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A B S T R A C T

The question of whether there are biological differences between male and female brains is a fraught one, and
political positions and prior expectations seem to have a strong influence on the interpretation of scientific data
in this field. This question is relevant to issues of gender differences in the prevalence of psychiatric conditions,
including autism, attention deficit hyperactivity disorder (ADHD), Tourette's syndrome, schizophrenia, dyslexia,
depression, and eating disorders. Understanding how gender influences vulnerability to these conditions is
significant. Diffusion magnetic resonance imaging (dMRI) provides a non-invasive method to investigate brain
microstructure and the integrity of anatomical connectivity. Generalized q-sampling imaging (GQI) has been
proposed to characterize complicated fiber patterns and distinguish fiber orientations, providing an opportunity
for more accurate, higher-order descriptions through the water diffusion process. Therefore, we aimed to
investigate differences in the brain's structural network between teenage males and females using GQI. This
study included 59 (i.e., 33 males and 26 females) age- and education-matched subjects (age range: 13 to
14 years). The structural connectome was obtained by graph theoretical and network-based statistical (NBS)
analyses. Our findings show that teenage male brains exhibit better intrahemispheric communication, and
teenage female brains exhibit better interhemispheric communication. Our results also suggest that the network
organization of teenage male brains is more local, more segregated, and more similar to small-world networks
than teenage female brains. We conclude that the use of an MRI study with a GQI-based structural connectomic
approach like ours presents novel insights into network-based systems of the brain and provides a new piece of
the puzzle regarding gender differences.

1. Introduction

It is commonly thought that males and females exhibit different
behaviors. Common stereotypes include that females can do many
things at the same time, but they have a poor sense of direction when
driving, whereas males can coordinate and cooperate easily but they
are not good at expressing emotions. That is, males tend to have better
motor ability and spatial cognition, while females tend to have superior
memories, facial recognition, and social skills (Gur et al., 2012; Halpern
et al., 2007). The question of whether there are biological differences
between male and female brains is a fraught one, and political positions
and prior expectations seem to have a strong influence on the
interpretation of scientific data in this field (Abramov et al., 2012;

Fairchild et al., 2016; Ingalhalikar et al., 2014; Joel, 2011; Joel et al.,
2015; Xu et al., 2015).

Gender differences in human brains is an important topic because
the prevalence of psychiatric conditions varies between the genders;
such differences have been observed in autism (much more common in
males) (Baron-Cohen, 2009; Baron-Cohen et al., 2005), attention deficit
hyperactivity disorder (ADHD, much more common in males) (Arnett
et al., 2015), Tourette's syndrome (much more common in males) (Yang
et al., 2016), schizophrenia and dyslexia (more common in males)
(Arnett et al., 2017; McGrath et al., 2008), depression (more common in
females) (Goldstein et al., 2014; Schuch et al., 2014; Shansky, 2009),
and eating disorders (much more common in females) (Lipson and
Sonneville, 2017). Understanding how gender influences vulnerability
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to these conditions is, therefore, a significant question.
Previous studies found strong group differences between male and

female brains; despite comparable findings, the authors of these studies
interpreted the results in almost polar opposite fashions (Ingalhalikar
et al., 2014; Joel et al., 2015; Szalkai et al., 2015). One structural
connectivity study interpreted these group differences as the basis for
gender differences in cognition (Ingalhalikar et al., 2014). They defined
the structural connectivity networks across the brains of 428 males and
521 females using diffusion tensor imaging (DTI). They subsequently
analyzed these networks using a variety of statistical measures of
regional and global connectivity and compared the results between
males and females. They found that on average, females had greater
connectivity between hemispheres than males, while males had greater
connectivity within each hemisphere. Males also showed, on average,
greater local connectivity and concomitantly increased modularity in
the network.

These authors extrapolated their findings to explain a variety of
group differences in cognition between men and women. The partici-
pants in the structural connectivity analysis were part of a larger sample
for which cognitive data had already been obtained, showing gender
differences in a variety of domains. Such differences have been widely
documented and range from very small to fairly large. The results
revealed stark differences between the groups and suggested comple-
mentarity in the architecture of the human brain, which helps provide a
potential neural basis for why men excel at certain tasks and women at
others. For instance, men are usually better at learning and performing
a single task at hand, such as cycling or navigating directions, whereas
women have superior memory and social cognition skills, making them
more equipped for multitasking and creating solutions that work for a
group (Ingalhalikar et al., 2014).

