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Abstract: α-Mangostin, a xanthone derivative from the pericarp of Garcinia mangostana L.,

has numerous bioactivities and pharmacological properties. However, α-mangostin has low

aqueous solubility and poor target selectivity in the human body. Recently, nanoparticle drug

delivery systems have become an excellent technique to improve the physicochemical

properties and effectiveness of drugs. Therefore, many efforts have been made to overcome

the limitations of α-mangostin through nanoparticle formulations. Our review aimed to

summarise and discuss the nanoparticle drug delivery systems for α-mangostin from pub-

lished papers recorded in Scopus, PubMed and Google Scholar. We examined various types

of nanoparticles for α-mangostin to enhance water solubility, provide controlled release and

create targeted delivery systems. These forms include polymeric nanoparticles, nanomicelles,

liposomes, solid lipid nanoparticles, nanofibers and nanoemulsions. Notably, nanomicelle

modification increased α-mangostin solubility increased more than 10,000 fold. Additionally,

polymeric nanoparticles provided targeted delivery and significantly enhanced the biodistri-

bution of α-mangostin into specific organs. In conclusion, the nanoparticle drug delivery

system could be a promising technique to increase the solubility, selectivity and efficacy of

α-mangostin as a new drug candidate in clinical therapy.

Keywords: Garcinia mangostana, solubility, controlled release, targeted delivery,

nanoparticle formulations, physicochemical properties

Introduction
α-Mangostin, a xanthone derivative compound isolated from Garcinia

mangostana L. peel extract, has myriad pharmacological effects: antibacterial, anti-

fungal, anti–inflammatory, antiallergic, antioxidant and anticancer activities.1–5 The

anticancer activity indicates that α-mangostin might serve as a potent anticancer agent

in lung, stomach, colon, cervical, pancreatic, prostate, mammary gland, chondrosar-

coma, renal, skin, tongue mucoepidermoid and breast cancers.6–18 However, α-
mangostin has low solubility in water (2.03 x 10−4 mg/L at 25ºC), and many efforts

have been made to improve it: structure modification, co-solvation, solid dispersion,

emulsion, complexation and nanoparticle drug delivery systems.19–21 Additionally, α-
mangostin and other cytotoxic drugs generally have limitations that influence their

effectiveness, including a first fast metabolism reaction, an efflux reaction induced by

transporter intercellular, fast drug release and a non-specific target site.22–24

Drug bioavailability is an important parameter to determine how successful the

drug molecules pass through in pharmacological phases such as biopharmaceutics,

pharmacokinetics, and pharmacodynamics.25 To achieve the maximum bioavailability,

drug solubility is one of the primary factors that can increase the drug bioavailability.26

Currently, nanoparticle drug delivery systems are the most commonly used technique

for nanomedicine-mediated treatment of diseases. Their nanosize can enhance
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solubility by providing a large surface area, which increases

the penetration rate into a cell membrane and provides

a controlled release system with passive or active targeting.

This effect can serve as a cancer drug delivery system.27–29

This system becomes a promising method to overcome the

limitations of α-mangostin. Several types of nanoparticles

have been formulated for the α-mangostin compound,

including nanolipids, nanopolymerics, nanomicelles, nanoli-

posomes, nanofibers and metal nanoparticles.19,20,30-34 The

results are substantial, with significantly improved solubility

for α-mangostin. Therefore, controlled and targeted drug

delivery systems can be created by modified nanoparticle

technology.

There are numerous published α-mangostin studies;

however, they are usually limited and only discuss its phar-

macological properties and bioactivities. Dermawan et al

tried to predict the increase in α-mangostin solubility using

a cyclodextrin inclusion complex. The inclusion complex

formation energy values for all α-mangostin/cyclodextrins

were obtained using the semi-empirical PM7 method. No

researchers have performed experiments to prove the results

of this in silico study.35 Taken together, we believe that our

review concerning nanoparticle drug delivery systems for

α-mangostin, which relates to its solubility and selectivity

properties, will broaden the spectrum of α-mangostin utili-

sation and allow for improved efficacy.

