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Application of machine learning to predict
aneuploidy and mosaicism in embryos from in
vitro fertilization cycles
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BACKGROUND: The factors associated with embryo aneuploidy have been extensively studied. Mostly maternal age and to a lesser extent
male factor and ovarian stimulation have been related to the occurrence of chromosomal alterations in the embryo. On the other hand, the main
factors that may increase the incidence of embryo mosaicism have not yet been established.
OBJECTIVE: This study aimed to establish a machine learning model that would allow prediction of aneuploidies and mosaicism in embryos
conceived via in vitro fertilization, and thus help to determine which variables are associated with these chromosomal alterations.
STUDY DESIGN: The study design was observational and retrospective. A total of 6989 embryos from 2476 cycles of preimplantation
genetic testing for aneuploidies were included (January 2013 to December 2020). The trophoectoderm biopsies on day-5, -6, or -7 blastocysts
were analyzed by preimplantation genetic testing for aneuploidies (PGT-A). The different maternal, paternal, couple, embryo, and in vitro fertiliza-
tion cycle characteristics were recorded in a database (22 predictor variables) from which predictive models of embryo aneuploidy and mosaicism
were developed; 16 different unsupervised classification machine learning algorithms were used to establish the predictive models.
RESULTS: Two different predictive models were performed: one for aneuploidy and the other for mosaicism. The predictor variable was of
multiclass type because it included the segmental- and whole-chromosome alteration categories. The best predicting models for both aneuploi-
dies and mosaicism were those obtained from the Random Forest algorithm. The area under ROC curve (AUC) value was 0.792 for the aneuploidy
explanatory model and 0.776 for mosaicism. The most important variable in the final aneuploidy model was maternal age, followed by paternal
and maternal karyotype and embryo quality. In the predictive model of mosaicism, the most important variable was the technique used in preim-
plantation genetic testing for aneuploidies and embryo quality, followed by maternal age and day of biopsy.
CONCLUSION: It is possible to predict embryo aneuploidy and mosaicism from certain characteristics of the patients and their embryos.

Key words: array comparative genomic hybridization, artificial intelligence, embryo aneuploidy, embryo mosaicism, machine learning, next-
generation sequencing, preimplantation genetic testing for aneuploidies
Introduction
Embryo aneuploidy is the main cause of
failure in in vitro fertilization (IVF)
cycles.1 These aneuploidies can cause
various events, such as embryo arrest,
implantation failure, first-trimester mis-
carriage, or congenital anomalies.2,3

Most meiotic errors leading to
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aneuploid embryos originate in female
gamete meiosis.4 Several studies have
shown that these alterations are associ-
ated with maternal age.5,6

Conversely, patients with abnormal
karyotypes produce a high rate of unbal-
anced gametes that result in aneuploid
embryos.7 When analyzing in depth the
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role of the karyotype, studies conducted
by our team have found an increase in
embryo aneuploidy when one of the
parents had karyotype polymorphism.8

Finally, embryo quality is an excellent
predictive factor for embryo aneuploidy.
Poorer-quality embryos (grades C and
D) present a higher rate of chromosomic
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Why was this study conducted?
The aim of this study is to establish machine learning models to predict aneu-
ploidy and mosaicism in embryos from IVF treatments.

Key findings
Two different predictive models were performed, one for aneuploidy (AUC:
0.792) and the other for mosaicism (AUC: 0.776). The best models were those
obtained from the Random Forest algorithm.
The most important variable in the aneuploidy model was maternal age and in
the predictive model for mosaicism, was the technique used in PGT-A and
embryo quality.