A different study on the volume of brain regions downplayed these
differences entirely and instead emphasized the inherent variability
within genders, concluding that there was no such thing as a “male
brain” or a “female brain” (Joel et al., 2015). They analyzed the MRI
scans of 169 females and 112 males and segmented them into 116
regions using a standard brain atlas. By analyzing how much warping
was required to map each brain onto a reference template, it was

possible to compare the relative gray matter volume of all these regions
across the two genders. From this group comparison, the 10 regions
showing the largest gender differences were chosen for subsequent
analyses. The researchers found statistically significant group differ-
ences between males and females in gray matter volume across many
brain regions. A recent meta-analysis of 167 studies confirms consistent
gender differences in many brain areas between men and women
(Ruigrok et al., 2014).

Joel et al. (2015) went on to ask a more interesting question: across
those ten regions, how “male” or “female” were the structures of
individual brains? This is where subjectivity comes in – there are many
ways to analyze these data, and the authors chose arguably the most
simplistic and extreme one, which enabled them to draw the conclusion
that male and female brains are not categorically different. They
reported that 35% of brains showed substantial variability, and only
6% of brains were internally consistent. Importantly, they chose to
classify only those subjects showing extreme male or female values for
all ten regions as internally consistent.

The fact that most individuals show this pattern does not mean that
each of us has a “mosaic brain” that is partly male and partly female, as
claimed by the authors. It is exactly what is expected given that gender
is only one of the factors affecting the size of each of these regions. We
can only deduce from the group average effects that there would likely
have been some effect. The conclusion that male and female brains are
not that different is not well supported by these findings. The group
differences are clear and highly significant. Even if very few of the
males or females are at the extreme end of the distribution for all ten of
these regions, the overall pattern suggests that you could build a highly
accurate classifier from the volumes of these ten regions taken together
that would be successful at predicting whether a given brain scan came
from a male or a female. Indeed, this would have been a far more
objective test of whether MRI volumetric differences between male and
female brains are categorical or dimensional.

Another group published several studies that showed striking sex
differences among human connectomes using graph theoretical para-
meters; they revealed clear differences and suggested the superiority of
female brains (Szalkai et al., 2015). They also accounted for possible

Fig. 1. Schematic of the pipeline for creating the brain structural connectivity matrix and network using GQI.
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artifacts caused by statistical size differences between male and female
brains. The graph theoretical parameters of 36 large-brained females
and 36 small-brained males were compared, and the differences
remained statistically significant.

Diffusion MRI is increasingly applied in the study of many white
matter disorders (Blood et al., 2010; Cheng et al., 2014; Ota et al., 2015;
U. Roine et al., 2015; Thomason and Thompson, 2011; van den Heuvel
and Fornito, 2014). It can provide a non-invasive method to investigate
brain microstructure and the integrity of anatomical connectivity; this
is not possible with other imaging modalities. Fractional anisotropy
(FA), the most commonly used index of DTI, provides a measure of
white matter tract integrity (Beaulieu, 2002; Srivastava et al., 2016;
Wise et al., 2016). However, DTI is unable to detect the crossing or
branching patterns of complex regions, and DTI which based on
Gaussian diffusion and monoexponential b-value dependence reflects
the weighted average of all compartments even though the partial
volumes of different diffusion compartments may vary (Roine et al.,
2014; T. Roine et al., 2015; Vos et al., 2011). To better characterize the

complicated fiber patterns and distinguish fiber orientations, several
novel diffusion-based methods have been proposed, providing an
opportunity for more accurate, higher-order descriptions when com-
pared to DTI (Descoteaux et al., 2009; Jensen et al., 2005; Tournier
et al., 2007; Tournier et al., 2004; Tuch, 2004; Wang et al., 2014; Wang
et al., 2011; Wedeen et al., 2005; Yeh et al., 2010; Zhang et al., 2012).
Generalized q-sampling imaging (GQI) is a novel q-space reconstruction
method derived from q-space imaging. Compared with DTI, GQI can be
applied to a wider range of q-space datasets for a more accurate and
sophisticated diffusion MR approach (Yeh et al., 2010). For example,
GQI can extract additional information about the altered diffusion
environments by including several indices, such as generalized frac-
tional anisotropy (GFA), normalized quantitative anisotropy (NQA),
and the isotropic value of the orientation distribution function (ISO)
(Shen et al., 2015; Yeh et al., 2010; Zhang et al., 2013).