Methodology
This review is based on the literature obtained from

Scopus, PubMed and Google Scholar using the keyword

“nanoparticle formulation of α-mangostin”, “nanoparticle

drug delivery of α-mangostin”, and “α-mangostin nanopar-

ticle.” We excluded opinions, reviews and unrelated topics

such as pharmacological properties and bioactivities. The

databases are limited to obtain the specific topic in phar-

maceutical formulation. The flowchart of the methodology

is shown in Figure 1.

α-Mangostin
Mangosteen (G. mangostana), the queen of tropical fruits,

grows in tropical rainforests of Malaysia, Thailand and

Indonesia. α-Mangostin (Figure 2) is the major compound

of mangosteen peel extract; it is a xanthone derivative with

the chemical name 1,3,6-trihydroxy-7-methoxy-2,8-bis

(3-methyl-2-butenyl)-9H-Xanten-9-0n (Table 1). Its pharma-

cological activities are diverse: antibacterial, anti-allergic,

anti-fungal, anti–inflammatory activity, antioxidant and

anticancer.1–5

Previous studies demonstrated that α-mangostin can act

against cancer cells via multiple pathways,38–41 including

inhibiting fatty acid synthase, signalling human epidermal

growth factor receptor 2 (HER2)/phosphatidylinositide

3-kinase (PI3K)/Akt and mitogen-activated protein kinase

(MAPK).6,42 Notwithstanding its excellent bioactivity, α-
mangostin has limited solubility in water (2.03 x 10−4 mg/

L at 25ºC). These problems become a basic consideration

for developing α-mangostin with better efficacy.

Nanoparticle Drug Delivery
Systems for α-Mangostin
Recent Nanoparticle Formulations for

Improved Water Solubility, Modified

Release and Targeted Drug Delivery
Nanomedicine, a nanotechnology application, has an

important role in clinical therapy. Due to its nanosize

(10−9 m), the large surface area of the nanocompounds

enhances the surface contact with its solvent and improves

the solubility or dissolution rate of slightly water-soluble

compounds.43 Nanomedicine therapeutic interventions can

be highly specific at the intermolecular scale to allow for

curing diseases or repairing damaged tissues, such as

nerves, muscles or bones. Liposomes, dendrimers, solid

lipid nanoparticles, polymeric nanoparticles, silicon or

carbon materials, metal and magnetic nanoparticles are

examples of nanocarriers that have been formulated as

drug delivery systems.44 A nanoparticle drug delivery

system is a promising modification technique due to the

combination of physics and chemical sciences. It is

a proven, favourable technique to overcome the limitation

of drugs with the poor solubility in water and provide the

targeted drug delivery system.45

Table 2 and Figure 3 describe the various nanoparticle

formulations that have made this technique a promising multi-

functional drug delivery system. Nanoparticles are formulated

as dendrimers, solid lipid nanoparticles, metal nanoparticles

and liposomes, among others. They are commonly used to

deliver drugs to specific targets, including cells, receptors and

genes. The important aspects of the formulation depend on the

selection of the right excipient, which play a crucial role in

delivering active drug substances to the intended target. Folic

acid (FA), mesenchymal stem cells (MSCs), mannose, hya-

luronic acid, poly(lactic-co-glycolic acid) (PLGA) and chito-

san conjugated with copolymers are the main excipients used

to deliver active, high-affinity pharmaceutical ingredients.

Nanoparticle formulations can also enhance absorption and
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the penetration rate as a function of small particle size, mem-

brane transport, cellular uptake and bioadhesive interactions

with the cell membrane.71,72 Finally, a drug’s bioavailability

can be improved by nanoparticle formulations, a phenomenon

consistent with the enhanced solubility, dissolution and

absorption rate.73

Figure 1 Flowchart of the methodology used in this review.

