regulations to ban the use of nitrofuran antibiotics in food
animals one after another (Khong et al., 2004; Chu et al.,
2008). However, due to the effectiveness and low cost of
nitrofurans in animal disease control, unscrupulous traders
were still found using them illegally in defiance of the explicit
ban. In 2003, the EU established a minimum required
performance limits (MRPL) of 1 μg/kg. The MRPL value
represents the highest level of drug residue that is legally
tolerated in food. The European Commission will notify the
exporting country and take appropriate measures if the same
source or the same banned substance is found four or more times

within 6 months (Vass et al., 2008). In 2015, Reference Point for
Action (RPA) was established instead of the MRPL.

Currently, the RPA for nitrofuran metabolites is reduced to
0.5 μg/kg in accordance with the latest regulation 2019/1871/EC,
which will take effect in 28 November 2022. According to Chinese
latest limited standard GB 31650–2019, detectable AOZ, SEM,
AMOZ and AHD are not permitted in chicken meat. Despite strict
legislation both at home and abroad, there are still related food
safety incidents occurring frequently. The regulatory system needs
continuously improving, and the detection methods and
technologies need constantly updating to meet higher detection
requirements, especially on sensitivity and speed.

The commonly used domestic and international detection
methods are the instrumental methods and the rapid
immunoassay. The instrumental methods have high accuracy,
but the equipment is large, expensive and complex to operate.
They are suitable for the detection and verification of high
requirements for accuracy and sensitivity. The existing
instrumental detection methods are mainly based on
chromatography (Beek and Aerts, 1985; Wang et al., 2020),
chromatography-mass spectrometry (Zhang et al., 2016;
Guichard et al., 2020), and fluorescent materials are combined
to improve detection sensitivity (Yu et al., 2018; Luo et al., 2019).

FIGURE 2 | The structures of nitrofurans, their metabolites and commonly used derivatives. (A) Themetabolism and derivation process of FZD; (B)metabolism and
derivation process of NFZ; (C) metabolism and derivation process of NFT; (D) metabolism and derivation process of FTD.
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Immunoassay and instrumental methods complement each
other. Mostly, immunoassay is one of the most commonly used
methods for the rapid quantitative detection (Gao et al., 2018).
There are many representative products, such as early pregnancy
test strips, etc. Compared to large instrumentation, the
components of the immunoassay are relatively simple,
requiring lower expertise and operational ability of the
operator. Immunoassay have the advantage of low cost, and
are popular and suitable for the screening of large quantities
of samples (Vázquez et al., 2021). The characteristics of the main
immunosensors we have summarized in Table 1. In this paper,
we have summarized and discussed the immunological methods
for the detection of nitrofuran antibiotics in animal tissue, and
systematically classify the existing detection methods according
to different principles and signaling molecules, expecting to
promote the development of immunological detection
techniques for nitrofurans.

2 THE KEY RECOGNITION ELEMENTS

2.1 Antigen Synthesis
The key recognition elements in biosensors are mostly antigens
(Ag) and antibodies (Ab), as well as aptamers, molecularly
imprinted polymers (MIP), etc. Immunoassays based on
antigen-antibody specific reactions have been widely used for

the detection of a wide range of compounds in the environment,
food and other fields. In the immunoassay process, the most
important reaction recognition element is the antibody. The
commonly used antibody format is IgG, which detects the
intended targets qualitatively and quantitatively by binding to
a specific epitope. Usually, the higher the affinity of the antibody
and the more stable it is, the higher the sensitivity of the method is
(Cooper et al., 2017c). The key factor affecting the quality of the
antibody is the structure of the antigen, involving the
hydrophobicity (Baldofski et al., 2018), size and structure of
the incomplete antigen (Cooper et al., 2017b). Therefore, the
basis and key to developing highly sensitive immunoassays is to
obtain antigens and antibodies with high affinity and high
specificity (Dengl et al., 2016; Guillermo et al., 2019). The key
to develop antibodies with desired affinity and specificity is
hapten design (Shao et al., 2021). Since the molecular mass of
nitrofuran metabolites is less than 1,000 Da, they are small
molecule compounds that are not immunogenic and cannot
easily bound to carrier protein (Cooper et al., 2017b).
Therefore, when preparing antigens and assays, derivatization
is usually performed first to increase the molecular mass and
metabolite ionization efficiency before assaying and binding to
carrier proteins. Because the derived hapten wasmuch larger than
AOZ, it possessed enhanced immunogenicity, as well as a
carboxyl group that allowed it to be conjugated to a carrier
protein (Cooper K. M. et al., 2017). The commonly used