What does this add to what is known?
Artificial intelligence can be a very useful tool in reproductive medicine, in par-
ticular the machine learning models established for embryo aneuploidy and
mosaicism allow the identification of couples at risk of embryo aneuploidy/
mosaicism, which could benefit from the use of PGT-A.
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alterations compared with good-quality
embryos (grades A and B).9

In addition to maternal age, karyo-
type and embryo quality have been con-
sidered as factors associated with
embryo aneuploidy, although they are
not as widely accepted because of con-
tradictory results reported in the litera-
ture. These factors are related to the
male parent (male factor), the couple’s
background, and ovarian stimulation.
Fluorescence in situ hybridization

(FISH) analysis of spermatozoa was the
main technique used to assess the pater-
nal contribution to embryo aneuploidy.
Recent studies have shown an increased
embryo aneuploidy rate in males with
an elevated number of aneuploid sper-
matozoa.10 However, other studies con-
sider that this paternal contribution
plays a secondary role only.11,12,13

Previous recurrent implantation fail-
ure (RIF) or pregnancy loss (RPL) are
other risk factors for embryo aneu-
ploidy. If, in addition, the couple has a
history of pregnancy with chromosomal
abnormalities, the probability of chro-
mosomal alterations in a future preg-
nancy is increased.14

Ovarian stimulation may also affect
the embryo aneuploidy rate. Recently,
it has been shown that embryos from
patients who require more days of
hormonal treatment to achieve oocyte
maturation have a lower aneuploidy
rate.15
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Mosaicism is a special type of chro-
mosomal alteration in the embryo. This
genetic alteration consists of the coexis-
tence of ≥2 populations of cells with a
different chromosomal endowment.16

There are several established mecha-
nisms causing mosaicism: nondisjunc-
tion of chromosomes during cell
division, anaphase lagging, which pre-
vents the correct incorporation of a sin-
gle chromatid into each nucleus of the
cells after mitosis, and finally, replica-
tion of DNA without cell division,
called endoreplication. Anaphase lag-
ging is the main process causing mosai-
cism in the preimplantation embryo.17

Maternal, paternal, and embryo fac-
tors that affect this phenomenon are
still unclear. In some cases, these altera-
tions can be corrected by cellular
systems.18,19 According to the studies
carried out to date, maternal age does
not seem to play a central role in
embryo mosaicism.20 In contrast, pater-
nal age does seem to increase the
embryo mosaicism rate.20

As in the case of aneuploidies,
embryo quality seems to be a good pre-
dictive factor. Good-quality embryos (A
and B) have lower rates of mosaicism
when compared with lower-quality
embryos (C and D) (unpublished data).

Other factors associated with mosai-
cism are those related to the embryo
culture conditions during the IVF
treatment.21
The most common chromosomal
alterations in embryos involve whole
chromosomes, but there is a percentage
of aberrations that affect only a chro-
mosome segment. The origin of seg-
mental alterations is diverse22 and can
be produced either by errors during
meiosis in the gametogenesis or by a de
novo phenomenon that occurs after
chromosomal breaks that take place in
mitosis at the early stages of embryo
development. A third possibility
involves one of the parents carrying a
balanced translocation in their karyo-
type.
Machine learning algorithms are

being used in medicine increasingly fre-
quently. These models are helping clini-
cians to diagnose and optimize
treatments in a wide range of medical
fields. Human fertility is not an excep-
tion to this phenomenon, and in recent
years, there has been a growing interest
in this analysis methodology.23,24

Assisted reproductive technology
(ART) generates a large amount of data,
which makes it a perfect target for the
application of different artificial intelli-
gence algorithms.
This study emerged in this context

with the aim of being able to predict the
personalized probability of having chro-
mosomally normal embryos by taking
into account data from patients’ medi-
cal records.
Materials and Methods
Study design
The study design was observational and
retrospective. The data were derived
from the results of preimplantation
genetic testing for aneuploidies (PGT-
A) of embryos from couples with fertil-
ity problems who attended Instituto
Bernabeu. These data covered the
period from January 2013 to December
2020, corresponding to 6989 embryos
from 2476 IVF cycles.
Ethical approval
All work was conducted with previous
formal approval of the Instituto Berna-
beu Institutional Review Board and fol-
lowed the principles of the Declaration
of Helsinki.
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Preimplantation genetic testing for
aneuploidies
The medical indications for PGT-A
were advanced maternal age, abnormal
karyotype of one of the parents, high
rate of chromosome aneuploidies in
sperm samples, history of chromosomal
abnormalities, and history of repeated
miscarriages and embryo implantation
failure (defined as the transfer of at least
2 embryos in the uterine cavity without
implantation).
All couples were informed and signed