Figure 2 Chemical structure of α-Mangostin.
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Polymeric Nanoparticles of α-Mangostin
Polymeric nanoparticles are generally used to solve the

limitation of poorly soluble drugs, provide controlled

release and targeted drug delivery. Several studies have

been reported related to polymeric nanoparticle formula-

tions for α-mangostin (Table 3). The first polymeric nano-

particle formulation of α-mangostin was reported in 2011;

it included biodegradable PLGA copolymers. In that study,

α-mangostin was encapsulated in PLGA using colloidal

extraction solvent evaporation. The PLGA α-mangostin

nanoparticle was less cytotoxic to the A549 lung cancer

cell line compared to free α-mangostin. These results

suggest that PLGA nanoparticles can be used as a micro-

carrier system for the delivery of α-mangostin as a passive

tumour-targeting agent.74 Another study from the

same year reported an α-mangostin polymeric nanoparticle

using PLGA with chitosan biopolymer. Interestingly, the

formulation without chitosan was more toxic to A549

cells. The authors speculated that the mechanism of action

is mediated by the high-affinity property of chitosan bio-

polymer can target the nanoparticle drug delivery system

targeted in lung cancer tissues.75

Verma et al also examined PLGA with α-mangostin as

a drug payload. The authors aimed to improve the bioac-

tivity of α-mangostin against pancreatic cancer. They pre-

pared the nanoparticle using a double emulsion solvent

evaporation method. Impressively, the nanoparticle system

inhibited the proliferation of pancreatic cancer stem cells

(CSCs) and pancreatic cancer cell lines and had no effect

on normal human pancreatic ductal epithelial (HPNE)

cells. Moreover, the nanoparticle inhibited colony forma-

tion, motility, migration and the invasion-induced apopto-

tic mechanism in vitro and in vivo.42

Another polymeric nanoparticle formulation used poly

(ethylene glycol)-poly(L-lactide) (PEG-PLA) as a matrix

for α-mangostin. The authors aimed to use this formulation

for Alzheimer’s disease. The nanoparticle was prepared by

emulsion/solvent evaporation techniques. The particle

size, zeta-potential and entrapment efficiency of the nano-

particle were 94.26 ± 4.54 nm, −32 ± 0.43 mVand 50.47 ±

1.96%, respectively. In vitro, the drug was rapidly released

in the first 24 h (approximately 50%), followed by a slow,

continuous release until 72 h and 100% release by 96

h. These results demonstrated a significant improvement

of the pharmacokinetic and biodistribution profiles of

nanoparticle compared to free α-mangostin.76

Ethyl cellulose-methyl cellulose (EC-MC), a natural

polymer from cellulose groups, was designed for α-

mangostin polymeric nanoparticle formulation as an anti-

acne therapy in a cosmeceutical form. The system was

designed as a nanoreservoir system to achieve an extended

release profile using a spray drying technique. In this

study, the particle size, polydispersity and loading capacity

were 300–500 nm, 0.111 ± 0.024 and 41.90 ± 0.79%,

respectively. The nanoparticle formation exhibited lower

skin irritation compared to controls. Approximately

80–100% of α-mangostin was released over more than 7

days. Impressively, the anti-acne activity of the nanoparti-

cle system significantly decreased the acne severity index

(ASI) value and inflammatory lesions (P < 0.05) compared

to control.77

Another study developed a nanoparticle system based

on chitosan/alginate and genipin (GP) as a crosslinker

prepared using the ionotropic gelation method. The system

aimed to achieve a controlled release system and increase

the antitumor activity of α-mangostin. Cytotoxicity and

antitumor activity studies confirmed that an increase in

GP concentration significantly reduced cell viability and

induced apoptosis in colorectal adenocarcinoma cells.78

Table 1 Chemical and Physical Properties of α-Mangostin36,37

Property Description

Chemical names 1,3,6-trihydroxy-7-methoxy-2,8-bis(3-methylbut-

2-enyl)xanthen-9-one

Physical state Solid

Colour/form Faint yellow to yellow powder

Molecular

formula

C24H26O6

Molecular

weight

410.466 g/mol

Melting point 180–181ºC

Solubility Soluble in ethanol; in water, 2.03 x 10−4 mg/L at

25ºC

Log Kow 7.71 (estimated)

Stability/shelf life Stable under normal temperatures and pressures

Decomposition Nitrogen oxide, carbon monoxide, irritating and

toxic fumes and gases, carbon dioxide, nitrogen

Dissociation

constants

pKa 1 = 3.68 (primary carbonyl)

pKa 2 = 7.69 (secondary carbonyl)

pKa 3 = 9.06 (tertiary carbonyl)

Henry’s Law

constant

2.05 x 10−16 atm·m3/mol at 25ºC
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Table 2 Recent Nanoparticle Formulations for Improved Water Solubility, Modified Release and Targeted Drug Delivery

No Types of Nanoparticle Excipients Main Objective Ref.