FIGURE 3 | The main principle diagrams of various immunoassays. (A) the main principle and operation process of ELISA; (B) the main principle and operation
process of LFIA; (C) the main principle and operation process of FIA; (D) the main principle and operation process of CLIA.
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derivatization reagents are 4-carboxybenzaldehyde (4-CBA), 2-
nitrobenzaldehyde (2-NBA), 4-nitrobenzaldehyde (4-NBA), etc.
Leitner et al. (Leitner et al., 2008) compared the derivatives
produced by 2-NBA and 4-NBA, and the results showed that
the derivatization of 2-NBA was more effective with an efficiency
greater than 70%. In the preparation of immune antigens and
solid phase antigens, the commonly used carrier proteins are
bovine serum protein (BSA), ovalbumin (OVA), and keyhole
limpet hemocyanin (KLH). The method of coupling to the carrier
protein depends on the structure of the incomplete antigen.
When using CBA as a derivative, the activated ester method
(Chang et al., 2008), carbodiimide method (Le and Yu, 2015; Liu
et al., 2015) and mixed acid anhydride method (Cooper et al.,
2004) can be used for antigen synthesis. Glutaraldehyde and
diazotization methods can be used to obtain antigens when NBA
derivatization is used.

2.2 Antibody Preparation
Obtain relevant specific antibodies by immunizing animals with
antigens, its performance was characterized by enzyme-linked
immunoassay (ELISA) in liquid phase system. The binding ability
of antibodies to compounds can also be studied through
computational chemistry analysis, which provides 3D
conformational and quantitative information such as
conformation, electrostatic potential, and molecular
hydrophobicity (Shao et al., 2021). In 2007, Cooper et al.
successfully prepared the first polyclonal antibodies against
SEM and AOZ (Cooper et al., 2004; Cooper et al., 2007). In
the same year, anti-AHD polyclonal antibodies were also
produced by Liu et al. (Liu et al., 2007). However, polyclonal
antibodies can bind to antigens with different epitopes and are
prone to cross-reactivity, so they cannot meet the requirements of
highly sensitive detection methods because of their low
specificity. Subsequently, Gao et al. developed a monoclonal
antibody (McAb) against SEM by derivatizing SEM with 4-
CBA and preparing an immunogen or coating antigen in
combination with bovine serum albumin (BSA) and
ovalbumin (OVA), and the monoclonal antibody obtained was
highly specific for CPSEM with an IC50 value of 1.3 μg/L (Gao
et al., 2007). Monoclonal antibodies produced by a single parental
cell bind only to the same epitope of the same antigen with higher
specificity and sensitivity (Zhou et al., 2021), and immunoassays
based on these antibodies are more sensitive, and after the cell
lines are obtained, the corresponding monoclonal antibodies can
be prepared indefinitely when stored properly (Li et al., 2020).

3 RESEARCH PROGRESS OF
IMMUNOSENSORS

The main immunosensor methods based on the antibody for
nitrofuran detection was divided into optical and electrochemical
immunosensors according to the current literatures. The optical
immunosensor included ELISA, lateral flow
immunochromatography (LFIA), fluorescence immunoassay
(FIA), chemiluminescence immunoassay (CLIA), and surface-
enhanced Raman scattering (SERS) immunoassay (Meng and Xi,

2011). A immunosensor commonly comprised of four parts,
which were immunological bio-recognition element (iBRE),
transducer, amplifier, and detector. The key characters of iBRE
were in accordance with the recognition of antigens and
antibodies. The interaction of BRE with its target generated a
readable signal which converted from the transducer (Chandra,
2016).