Recently, the concept of the connectome has been proposed as a
conceptual framework for brain research. This model assumes that the
structural and functional organization of the human brain is organized

Fig. 2. Higher topological measures were found in teenage male brain networks with GQI, including (a) clustering coefficient, (b) normalized clustering coefficient, (c) local efficiency,
(d) normalized characteristic path length, (e) transitivity, and (f) small-worldness index (p < 0.05).
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into complex networks, allowing for the measurement of network
properties such as the segregation or integration of the information
processing within the network. Based on topology, graph theoretical
analysis quantitatively provides novel insight into the connectome by
using nodes, edges and several additional topological parameters, such
as the clustering coefficient, characteristic path length and small-
worldness (Bullmore and Sporns, 2009; Hosseini et al., 2012; Sporns,
2013). In structural connection analysis, nodes are usually derived by
parcellating cortical and subcortical gray matter regions according to
anatomical landmarks, or by defining a random parcellation into evenly
sized voxel clusters, and edges are usually referred to as the white
matter projections linking cortical and subcortical regions (Sporns,
2013). Available graph-theoretical studies have broadly aimed to assess
the organization of structural and functional brain networks using MRI
during normal development, aging, and organic and neuropsychiatric
brain disorders; the results suggest that brain networks are correlated
with behavioral and cognitive functions (Bullmore and Bassett, 2011;
Gong and He, 2015; Lo et al., 2011; Zhang et al., 2011).

A recent MRI study has identified the areas of the brain that change
the most during the teenage years and are associated with complex
thought processes (Whitaker et al., 2016). Furthermore, a link between
teenage brain development and mental illness, such as schizophrenia,
has also been discovered (Whitaker et al., 2016). Because the develop-
mental trajectories of males and females diverge at a young age,
resulting in wide differences during adolescence and adulthood, we
would like to focus on gender differences in the brain during the
developmental period. Therefore, the main aim of this study was to use
GQI-based analysis to assess differences in the teenage brain structural
connectome between males and females using graph theoretical and
network-based statistical analyses.

2. Materials and methods

2.1. MRI data acquisition

A total of 59 age- and education-matched teenagers (33 males and
26 females) between 12 and 14 years of age (male: 13.9 ± 0.58,
female: 14 ± 0.28) were recruited for this study. Informed consent
was obtained from all participants; the study was approved by the
Institutional Review Board of Chung Shan Medical University Hospital.
All participants were right-handed. No participant had a history of
psychiatric or neurological illness or substance abuse, and none were

currently taking any prescription or psychotropic medications. The
exclusion criteria for the study included metallic implants or other
contraindications to MRI.

All diffusion images were acquired using a 3-Tesla MRI (Skyra,
Siemens, Germany) with a 20 channel head neck coil. The diffusion
images were acquired using a multi-shell scheme with repetition time
(TR) = 4800 ms, echo time (TE) = 97 ms, voxel si-
ze = 2 × 2 × 4 mm3, 35 axial contiguous slices, signal average = 1,
64 × 3 non-collinear diffusion weighting gradient direction with
b = 1000, 1500, 2000 s/mm2, and 12 additional null images without
diffusion weighting (b = 0 s/mm2). The scan time was approximately
16.5 min.

2.2. GQI analysis

After using FSL (FMRIB Software Library, Oxford, UK) for both eddy
currents and subject movements (including b-vectors rotation) correc-
tion (Leemans and Jones, 2009), each participant's echo planar image
was spatially normalized to the Montreal Neurological Institute (MNI)
T2 template using parameters determined from the normalization of the
diffusion null image to the T2 template using Statistical Parametric
Mapping (SPM8, Wellcome Department of Cognitive Neurology, Lon-
don, UK). The DSI Studio (National Taiwan University, Taipei, Taiwan)
was employed for whole brain GQI tractography (seeds were placed in
the whole brain) with a normalized quantitative anisotropy (NQA)
threshold of 0.15 and a maximum angle of 70° (Yeh et al., 2010). Next,
the individual structural connectivity matrix (fiber number × NQA /
mean fiber length) of each participant (size of 90 × 90) could be
outputted and the ROIs inputted based on a standard parcellation
template contained in the Automated Anatomical Labeling (AAL)
software package. The schematic of the pipeline for creating the
structural connectivity matrix and network are shown in Fig. 1.