1 Nanoparticle-

orodispersible films

Vinylpyrrolidone-vinyl acetate copolymer/HPMC-Glycerol Modify the disintegration time and

dissolution rate of drug particles

loaded into ODFs

[46]

2 IL-polymer nanoparticle PLGA/PVA Formulate a hybrid IL-nanoparticle

system to deliver a poorly soluble

drug

[47]

3 Crystalline nanoparticle HPC-dioctyl sulfosuccinate 141 Na Improve solubility [48]

4 Nanoparticle antisolvent

crystallisation

Poloxamer 188 and solupus Improve solubility and dissolution

rate

[49]

5 Polymeric nanoparticle Eudragit® RL 100 Sustained release system [50]

6 Gold (Au) nanoparticle Au/Carrageenan oligosaccharide pH-triggered anticancer drug release [51]

7 Solid lipid nanoparticle Decosanoic acid Sustained release system [52]

8 Polymeric nanoparticle PLGA/hyaluronic acid Controlled release and targeted

drug delivery

[53]

9 Receptor-responsive

nanoparticles

Amino terminal fragment (ATF) of human serum albumin

(HSA)

Targeted to the urokinase receptor [54]

10 Theranostic nanoparticle

(metal nanoparticle)

Au/bovine serum albumin Drug-dependent release and

targeted drug delivery

[55]

11 Curdlan nanoparticle Cyclodextrin Intracellular release [56]

12 Thermosensitive

nanoparticle hydrogel

(polymeric nanoparticle)

Amphiphilic copolymer poly(ε-caprolactone-co-1,4,8-trioxa

[4.6]spiro-9-undecanone)-poly(ethylene glycol)-poly(ε-

caprolactone-co-1,4,8-trioxa [4.6]spiro-9-undecanone)

Sustained co-delivery and early local

treatment drug delivery for peri–

implantitis

[57]

13 Semi-solid prodrug

nanoparticles

Polymer-surfactant Long-acting delivery [58]

14 Integrin-based

nanoparticle (liposome)

Lipoid S100, cholesterol, mPEG2000-DSPE and Mal-PEG2000-

DSPE

Targeted drug delivery for hepatic

stellate cells

[59]

15 Nanoparticle-conjugated

microbubble

1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)-

1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[succinyl

(polyethylene glycol)-2000] (DSPE-PEG2k-NHS) and albumin

Targeted drug delivery for liver

tumours

[60]

16 Silica nanoparticle (solid

lipid nanoparticle)

(3-mercaptopropyl)-trimethoxysilane (MPTMS), β-

mercaptoethylamine (MEA), Triton X-100 and tetraethyl

orthosilicate (TEOS)/indocyanine green (ICG)

Targeted drug delivery for breast

cancer cells

[61]

17 Self-assembling

nanoparticle (poly-lysine

dendrimer)

Polyglutamic acid (PGA)-polylysine/folic acid hydrate Targeted drug delivery for breast

cancer cells

[62]

18 Nano-hybrids Bovine serum albumin (BSA), N-(3-dimethylaminopropyl), N′-

ethylcarbodiimide hydrochloride (EDC·HCl),

N-hydroxysuccinimide (NHS), phospholipid complex, cadmium

chloride (CdCl2·2.5H2O), thioglycolic acid (TGA), and

D-mannose.

Tumour-targeted drug delivery [63]

19 Copper (Cu) nanoparticle

(metal nanoparticle)

FeCl3, and CuCl2 In vivo–targeted molecular imaging [64]

(Continued)
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Nguyen et al demonstrated that nanoparticles with β-
cyclodextrin (β-CD) improved the solubility and enhanced

the cytotoxic activity of α-mangostin, with a minimal inhi-

bitory concentration (IC50) of 8.86 and 9.86 µg/mL for LU-

1 (human lung adenocarcinoma) and HL-60 (human

promyelocytic leukaemia), respectively.79 Another α-

mangostin complex with β-CD was fabricated with grafted-

chitosan. The system was prepared using high shear mixing

techniques. The system exhibited a high of entrapment

efficiency (>75%) and anti–inflammatory activity. The

inclusion complex of α-mangostin and quaternised cyclo-

dextrin grafted chitosan (QCD-g-CS) influenced cytokine

Table 2 (Continued).