3.1 Optical Immunosensor
3.1.1 ELISA
ELISA was firstly developed by Engvall and Perlmann in 1971 and
was the most classical label-free liquid phase immunoassay
(Engvall, 1971; Aydin, 2015). According to the classification of
competition principle, it can be broadly splited into two types,
competitive ELISA and non-competitive ELISA (Bai et al., 2021).
Small molecules, likemetabolites of nitrofuran antibiotics, are often
detected using competitive ELISA. For example, during the
detection of Nitrofural, SEM and the encapsulated antigen
compete to bind the detection antibody, and then an enzyme-
labeled secondary antibody that can bind to the detection antibody
and a colorless substrate which can produce coloration under
enzyme catalysis are added, so that the presence of the target can be
determined qualitatively and the concentration of the target can be
determined quantitatively after the coloration is measured by an
microplate reader (Thiha and Ibrahim, 2015). The enzymes that
can be used in ELISA include horse radish peroxidase (HRP),
alkaline phosphatase (ALP), glucose oxidase (GOD), etc. The
enzyme and substrate often used in most studies are HRP and
TMB, respectively. The colorless TMB acts as a hydrogen donor
and reacts with the hydrogen peroxide catalyzed by HRP to
produce blue-green oxidized quinones.

Wu et al. et al. (Wu et al., 2020) gave a detailed introduction to
ELISA studies to detect AOZ, SEM, AHD, and AMOZ before
2020. Yan et al. (Yan et al., 2020b) combined Au NPs into
conventional ELISA for sensitive detection of AMOZ, thereby
improving detection sensitivity. In this system, a large number of
reporter antibodies and horseradish peroxidase molecules are
loaded onto Au NPs to amplify the colorimetric signal. Under
optimized conditions, the detection limit of signal amplification
ELISA reaches 10−2 ng/ml, and the sensitivity is 500 times higher
than that of traditional ELISA. In 2020, Gaudin evaluated the
performance of ELISA kits from R-Biopharm in Germany and
Europroxima in the Netherlands for detecting nitrofuran
metabolites in aquatic products (fish, shrimp), and the results
showed that the false positive rates for both brands were below
9%, indicating the reliability and accuracy of the kit method
(Gaudin et al., 2020).

3.1.2 LFIA
LFIA, a type of lateral flow biosensors (LFB), was firstly developed
in 1981 (Glad and Grubb, 1981) and was commercially used in
pregnancy test strips. Now it has been widely used in food,
medicine and other fields (Glynou et al., 2003), uch as SARS-
CoV-2 (Glynou et al., 2003; Ernst et al., 2020; Yin et al., 2021a).
LFIA relies on cotton thread paper or paper to display results
within minutes. Probes are the most critical component of the
LFIA, and they are synthesized to serve numerous purposes. Next,
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the LFIA will be categorized and introduced by the type of probe:
gold-labeled probes, metal composite probes, organic non-
metallic probes.

3.1.2.1 Gold-Labeled Probes
Colloidal gold immunochromatography test is a typical, most
widely used and best established LFIA methods for commercial
product (Yao et al., 2016; Nardo et al., 2021). The detection probe
is synthesized by combining the label with the antibody, and the
probe captures the target and the antigen on the test line (T line)
during the flow process on the solid phase carrier such as
nitrocellulose membrane. Through the color comparison
between the T line and the control line (C line) on the test
paper, qualitative or semi-quantitative rapid detection is realized.
Wang et al. (Wang et al., 2018b) developed a colloidal gold-based
multiplex LFIA for the simultaneous detection of four nitrofuran
residues as AHD, AOZ, AMOZ, and SEM. Four T line and 1 C
line were present on the strip, and four different antigens were
immobilized on four test lines on a nitrocellulose membrane, and
goat anti-mouse IgG was immobilized on the C line as a control.
The specificity of the assay was good and no cross reaction was
detected among the four antibodies. In recent years, colloidal gold
test strips have been relatively mature products which are widely
used in many areas. With the advantage of low cost and simplicity
of operator, they have become the primary choice of screening
large-volume samples. Some businesses and factories often use
colloidal gold test strips to check the raw materials purchased and
inspect quality of goods to be shipped. However, instrumental
methods are superior to rapid immunoassay in some accuracy-
required assays, so improving the sensitivity of test strips is very
important and has market prospect. Au NPs are the most typical
and commonly used signal materials in LFIA. The sensitivity of
traditional colloidal gold test strips is mainly limited by the
incomplete competition between free target and immobilized
antigen against gold-labeled antibodies (Lou et al., 2019). Most
researchers are currently investing an enormous amount of effort
and time in an attempt to improve the sensitivity of the method
by finding some novel materials.