2.3. Graph theoretical analysis

Graph theoretical analysis (GTA) was performed on the interregio-
nal connectivity matrix using the Graph Analysis Toolbox (GAT,
Stanford University School of Medicine, Stanford, CA, USA), a
Matlab-based package with graphical user interface that integrates
the Brain Connectivity Toolbox (BCT) (Hosseini et al., 2012; Rubinov
and Sporns, 2010). The density was calculated by connection with a
threshold divided by the connection of random network. The topolo-

Fig. 3. In the results of network-based statistical analysis, (a) more intrahemispheric, local, short-range, within-lobe connectivity was found in teenage males, especially within bilateral
frontal lobes and parieto-occipital lobes, (b) while more interhemispheric, long-range connectivity was found in teenage females, especially between bilateral frontal lobes and between
bilateral frontal to contralateral parieto-occipital lobes (p < 0.05). The nodes with the same color represent the same module. Node size represents the degree of information, with bigger
nodes indicating a higher degree.
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gical measures of structural brain network densities were calculated
with different correlation thresholds (0.05–0.3 in 0.01 increments),
including the clustering coefficient (C), normalized clustering coeffi-
cient (γ), characteristic path length (L), normalized characteristic path
length (λ), local efficiency (Elocal), global efficiency (Eglobal), small-
worldness index (σ), transitivity, and modularity (Bassett and Bullmore,
2006; Bassett and Gazzaniga, 2011; Bullmore and Sporns, 2009;
Hosseini et al., 2012; Onnela et al., 2005; Saramaki et al., 2007;
Watts and Strogatz, 1998). C and Elocal reflect local segregation; C
quantifies the extent of local interconnectivity in the network, while
Elocal indicates how well the sub-graphs exchange information with
each other. High scores on the two measures correspond to highly
segregated neural processing. L and Eglobal reflect the global integration;
L measures the capability for information transfer between brain
regions, while Eglobal is a measure of the overall capacity for parallel
information transfer and integrated processing. A lower L score or
higher Eglobal score indicates more rapid integration of specialized
information from distributed brain regions. The γ and λ values are
normalized relative to the C and L of 100 random networks. Small-
worldness (σ) is calculated by dividing γ by λ. The transitivity is the
ratio of triangles to triplets in the network and is an alternative to the
clustering coefficient. The modularity is a statistic that quantifies the
degree to which the network may be subdivided into clearly delineated
groups.

2.4. Network-based statistical analysis

Using network-based statistical analysis (NBS) (Zalesky et al.,
2010a), differences in network topology and regional networks be-
tween groups were evaluated using two-sample t-tests calculated from
the areas under the curve of topological measures with multiple
thresholds and non-parametric permutation tests (1000 repetitions;
NBS, Melbourne Neuropsychiatry Centre, The University of Melbourne
and Melbourne Health, Australia). p-Values < 0.05 were considered
statistically significant for both the permutation test in the graph
theoretical analysis (implemented in GAT toolbox) and the two-sample
Student's t-test in NBS analysis. The BrainNet viewer (The MathWorks
Inc., Natick, MA, US) was applied to visualize the significant subnet-
works revealed by NBS.

3. Results

The GTA revealed a significantly higher clustering coefficient
(Fig. 2a), normalized clustering coefficient (γ, Fig. 2b), local efficiency
(Fig. 2c), and transitivity (Fig. 2e) in teenage males than in teenage
females (p < 0.05), and a significantly lower normalized characteristic
path length (λ, Fig. 2d) was observed in teenage females than in
teenage males (p < 0.05). In addition, a higher degree of small-
worldness (σ, Fig. 2f) was found in teenage males compared with
teenage females (p < 0.05). All results were expressed as the mean ±
standard error.

Based on NBS, we found that teenage males had better intrahemi-
spheric, local, short-range, within-lobe connectivity, especially within
bilateral frontal lobes and parieto-occipital lobes (Fig. 3a), while
teenage females had better interhemispheric, long-range connectivity,
especially between bilateral frontal lobes and between bilateral frontal
to contralateral parieto-occipital lobes (Fig. 3b) (p < 0.05). Node size
represents the degree of information, with bigger nodes indicating a
higher degree. Modularity information is represented by the colors of
the nodes. Modularity is a more complex measure of network segrega-
tion; it breaks the network into non-overlapping modules of nodes in a
way that maximizes the number of within-module edges and minimizes
the number of between-module edges. The community structure with
the highest maximized modularity value was used as the representative
modular structure.