the corresponding informed consent for
the PGT-A procedure.
The embryo biopsies were performed

at the blastocyst stage on days 5, 6, or 7
of embryo development. Fragments
between 3-6 cells were removed from
the trophoectoderm.
After lysing the biopsied cells, embryo

genome amplification was performed
using the PicoPLEX kit (Rubicon Geno-
mics, Ann Arbor, MI) following the man-
ufacturer’s instructions.
All biopsies were processed for chro-

mosomal analysis by Agilent SurePrint
G3 8£ 60K CGH microarrays
(n=2335) (Agilent Technologies, Santa
Clara, CA) or VeriSeq next-generation
sequencing (NGS) (Illumina, San Diego,
CA) (n=4654).
Embryos with a percentage of aneu-

ploid cell line <25% were classified as
euploid and were suitable to be trans-
ferred to the maternal uterus. Embryos
were classified as mosaic if the percent-
age of the aneuploid cell line was
between 25% and 50%. These mosaic
embryos were transferred according to
the recommendations of the Preimplan-
tation Genetic Diagnosis International
Society (PGDIS).25 Despite the lack of
scientific evidence, these embryos are
discarded in many fertility clinics,
which they justify with avoiding the risk
of the child being born with chromo-
somal alterations.16

Finally, if the proportion of aneu-
ploid cells was >50%, the embryo was
classified as aneuploid and considered
unsuitable for transfer.

Univariate analysis
Comparison between the study groups
(euploid vs aneuploid and mosaic vs
nonmosaic) for categorical variables
was performed using the Pearson chi-
square test. The normal distribution of
the variables was analyzed using the
Shapiro−Wilk test. If the distribution
was normal, the comparison between
the different groups was carried out
using the Student t test, otherwise the
Mann−Whitney U-test was used. Dif-
ferences were considered statistically
significant when P<.05.

Data preprocessing
The dataset was analyzed using different
multiclass classification algorithms. These
were all supervised algorithms. Analysis
was done on the basis of a data frame
after anonymization of the results
obtained after PGT-A. Noninformative
embryos were excluded from the analysis.

Firstly, a preprocessing of the data-
base was carried out. In the factors, lev-
els with few observations were grouped
together. Missing values (0.15%) were
imputed and there were no outliers
detected.

The starting database contained 29
predictor variables, which could be clas-
sified into 6 groups: general, maternal,
paternal, couple-related, IVF cycle
−related, and embryo-related (Table 1).
Nonrelevant variables and those show-
ing a strong correlation were elimi-
nated. Because Bayesian algorithms
were to be used, the numeric variables
were discretized according to quartiles.
For the specific case of the XGBoost
model, the variables were transformed
into numeric variables.

Two different multiclass models were
implemented: one to predict aneuploi-
dies (euploid, whole-chromosome
aneuploid, segmental-chromosome
aneuploid, or both types of aneuploidy)
and one to predict mosaicism (nonmo-
saic, whole-chromosome mosaic, seg-
mental-chromosome mosaic, and both
types of mosaicism).

Before training the models, class bal-
ancing for the variables to be predicted
was carried out.