3.1.2.2 Novel Nano-Labeled Probes
The probe in colloidal gold test paper is mainly synthesized by
physical adsorption, the binding force is weak, the detection
probe is unstable, and the sensitivity is lower. The binding
stability can be improved by coupling other materials to
colloidal gold. Liu et al. (Liu S. et al., 2020) used
polydopamine nanospheres (PDA NPs) with covalent linkage
instead of colloidal gold to prepare probes coupled with
antibodies, and compared their stability with that of colloidal
gold probes. The results that the amount of antibody shed on the
colloidal gold probes was almost twice that of the PDA NPs
probes indicated that the PDA NPs-Ab were more stable, and the
detection limits (LOD) of AOZ in spiked milk powder, shrimp
and pork samples were 5 μg/L, 5 μg/L and 4 μg/L, respectively.
Co3O4 is a brown transition metal oxide, and Su et al. (Su et al.,
2020) developed a novel LFIA biosensor using Co3O4 NPs as a
signal marker instead of colloidal gold. The small size of Co3O4

enhances the sensitivity and shortens the reaction time by

reducing the spatial potential resistance and increasing the
flow rate. Under the optimal conditions, the detection can be
completed within 6 min, with a visual detection limit (vLOD) for
AOZ of 0.4 μg/L. The LOD of this method is lower than that of
conventional colloidal gold test strips.

Food matrices are often complex, and excluding matrix
interference is another effective mean of improving detection
sensitivity when performing actual sample testing. The
superparamagnetic nanoparticles have a large surface area, and
the magnets enable rapid separation of the target from the
impurities in solution and sample enrichment, thus increasing
the reaction rate and shortening the determination time
(Giakisikli and Anthemidis, 2013). Yan et al. (Yan et al., 2018)
established a LFIA of detecting AOZ, based on a dual-probe
magnetite nanoparticles (MNPs) labeled probe. The amplified
signal benefited from high affinity between the two probes of
MNPs-labeled murine monoclonal antibody (MNPs-Ab) and
goat anti-mouse antibody (MNPs-GAMA), and generated a
dual-probe network complex with a detection limit of
0.044 μg/L, which was 10 times more sensitive than the
conventional Au NPs based LFIA, and was successfully
applied to the detection of AOZ in milk. Based on the theory
that streptavidin (SA) is a natural receptor for biotin and can bind
to biotin (Fang et al., 2013), Wu et al. (Wu et al., 2019) combined
the two signal amplification methods of biotin-streptavidin and
magnetic beads, and established the method for detection of SEM,
AHD, AOZ, AMOZ, the LODs were 7.20 ng/L, 11.58 ng/L,
7.24 ng/L and 2.31 ng/L, respectively. In recent years, latex
microspheres have developed rapidly due to their high
stability. Wang et al. (Wang J. et al., 2018) established a LFIA
using red latex microspheres as tracer markers. Four different
coating antigens were immobilized on nitrocellulose (NC)
membranes as capture agents. Quantitative LOD (qLOD) of
four main nitrofuran metabolites. The LOD of SEM, AHD,
AMOZ and AOZ are 0.02–0.1 g/kg for chicken, 0.02–0.15 g/kg
for fish and 0.03–0.12 g/kg for shrimp, respectively, and the
recovery rate is 73.5–109.2%, the coefficient of variation is less
than 15%.

3.1.2.3 Metal Composite Probes
Composites are also often used to detect the sensitivity of novel
nanomaterials in combination with conventional materials. Su
et al. (Su et al., 2021c) designed and synthesized a snowman-like
asymmetric Au-SiO2 Janus NP, which combined two different
physicochemical properties, where the Au NPs side mainly served
as a site for antibody binding and signal provision, while the SiO2

side mainly stablized the complex. With the unique asymmetric
nanostructure, only the Au NPs side can interact with the target
through specific antigen-antibody interactions, which can
significantly improve competition efficiency. This method has
been successfully applied to chicken, pork, honey and beef
samples with vLOD of 0.8 ng/g, 0.16 ng/g, 0.4 μg/L and
0.16 μg/L, respectively. To overcome these limitations, Su et al.
(Su et al., 2021b; a) used MnO2-Au for dual-signal immunoassay.
On the one hand, vLOD is performed through color changes, and
on the other hand, quantitative detection is achieved by using
thermal infrared imager to record and convert conventional
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detection signals into thermal signals. The vLOD of this method
for AOZ is 1 μg/L, and the qLOD is 0.43 μg/L, and the recovery
rate is 80.6–106%. Yin et al. (Yin et al., 2021a) proposed an
immunochromatographic method based on an immune scaffold
to simultaneously detect nitrofurazone and furazolidone. The
immune scaffold is composed of labeled anti-antibody IgG (Ab2)
and two anti-analyte monoclonal antibodies (Ab1). Using MIL-
101(Cr)@AuNPs nanocomposite as the signal label, the amount
of Ab1 can be applied 6 times less than the conventional method,
and the signal intensity is similar. This method greatly reduces
the cost.