No Types of Nanoparticle Excipients Main Objective Ref.

20 Fe3O4 nanoparticle (metal

nanoparticle)

Fe3O4 (iron oxide)/mesenchymal stem cells (MSC) Targeted delivery for lung cancer [65]

21 Hollow Au nanoparticle

(metal nanoparticle)

Human placental Au/MSCs Targeted drug delivery [66]

22 HSA nanoparticle HSA/FA-N-hydroxysuccinimide (NHS) Targeted to the folic acid receptor [67]

23 Au nanoparticle (metal

nanoparticle)

Tetrachloroauric acid (HAuCl4)-mono protected poly(ethylene

glycol)-amino poly(ethylene glycol) undecyl mercaptan/chitosan

low molecular weight

Targeted treatment for acute renal

failure

[68]

24 Hybrid nanocarriers

(liposomes)

Dipalmitoyl phosphatidylcholine (DPPC) and 1-oleoyl-2-[12-

biotinyl(aminododecanoyl)]-sn-glycero-3-phosphocholine

Targeted to hepatocellular

carcinoma cell lines

[69]

25 Folate-modified

nanoparticle (polymeric

nanoparticle)

FA, methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA)

and DOTAP

Targeted gene delivery system [70]

Figure 3 Nanoparticle drug delivery systems for α-mangostin.
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secretion and inhibited inflammation during the first hour

(60% inhibition). After 3 h, there was almost total inhibition

(95%).80 Additionally, nanoparticles of a water-soluble β-
CD and α-mangostin presented cytotoxic activities against

A549 lung cancer cells, with an IC50 of 2.34 µg/mL.81

Nanomicelles
A micelle is an amphipathic molecule in water and suita-

ble as a drug delivery carrier for drugs with high lipophi-

licity. The first nanomicelle for α-mangostin was generated

by Aisha et al α-Mangostin in solid dispersion

nanomicelles, combined with polyvinylpyrrolidone (PVP)

as a main polymer, was produced by the solvent evapora-

tion method. The solubility of α-mangostin markedly

increased 10,000 fold, from 0.2 ± 0.2 pg/mL to 2743 ±

11 pg/mL. Self-assembly of anionic nanomicelles around

α-mangostin was observed by transmission electron micro-

scopy and dynamic light scattering; the diameter size was

99–127 nm. The nanomicelle uptake was mediated by

endocytosis, a finding that indicated intracellular delivery

of α-mangostin that could be associated with potential

cytotoxicity (IC50 of 8.9 ± 0.2 μg/mL).82

Table 3 Nanoparticle Formulations of α-Mangostin

Formulations Ingredients Methods Ref.

Polymeric

Nanoparticles

PLGA Colloidal extraction solvent evaporation [74]

Chitosan, PLGA Colloidal extraction solvent evaporation [75]

PEG, PLA Emulsion/solvent evaporation techniques [76]

PLGA Double emulsion solvent evaporation method [42]

EC-MC Spray drying [77]

Chitosan, alginate and genipin Ionotropic gelation method [78]

β-cyclodextrin Inclusion complex technique [79]

β-cyclodextrin-chitosan Inclusion complex [80]

β-cyclodextrin Inclusion complex [81]

Nanomicelles PVP Solvent evaporation method [82]

MPEG and PLA Single-step self-assembly method [83]

MPEG and PCL Self-assembly method [84]

Liposome nanoparticles Transferrin Thin film hydration [85]

Soya lecithin Phase separation coacervation method [86]

Cholesterol, Tween 60 and ethanol Film hydration method [87]

Solid lipid nanoparticles Lavender essential oil and cetyl palmitate Hot and high-pressure homogenisation

techniques

[88]

PLGA and CD44 thioaptamer Nanoprecipitation combined with self-assembly [89]

Nanofibres Thiolated chitosan Electrospinning [90]

PVP Electrospinning [91]

Metal nanoparticles Ag (silver) Chemical reaction by using silver nitrate

(AgNO3)

[92]