Hyperparameter optimization of
multiclass models
A total of 16 machine learning algo-
rithms (classification) were applied
(Supplemental Table 1), ranging from
multinomial regression, artificial neural
networks, support vector machines,
neighborhood-based methods, classifi-
cation trees, gradient boosting, ensem-
ble methods, Bayesian methods, and
discriminant analysis−based methods.
The best model was selected on the

basis of the area under the curve (AUC)
or area under the receiver operating
characteristic (ROC) curve, a parameter
that reflects the model’s ability to dis-
criminate the dependent variable. AUC
values were obtained using a cross-vali-
dation (5-fold) procedure after ran-
domly dividing the data frame into
training (80%) and validation data
(20%). During the optimization process,
different performance metrics were cal-
culated: logLoss (negative of the multi-
nomial log-likelihood based on the class
probabilities), accuracy, AUC, sensitiv-
ity, and specificity.
Once each of the algorithms had been

optimized, the best models were com-
pared pairwise by applying a paired t
test with Bonferroni correction.

Final predictive model
The final Random Forest model was
obtained using the complete database.
To guarantee the independence between
the data and to be able to properly eval-
uate the models, the cross-validation
technique was applied with 10 folds
with adjustment of the different hyper-
parameters. This time the validation
error was estimated from the out-of-bag
(OOB) error. This error is determined
from the predictions of observations
not included in the model generation.
The ROC curve was determined for

each of the response variable clases, and
the overall mean was calculated by 2
different methods: macro, calculated by
averaging the results of all groups (one
vs the rest) by linear interpolation
between the points of the ROC curves;
and micro, obtained by aggregating all
the groups, thus converting the multi-
class classification into a binary classifi-
cation.
The most important predictor varia-

bles in the final model using the Ran-
dom Forest algorithm were determined
from the relationship between 3
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TABLE 1
Descriptive of patients, in vitro fertilization cycle and preimplantation genetic testing for aneuploidies

Variable Variable name Total Aneuploidy Mosaicism

� + P e � + P value

PGT-A technique n=6989 n=3731 n=3258 n=5836 n=1153

aCGH (%) TECHNIQUE 33.4 38.6 27.4 <. a 35.2 24.3 <.001a

NGS (%) 66.6 61.4 72.6 64.8 75.7

Patients

Maternal age (mean§SD) MATERNAL_AGE 33.82§6.82 31.65§6.61 36.27§6.21 <. b 33.95§6.79 33.19§6.95 .001b

Paternal age (mean§SD) PATERNAL_AGE 39.29§6.99 39.35§6.87 39.22§7.13 .4 39.21§6.98 39.70§7.00 .008b

Male karyotype MALE_KARYOTYPE

Altered (%) 2.4 1.8 3.1 .0 2.4 2.4 .988a

Polymorphism (%) 8.6 8.9 8.2 8.6 8.4

Female karyotype FEMALE_KARYOTYPE

Altered (%) 1.4 0.9 2.0 <. a 1.5 1.0 .547a

Polymorphism (%) 7.5 8.8 5.9 7.5 7.2

Sperm Count SPERM_COUNT

Normozoospermia (%) 78.2 77.8 78.7 .6 78.0 79.3 .260a

Oligozoospermia (%) 18.6 19.0 18.2 18.7 18.2

Cryptozoospermia (%) 2.6 2.8 2.5 2.8 1.8

Azoospermia 0.5 0.5 0.6 0.5 0.6

Astenozoospermia (%) ASTENOZOOSPERMIA 20.2 20.1 20.3 .8 20.1 20.4 .848a

Teratozospermia (%) TERATOZOSPERMIA 14.3 14.1 14.5 .6 14.8 11.6 .005a

Altered sperm aneuploidy test -FISH- (%) FISH 11.2 13.2 8.8 <. a 11.1 11.6 .159a

Pathologic sperm DNA fragmentation-TUNEL-(%) TUNEL 3.9 4.1 3.7 <. a 3.9 3.6 .412a

RIF (%) RIF 20.9 20.5 16.3 <. a 20.3 24.3 .002a

RPL (%) RPL 21.0 22.6 19.2 .0 21.0 21.1 .980a

History of chromosomopathies (%) CHROMOSOMOPATHIES 21.9 20.6 23.3 .0 21.7 22.8 .409a