3.1.2.4 Organic Material Probes
The utilization of polymer/metal organic framework (MOF)
nanocomposites in various biomedical applications has been
widely studied due to their unique properties that arise from
MOFs or hybrid composite systems (Giliopoulos et al., 2020). Yin
et al. (Yin et al., 2021b) reported a nano-signal labeling strategy in
which amino-terminated zirconium MOFs (NU66) were used to
construct the matrix material, and Au NPs were directly fixed on
the surface of NU66 as a connector between metal organic MOFs
and antibodies, and gave NU66 excellent Biocompatibility and
bright color signal marking. The vLOD of this method for 3-
CPAOZ is 0.6 ng/ml. The existing qualitative and quantitative
detection immunoassay techniques are limited in their
application and development due to their poor sensitivity and
the need for cumbersome quantitative equipment.

3.1.3 FIA
The FIA is mainly about using a nanomaterial, like a fluorescent
substance, instead of colloidal gold or enzyme labelled antibody
to detect and quantify the content of the target based on the
fluorescence intensity, thus improving the detection sensitivity.
According to different reaction systems and the specific
fluorescent substances, these methods can be classified into
several types.

Fluorescent substances mainly include substances with
fluorescence effect, such as fluorescein and its derivatives (Hu
et al., 2016), rhodamine (Feng et al., 2002), quantum dots (QDs)
(Zhou et al., 2020), lanthanide chelates (Lee et al., 2020), essence
dyes (Liu J. et al., 2020) and phycoerythrin (Yang et al., 2020), as
well as some substances that can emit fluorescence under the
action of enzymes, which usually produce visible light after the
irradiation of ultraviolet or X-ray. However, the sensitivity of the
traditional fluorescein-labeled (fluorescein, etc.) immunoassay is
greatly limited by factors such as large background interference,
small Stokes shift (Yuan and Wang, 2005), and disorganized
background scattered light.

QDs have enriched fluorescence properties which includes
broad excitation spectrum, narrow emission spectrum and
photostability. At the same time, there are discrete capping
agents and different functional groups on its surface, thus
increasing the sensitivity of the method (Biranje et al., 2021).
Xie et al. (Xie et al., 2021) established both ic-ELISA and
Fluorescence-Linked Immunosorbent Assay (FLISA) based on
QDs to detect AMOZ. The IC50 values of ic-ELISA and FLISA
were 0.11 and 0.09 μg/L, respectively, the recovery rate is