Gold, PEI, cyclodextrin and tanshinone Chemical reaction using polyethyleneimine (PEI) [93]

Emulsion nanoparticle Captex 200 P, Tween 80, carbopol 90 and silica Solid self-emulsification [94]

Oleic acid, isopropyl myristate, Cremophor EL, Tween 80,

carboxymethylcellulose sodium

Self-microemulsion [31]
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In another study, α-mangostin nanomicelles with meth-

oxypoly(ethylene glycol)-poly(lactide) (MPEG-PLA) were

developed by a single-step self-assembly method for

malignant glioma. In vitro and in vivo assays showed

that the α-mangostin/MPEG-PLA nanoparticles inhibited

cell growth and induced apoptosis—with cleaved caspase

expression, DNA fragmentation, downregulation of anti-

apoptotic molecules and up-regulation of apoptotic mole-

cules. This study also successfully investigated the process

of programmed cell death in malignant glioma cells after

treatment with α-mangostin/MPEG-PLA.83

Yang et al recently generated α-mangostin with meth-

oxypoly(ethylene glycol)-poly(ε-caprolactone) (MPEG-

PCL) as an anti-melanoma agent. The system had

a sustained release profile, high solubility, strong toxicity

to tumour cells and low toxicity to non-tumour cells.

Additionally, MPEG-PCL inhibited melanoma cell prolif-

eration, induced apoptosis via intrinsic and extrinsic path-

ways, suppressed growth cells and restrained angiogenesis.

These data suggest that α-mangostin/MPEG-PCL nanomi-

celles are promising potential chemotherapy agents for the

treatment of melanoma.84

Liposome Nanoparticles
Liposome nanoparticle (nanoliposome) is a liposome with

particle size around 80–300 nm. Liposome nanoparticles

can improve the physicochemical properties and perfor-

mance of drugs due to their capability to deliver a drug.

Chen developed a liposome, with α-mangostin as a drug

payload using transferrin, with the thin-film hydration

method. On the intercellular distribution assay, liposomes

presented a time-dependent property; approximately 210

Ω/cm2 α-mangostin crossed the blood–brain barrier

(BBB), with horseradish peroxidase (HRP) permeability

less than 5%.85

Chin et al developed an α-mangostin niosome to

improve the skin permeation rate of α-mangostin.

Proniosome was prepared with soya lecithin using a phase

separation coacervation method. The system enhanced skin

permeation of α-mangostin 1.8–8.0 fold compared to con-

trol. It also improved viable epidermis/dermis (VED) of the

α-mangostin compound, where α-mangostin deposition in

the VED layer was increased 2.5–2.9 fold compared to

control. Moreover, the addition of spans and soya lecithin

improved the solubility of α-mangostin in water.86

Another niosome formulation from Limpapayom et al

utilised cholesterol, Tween 60 and ethanol as the main

carrier system. The system was prepared by film hydration;

the particle size was 213 ± 26.47 nm, polydispersity index

(PDI) was 0.23 ± 0.19 and zeta potential was −12.67±0.90
mV. Subsequently, the noisome/α-mangostin was prepared

in cream and serum forms with 2.5–5% α-mangostin. The

particle size, PDI and zeta potential were 600–700 nm, 1.11

± 0.01 and 0.58 ± 0.04 mV, respectively. A skin permeation

study confirmed that about 10–40% of α-mangostin

released over more than 24 h.87

Solid Lipid Nanoparticles
Solid lipid nanoparticles (SLN) are spherical carrier com-

posed of single or double lipid layer on the surface, and

solid layer in the core of the system. The complex system

of SLN can provide an excellent drug control released.

However, only two journals publication reported regarding

solid lipid nanoparticle formulation of α-mangostin.

Yostawonkul et al designed a nanostructure lipid carrier

for α-mangostin (AM-NLC) by hot and high-pressure

homogenisation techniques for non-surgical castration of

male animals. Lavender essential oil and cetyl palmitate

were the carrier system in this study. AM-NLC increased

the activity of caspase-3 and caspase-7 and induced germ

cell degeneration within the seminiferous tubules.

Shrunken tubules were greatly depleted of germ cells.