4. Discussion

In this study, we examined gender differences in a group of 59
teenagers by comprehensively analyzing the GQI-based structural
connectome of the brain. Our findings confirmed earlier hypotheses
and contributed to the literature on the novel utility of GQI in the
analysis of gender differences. Previous structural imaging showed a
higher proportion of cortical white matter in males except in the corpus
callosum (Schmithorst et al., 2008); this result may suggest that male
brains are better for communicating within hemispheres, whereas
female brains are better for interhemispheric communication
(Cherney et al., 2008; Dubb et al., 2003; Gur et al., 1999; Steinmetz
et al., 1995). Based on NBS, our results supported and consolidated this
hypothesis at a global and regional level and revealed gender differ-
ences in the brain architecture. Significantly, these differences occurred
in early adolescence, suggesting that teenage male brains are indeed
structured to facilitate intrahemispheric cortical connectivity; in con-
trast, teenage female brains displayed higher interhemispheric con-
nectivity (Ingalhalikar et al., 2014).

In addition to NBS, we investigated a complementary network
measurement using GTA that revealed significantly higher clustering
coefficients, normalized clustering coefficients, local efficiency and
transitivity in teenage male brains, which indicated higher local
segregation of brain networks in teenage males. Additionally, we found
a significantly lower normalized characteristic path length in teenage
female brains, which indicated higher global integration of brain
networks in teenage females. Furthermore, a higher small-worldness
was found in teenage males, which indicated that the neural connec-
tions of teenage male brains were closer to small-world networks. These
topographical measurements delineated and quantified the distribution
of the connectome, that is, how the connectome can be divided into
subnetworks. Higher (normalized) clustering coefficients, local effi-
ciency and transitivity in teenage males pointed to a region's neighbors
being more strongly connected to each other within each lobe of the
brain, resulting in increased global modularity. This is also indicative of
the enhanced local, short-range, within-lobe connectivity among teen-
age males. In contrast, the lower normalized characteristic path lengths
of the teenage females indicated that teenage females begin to develop
higher long-range connectivity, which is mainly interhemispheric.

During developmental periods, male brains tend to be structured to
facilitate within-lobe and within-hemisphere connectivity, involving
links between perception and action and building more efficient
systems for coordinated actions. In contrast, female brains tend to have
better interhemispheric connectivity and better cross-hemispheric
participation, which increases integration of bilateral hemispheric
functional performance (Ingalhalikar et al., 2014). Several recent
behavioral studies demonstrated distinct gender differences, with
females performing better on attention, word and face memory, and
social cognition tests, and males performing better on spatial processing
and motor and sensorimotor speed. Most gender differences were
apparent by early adolescence (Cherney et al., 2008; Gur et al., 2012).

In addition to being consistent with behavioral studies, our results
are also consistent with several advanced MRI studies. In previous DTI
studies, a higher FA and lower mean diffusivity (MD) in the corpus
callosum were found in females during mid-adolescence (Asato et al.,
2010; Bava et al., 2011; Schmithorst and Yuan, 2010). In previous
functional MRI studies, better interhemispheric activation in females on
language tasks (Shaywitz et al., 1995) and better focal intra-hemi-
spheric activation in males on spatial tasks have been revealed (Gur
et al., 2000). Taken together, all of the above-mentioned MRI studies
with either structural or functional approaches support the concept of
behavioral complementarity between male and female brains.

Several limitations in the present study need to be considered. First,
the age-matched cross-sectional design did not allow us to observe the
effects of development or aging in the participants, hence, longitudinal
studies are needed to examine such effects. Second, puberty status and
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sex steroids level can influence brain development and may cause
possible bias for gender differences analysis (Neufang et al., 2009), but
both were not considered in our study. Third, the limitation of our MR
scanner forced us to use less slides number for whole brain coverage
and resulted in anisotropic voxel size for GQI analysis. Fourth, we
performed eddy currents correction but no other echo planar imaging
distortions correction, which may affect the alignment of the diffusion
and anatomical data for normalization. Last, in the connectome
analysis, the parcellation scheme we used was based on the widely-
used AAL template, which divided and limited the whole brain into 90
regions and may cause risks of the results to be driven by bigger regions
such as those of the frontal lobe. Several studies have reported that
different schemes could result in distinct topological patterns and
suggested a reasonable trade-off between increased spatial resolution
and attenuated signal-to-noise ratio should be carefully considered
(Fornito et al., 2010; Salvador et al., 2008; Zalesky et al., 2010b).
Therefore, further studies should combine more parcellation strategies
to explore the effects on network topology.

5. Conclusions

Our results establish that teenage male brains exhibit better
intrahemispheric communication and teenage female brains exhibit
interhemispheric communication. Our results also suggest that the
network organization of teenage male brains is more local, more
segregated, and more similar to small-world networks than teenage
female brains. We conclude that MRI studies using a GQI-based
structural connectomic approach like ours can offer novel insights into
the network-based systems of the brain and provide a new piece of the
puzzle regarding gender differences.
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