81.1–105.3%, and the coefficient of variation was 4.7–9.8%.
Both methods are suitable for effective high-throughput
detection methods, and in contrast, FIA has higher sensitivity.
Carbon dots (CDs) are a class of zero-dimensional fluorescent
nanomaterials based on carbon, and have emerged in recent years
(Raveendran and Kizhakayil, 2021). Compared with traditional
fluorescent nanomaterials (e.g., quantum dots), it can synthesize
CDs in a simple way, and have the advantage of low cost, good
photostability and low toxicity. However, bare CDs are prone to
aggregation quenching during labeling, while presilylated CDs
can effectively alleviate this phenomenon, but additional surface
modifications are still required to label antibody probes. Dong
et al. have prepared carbon-dot fluorescent immunoprobes for
detection of chloramphenicol (Dong et al., 2020). Up to now, in
the FIA of nitrofurans, there are no studies on the use of CDs-
binding antibodies or antigen preparation Immune probes. The
application of carbon dots in FIA for the detection of nitrofurans
is worth exploring in the future. The lanthanide chelates, as
represented by Eu3+, have a wide range of excitation wavelength
and a narrow range of emission wavelength, which were suitable
for time-resolved FIA (TR-FIA), eliminating the interference
factors of common fluorescence methods and improving the
sensitivity. The TR-FIA was first developed by Kakabakos and
Kosravi for detecting progesterone in serum in combination with
the biotin-streptavidin system (Kakabakos and Khosravi, 1992).
Zhang et al. (Zhang et al., 2018) established an immunoassay
method that combines the TR-FIA with the biotin-streptavidin
amplification system, which can sensitively detect the residual
AMOZ in aquatic tissues. This method shows high sensitivity and
specifications for 2-NPAMOZ, with IC50 of 0.190 μg/L, LOD of
0.019 μg/L, and detection range of 0.025–10 μg/L. The LOD in
fish and shrimp was 0.021 μg/kg, the recovery rates were
84.1–107.0% and 80.9–98.4%, respectively, and the average
RSD was less than 10%. Cai et al. (Cai et al., 2021) prepared
copper nanoclusters (Cu NCs) as fluorescent probes using
glutathione (GSH) as a protective agent and ascorbic acid as a
reducing agent. Cu NCs show blue fluorescence with a peak
concentrated at 426 nm, and have excellent water solubility,
stability and dispersibility. Based on the inner filtration effect
and static quenching mechanism, Cu NCs were used to detect
furazolidone in bovine serum samples. Under optimal detection
conditions, the LOD was 0.012 μM. Wang al (Wang et al., 2022).
synthesized a composite fluorescent probe based on Ag2S QDs/
gC3N4 for use in detect NFZ. TR-FIA spectroscopy and UV-
visible absorption spectroscopy results indicate that the possible
detection mechanism of Ag2S QDs/gC3N4 to NFZ is proposed as
the internal filtering effect (IFE). The possible interaction between
Ag2S QDs/gC3N4 and NFZ was revealed by Multiwfn
wavefunction analysis, and the mechanism of fluorescence
detection was further revealed from the atomic scale.
Combining experiments and theoretical calculations, a sensing
mechanism for the formation of hydrogen-bonded non-
fluorescent ground-state complexes is proposed. The results
showed that the linear detection range of Ag2S QDs/gC3N4 for
NFZ was 0–30 μM, and the low LOD was 0.054 μM. This work
demonstrates that the Ag2S QDs/gC3N4 composite has the ability
to detect NFZs with high efficiency and sensitivity.

Frontiers in Chemistry | www.frontiersin.org June 2022 | Volume 10 | Article 8136667

Jia et al. Immunosensor of Nitrofuran and Metabolites

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


3.1.4 CLIA
CLIA (Huang et al., 2018) is a phenomenon in which some
substances (luminol etc.) absorb energy, and then produce
electron leaps during a chemical reaction, thus releasing
sufficient energy to emit light. It can be divided into three
types: direct chemiluminescence immunoassay, enzymatic
chemiluminescence immunoassayand
electrochemiluminescence immunoassay.

3.1.4.1 Direct CLIA
In the direct CLIA, antibodies or antigens are directly labelled by
luminescent agents, such as acridinester compounds (Khan et al.,
2014), which can emit light by oxidant action or enzyme catalysis,
and the content of target can be quantified by measuring light
signals (Fan et al., 2009).

Recently, Xu et al. (Xu et al., 2021) found that, in addition to
traditional luminescent agents, CPAOZ McAb can be specifically
and directly stained by CBB-R in Coomassie Brilliant Blue (CBB),
a chemical dye with a concentration of 0.05%, and be applied to
the LFIA platform for detection of FZD. The results showed that
the actual samples, such as honey, chicken intestine and shrimp,
were detected with high sensitivity (LOD was 2 μg/kg) and high
specificity. As a noble method without nanoparticle labeling, it is
rapid, low cost, easy to operate be commercialized. Liang et al.
(Liang et al., 2019) developed a magnetic powder
chemiluminescence kit. Using magnetic particle
chemiluminescence enzyme-linked immunoassay (MCLIA)
combined with full enzyme-linked immunoassay, simultaneous
quantitative detection of SEM, AOZ, AMOZ and AHD. It was
used to fish, pork, chicken and shellfish samples, and the
compliance rate with the national standard method is more
than 98%. Liu et al. (Liu et al., 2013) developed an CELISA
combined with chemiluminescence to study and optimize the
effects of the substrate luminol, iodophenol and carbamide
peroxide on the performance of the assay. The IC50 value of
this method was 0.14 μg/L, the linear working range is between
0.03 and 64 μg/L, and the LOD was 0.01 μg/L. The recovery rates
of four fish, shrimp, honey and egg samples with different
concentrations of NPAMOZ 92.1–107.7%.