Additionally, the use of AM-NLC reduced the levels of

pro-inflammatory mediators (nitric oxide and tumour

necrosis factor α).88

Bonafe et al developed a lipid nanoparticle formulation

to increase the activity of α-mangostin in disaggregation of

MCF-7 cells. PLGA and CD44 thioaptamer used as the

main carrier. A nanoparticle that contained 0.5 µg/mL α-
mangostin induced disaggregation of multicellular tumour

spheroid (MCTS). There was a similar dissociation effect

when MCTS were cultured in matrix gel under the same

conditions for 48–72 hrs. Moreover, the system with the

lower α-mangostin concentration triggered damage,

denoted as a substantial reduction in the MCTS size and

density. The reduced spheroid expansion implied that

a significant number of cells died or were in cell cycle

arrest.89

Nanofibers
Nanofiber is widely used for site-specific drug released to

achieve the desired therapeutic effects. Nanofiber has

a diameter range around 150 nm and length 50–200 µm.

Nanofibers could potentially overcome the limitation of α-
mangostin. A nanofibre combinedwith chitosan thiolatedwith

the electrospinning method had excellent mucoadhesive
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properties. Additionally, the α-mangostin nanofibre improved

the bactericidal rate.90 Another nanofibre formulation was

prepared using polyvinylpyrrolidone (PVP) as a carrier matrix

for the active compound. The PVP nanofibre (387–586 nm)

was prepared using an electrospinning apparatus. The prepara-

tion exhibited antioxidant activity, and the use of high voltage

in the electrospinning technique did not apparently damage

the molecular structure of α-mangostin. In vitro, α-mangostin

release increased from 35% to over 90% in 60 min.91

Metal Nanoparticles
Metal nanoparticle is a metal with particle size around

1–100 nm. Several studies reported that metal nanoparti-

cles have a bioactivity as anticancer agent and a high

affinity with the cancer cells. Silver α-mangostin nanopar-

ticles were formulated in a perfect spherical shape. These

nanoparticles significantly inhibited the growth of the bac-

teria Escherichia coli and Bacillus subtilis and the fungus

Aspergillus niger. Additionally, the presence of α-
mangostin substantially reduced the silver ions in the

silver nanoparticle system.92

Gold α-mangostin nanoparticles were also formulated;

they comprised polyethylenimine (PEI) and cyclodextrin.

Tanshinone was used as competitor drug payload in this

study. The α-mangostin gold nanoparticles improved the

loading efficiency approximately 15–50%, with an IC50 of

17.5 μM and 6.0 μM for PC-3 and DU145 cell lines,

respectively. Comparatively, the tanshinone gold nanopar-

ticles were very active against these cells, with a 40%

improvement in the IC50 value for both PC-3 and DU145

cells.93

Emulsion Nanoparticles
Emulsion nanoparticle (nanoemulsion), a colloidal parti-

culate system, consists of oil, water, and surfactant with

high kinetic stability, low viscosity, and optically transpar-

ent. In the last decade, nanoemulsion has become

a promising lipophilic drugs delivery system. Solid self-

emulsification is one common modification technique to

enhance the solubility and dissolution rate of α-mangostin.

Droplet particles obtained from this system (using liquid-

self-emulsifying drug delivery system [liquid-SEDDS])

were 106.9 ± 24.3 nm. The droplet was further converted

to the solid state (solid-SEDDS) using Aeroperl 300 and

Sylysia 350 silica. Solid-SEDDS with Aeroperl 300 had

better flowability compared to solid-SEDDS with Sylysia

350. Based on the characterisation of X-ray diffraction

(XRD) and differential scanning calorimetry (DSC)

analysis, the solid-SEDDS exhibited an amorphous form.