3.1.4.2 Enzymatic CLIA
Enzymatic CLIA often uses HRP or ALP to act on luminol and 1,
2-dioxane derivatives (AMPPD) to emit light, so as to quantify
the content of the target analyte by measuring light signals. The
principle of this method is the same as ELISA, except that luminol
is used as the substrate (Fan et al., 2009).

Liu et al. (Liu et al., 2012) developed a highly sensitive
chemiluminescence method for determination of nitrofurans
(NFs) based on nanosilver (Ag NPs) as an enhancer. Ag NPs
can catalyze the production of OH center dot radicals and
enhance the chemiluminescence intensity of the luminol-
H2O2-NFs system.

3.1.5 SERS-Based Immunoassay
Li et al. developed a new ultra-sensitive competitive LFIA based
on SERS for the direct detection of AMOZ in tissue and urine
samples. The AMOZ detection was completed by measuring the

specific Raman scattering intensity of the MBA on the test line of
the LFIA test strip. The determination can be completed within
15 min, and the IC50 value and LOD determined by AMOZ are
40 ng/L and 0.28 ng/L, respectively.

In addition to incorporating nanomaterials as signal
markers, there are also nanomaterial-free labelling methods
that use some staining materials as direct signal molecules.
Dou et al. (Dou et al., 2019) developed a LFIA based on
non-nanomaterials, that is, LFIA based on crystal violet (CV)
dyeing. The vLOD and qLOD of FZD were 7 μg/L and 1.53 μg/L,
respectively. This nanomaterial-free technology overcomes the
inherent limitations of nanomaterials. Zhang et al. (Zhang et al.,
2020) developed an efficient geomagnetic solid-phase extraction
(MSPE) surface-enhanced Raman scattering (SERS) method for
the detection of aromatic amines and nitrofurans in real samples
using CoFe2O4@HNTs/AuNPs substrates. The CoFe2O4@
HNTs/AuNPs substrate exhibited excellent SERS activity
(high sensitivity, good reproducibility and reproducibility),
pH stability (3.0–11.0), and good MSPE ability (rapid speed
within 5 min) Magnetic enrichment/separation capability)
Magnetic beads filled with CoFe2O4 inside halloysite
nanotubes (HNTs) can avoid particle aggregation, endow the
substrate with rapid magnetic separation capability, simplify
pretreatment procedures, and reduce complex matrix
interference. The surface AuNPs can generate
electromagnetic enhancements and hot spots to amplify the
Raman signals of target molecules enriched/condensed by
HNTs. Nitrofurantoin was determined with a linear range of
0.05–1.0 mg/L and a LOD as low as 0.014 mg/L. Bi et al. (Bi et al.,
2022) prepared β-cyclodextrin (β-CD) protected AuNPs/γ-
Al2O3 nanoparticles as substrates and developed a novel
SERS method for the detection of nitrofurazone. Optimal
experimental conditions were obtained by one-factor
procedures and response surface modeling. A linear
relationship between the SERS intensity and the
concentration of nitrofurazone was established in the range
of 3.3–667.0 nmol/L (ISERS = 508.96c + 31,987.87, c: nmol L−1,
R2 = 0.996).

3.2 Electrochemical Immunosensor
Electrochemical immunosensor combines electrochemistry and
immunoassay by detecting the relative change of electrical signals
before and after the binding of the probe to the antigen to
quantify the amount of the target. In electrochemical
immunoassay, carbon nanotubes (CNT), carbon nanoparticles
(CNP), nanodiamond-graphite (NDG), graphene oxide (GO)
and other carbon nanomaterials are often used to modify the
surface of glassy carbon electrodes for higher detection sensitivity
(Shahrokhian et al., 2016). Compared with conventional
electrodes, thin-film gold electrodes modified with precious
metals are more sensitive and can be mass-produced. He et al.
(He and Liu., 2019) developed an electrochemical sensor based on
Au/graphene-modified thin-film gold electrode. The
introduction of gold nanoparticles onto the graphene modified
thin film gold electrode can effectively enhance the electron
transfer. Under the optimal conditions, the sensor detected
SEM with a LOD of 0.0047 μmol/L and was successfully
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applied to pork with a 40-fold increase in sensitivity compared
with the electrode modified with CMWCNTs. Wang et al. (Wang
et al., 2021) developed a new competitive electrochemical
immunosensor based on square wave voltammetry (SWV)
response to quantitatively detect AHD. Au nanoparticles are
grown on the surface of Ce-based metal organic framework
(Ce-MOF) as the signal amplification platform of the sensor.
Methylene blue (MB) loaded Au at Pt and coated antigen (OVA-
AHD) were connected as signal markers. The target competes
with the coating antigen for the antibody, resulting in a decrease
in the number of signal probes bound to the antibody. The
concentration of AHD can be determined by SWV detection
of the MB signal loaded on the signal label. Under optimal
conditions, the LOD was 1.35 × 10−7 μg/L.

Niu et al.(Niu et al., 2021)constructed a bimetallic Co./Ni-
MOF-derived hollow NiCo2O4@C composite modified glassy
carbon electrode (NiCo2O4@C/GCE) and applied it to the
simultaneous detection of FZD and Chloramphenicol (CAP).
NiCo2O4@C/GCE exhibits excellent electrocatalytic performance
for simultaneous determination of FZD and CAP. NiCo2O4@C/
GCE has a linear range of 0.5–240 µM for FZD and 0.5–320 µM
for CAP, with a lower detection limit of 8.47 nM for FZD and
35 nM for CAP. Mechanistic studies show that the reduction of
FZD and CAP on NiCo2O4@C/GCE are both four-electron and
four-proton processes. In addition, the sensor achieved ideal
recoveries for simultaneous determination of FZD
(95.85–103.9%) and CAP (95.72–104.4%) in milk and honey
by standard addition method. Maheshwaran al (Maheshwaran
et al., 2022). Using hydrothermally synthesized BiVO4@MoS2
hierarchical nanoheterojunction composites to develop an
electrochemical sensor for FZE detection by modifying glassy
carbon electrode (GCE) as a novel electrocatalyst. The
electrochemical performance of 1D-2D BiVO4@MoS2 was
examined by cyclic voltammetry and differential pulse
voltammetry (DPV) analysis. The BiVO4@MoS2 composite
exhibits excellent electrocatalytic activity for FZE sensing with
linear detection ranges of 0.01–14 and 14–614 μM. The LOD of
the BiVO4@MoS2 based sensor was determined to be 2.9 nM,
which was far superior to other reported FZE sensors.
Considerable recoveries when tested in human urine and
serum samples. Cai et al. (Cai et al., 2022) combined
functionalized polyoxometalates with graphene-modified
electrodes through layer-by-layer assembly to achieve sensitive
detection of NFZ with a LOD as low as 0.08952 μM. Direct low-
level detection through real samples was achieved by accelerating
its electron transfer modified electrode through [Ru-PMo12/
PDDA-GO]3.

3.3 Others
In addition to the above mentioned methods, there are also other
immunological technologies against nitrofurans residues. Liu
et al. (Liu et al., 2015) developed a protein microarray method
to detect AOZ in synaptic eels, and the results were similar to
those of commercially available kits, with the advantages of
instrument portability and visualization of the results. In
response to the miniaturization, integration and intelligence
trends of modern technology, microfluidic chip-based

immunoassay technology has also been gradually applied to
the detection of nitrofurans.

4 OUTLOOK

Nitrofuran veterinary drugs, as prohibited drugs, can still be
constantly detected in animal food in international and
domestic trade, indicating that there is still a large technical
barrier. On one hand, national regulatory agencies need to
continuously amend the bill to improve and perfect the legal
system with strict limit standards and requirements to control;
on the other hand, it is necessary to vigorously develop and
improve detection technology. The current internationally
recognized method for accurate quantification is the high-
precision instrumentation method. As another mainstream
technology that goes hand in hand, rapid detection
technology is the preferred technology for high-throughput
screening, and has great potential for development and
research, providing new technologies to address the problem
of multiple risks of food safety coexisting. Achieving the same
detection limits as RPA is not enough, the experts should strive
to raise the technical level in order to detect trace levels. Efforts
should be made to explore further in the direction of
sensitization and micro materials, so that the detection
instruments and technologies will have higher sensitivity,
miniaturization and portability. The new nanomaterials
should have high sensitivity, easy preparation, convenient
operation, obvious color, low cost, small size, and be
combined with microchips to make qualitative
improvements on the rapid detection products in
operability, sensitivity and convenience. Moreover, some
materials with high specificity for target should be explored,
such as CBB-R, which is specifically applied to the detection of
nitrofurans, and many new technologies based on them will
reduce the multiple risks of food safety. A wide variety of
detection methods and micro instruments have blossomed,
facilitating people’s daily lives and self-testing and creating
great economic benefits in deed.
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