The dissolution test indicated that approximately 18.82%

and 7.71% of α-mangostin was released from solid-

SEDDS with Aeroperl 300 and Sylysia 350, respectively,

within 60 min. However, only 0.26% of the intact α-
mangostin dissolved.94

The mechanism for the improved α-mangostin solubility

in emulsion was due to self-microemulsion; the particle

diameter size was 24.6 nm and the encapsulation efficiency

was 87.26%. These factors increased the area under the curve

of α-mangostin by 4.75 fold compared to the free form. The

preparation also increased α-mangostin distribution in lym-

phatic organs. Overall, self-microemulsion as a nano delivery

system can promote the digestive tract absorption of α-
mangostin and provide a specific distribution. The targeted

system and high oral bioavailability of α-mangostin with

self-microemulsion provides excellent performance for clin-

ical drug efficacy.31

Perspective
In drug development, nanoparticle technology represents

physical modifications intended to ameliorate solubility

problems. Currently, nanotechnology can be applied for

drug delivery systems, such drug controlled release,95

delayed release and sustained release.96 These nanoparticle

formulations are the most commonly used in drug delivery

systems.97 Our objective review highlighted that the nano-

particle technology in nanomedicine applications is

divided into three general classifications: increased water

solubility, controlled release and targeted drug delivery. As

mentioned before, nanotechnology can be used to recover

the solubility problem of drugs through multiple pathways

and mechanisms. Firstly, particle size reduction in nano-

technology improves the drug solubility by expanding the

surface area of particles.98,99 Secondly, the use of high

water-soluble excipients as the main base of nanoparticles

increase the solubility of drugs mediated by hydrogen

bonding interaction between excipients and water

molecules.100,101 On the other hand, the use of surface-

active agent (surfactant) in nanotechnology also enhances

the solubility of high lipophilicity drugs through interfacial

tension reduction.102,103

Considering the effects of therapy with a dose and fre-

quency of administration that is efficient, nanoparticle tech-

nology can be utilised to provide controlled and targeted drug

delivery systems, especially for cancer therapy, to increase

selectivity, mitigate potentially harmful side effects and even

cause death in normal cells. The physicochemical properties

Dovepress Wathoni et al

Nanotechnology, Science and Applications 2020:13 submit your manuscript | www.dovepress.com

DovePress
31

http://www.dovepress.com
http://www.dovepress.com


of α-mangostin, especially its poor water solubility profile

and its low selectivity on the target cells, limits its therapeutic

applicability. Therefore, nanoparticle formulations are one

option to resolve these limitations.

Numerous nanoparticle formulations have been

described, including polymeric nanoparticles, solid lipid

nanoparticles, nanofibers, nanomicelles and metal nanopar-

ticles. In general, these formulations aim to increase the

solubility of compounds that are poorly soluble in water

through particle size modification to obtain a larger surface

area. On the other hand, the type of nanoparticle and ingre-

dients also influences the solubility of a compound.

Polymeric nanoparticles are formulated with the polymer as

a base for the formulations and are often made for further

examinations.

Nanoparticle formulations have been developed using var-

ious nanocarriers with different techniques. Each nanocarriers

are formulated by considering the aims of the studies such as

to provide solubility improvement with hydrophilic polymer

as a carrier,104 to provide control released system with pH-

sensitive polymers or thermal-sensitive polymers,105,106 and

to prevent protein degradation with liposome protection.107 In

some cases, the nanocarrier is combined with targeting med-

iators to gain the nanoparticle targeted drug delivery system

into specific target.108

Nanoparticles that mediate passive or active targeted

delivery are generally prepared with ingredients that have

a high affinity to the target and low affinity towards normal

cells, for example, PLGA. PLGA is a copolymer formed

from the combination of polymer polylactic acid (PLA) and

polyglycolic acid (PGA). Research showed that PLGA has

a high affinity to cancer cells, including hepatic cancer,109

prostate cancer110 and lung cancer cells,111 and many cell

lines, including human umbilical vein endothelial cells,112

H1299,113 COS-7 and Cf2th.114 This high affinity allows

PLGA to provide drug delivery systems or genes into the

target-specific tissues or organs. Ultimately, consideration

of nanoparticle shape and the materials used in the formula

requires careful and thoughtful attention, especially with

regards to the desired use and destination.

Conclusion
Many techniques have been considered to improve α-
mangostin’s water solubility, of which nanoparticle formu-

lations have become the most widely performed. This

formulation provides many advantages. Overall, nanopar-

ticle formulations improve α-mangostin’s water solubility

and affect its biopharmaceutical, pharmacokinetic and

pharmacodynamic aspects. Additionally, nanoparticle

technology for α-mangostin can be a promising for con-

trolled release and passive and active targeting. This sys-

tem should help to maximise the efficacy of α-mangostin

in a drug delivery system.
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