IVF Cycle

Cycles with donated oocyte (%) OWN_OOCYTE 34.8 47.1 20.8 <. a 34.0 38.9 .002a

Ortiz. Prediction of aneuploid and mosaic embryos. Am J Obstet Gynecol Glob Rep 2022. (continued)
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TABLE 1
Descriptive of patients, in vitro fertilization cycle and preimplantation genetic testing for aneuploidies (continued)

Variable Variable name Total Aneuploidy Mosaicism

� + P value � + P value

Stimulation in luteal phase (%) LUTEAL_PHASE_OOCYTE 4.7 2.8 6.8 <.001a 5.0 3.3 .014a

Vitrified oocyte (%) VITRIFIED_OOCYTE 10.0 10.0 10.1 .829a 9.9 10.8 .366a

Cycles with donated sperm (%) DONATED_SPERM 8.4 7.0 10.2 <.001a 8.6 7.5 .227a

Frozen sperm cycles (%) FROZEN_SPERM 10.7 12.4 8.8 <.001a 10.3 13.1 .005a

Recovered oocytes (mean§SD) RECOVERED_OOCYTES 12.73§6.25 13.01§6.04 12.40§6.47 <.001b 12.74§6.26 12.64§6.23 .740b

Mature oocytes (MII) (mean§SD) MII 10.63§5.01 10.97§4.85 10.24§5.15 <.001b 10.64§4.99 10.55§5.06 .806b

Number of embryos biopsied (mean§SD) EMBRYOS_BIOPSIED 4.01§2.18 4.06§2.10 3.96§2.27 .002b 4.01§2.19 3.99§2.15 .870b

Embryo —
Aneuploidy (%) ANEUPLOIDY 46.6 — — — 47.2 43.7 .031a

Mosaicism (%) MOSAICISM_ 16.5 17.4 15.5 .031a — — —
Segmental alterations (%) SEGMENTAL_ALT 13.4 7.2 20.6 <.001a 8.1 40.7 <.001a

Whole chromosome alterations (%) WHOLE_CHROMOSOME_ALT 48.5 12.4 89.9 <.001a 42.0 81.5 <.001a

Embryo quality (%) EMBRYO_QUALITY

A 45.1 54.0 35.0 <.001a 46.5 38.2 <.001a

B 48.1 42.5 54.6 47.0 53.9

C 5.3 2.9 7.9 5.1 6.1

D 1.5 0.6 2.5 1.4 1.8

Biopsy day (%) BIOPSY_DAY

D+5 D_5 60.3 66.5 53.3 <.001a 60.7 58.2 .252a

D+6 D_6 38.2 32.6 44.5 37.8 40.1

D+7 D_7 1.5 0.9 2.2 1.5 1.7
aCGH, array comparative genomic hybridization; IVF, in vitro fertilization; NGS, next-generation sequencing; PGT-A, preimplantation genetic testing for aneuploidies; SD, standard deviation.

Comparison of values corresponding to euploid vs. aneuploid and mosaic vs. non-mosaic embryos. Numerical variables were compared using the Mann Whitney U test (a) and categorical variables using Pearson’s chi-square (b). Differences were considered statistically
significant when p<0.05.

Ortiz. Prediction of aneuploid and mosaic embryos. Am J Obstet Gynecol Glob Rep 2022.
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measures of importance: mean depth,
number of trees, and total number of
nodes.
Results
A descriptive analysis of the set of pre-
dictor variables is shown in Table 1.
The method of analysis of embryo
aneuploidy was mainly NGS.
The mean age of female participants

included in the study was 33.82§
6.82 years, whereas male participants
were older (39.29§6.99 years). In the
case of gamete (oocyte and/or sperm)
donation cycles, the age of the donor
was recorded as maternal or paternal
age. Overall, male participants had good
semen quality, with 78.2% having nor-
mal sperm counts (normozoospermia)
according to the World Health Organi-
zation classification. Only 11.2% of
patients showed elevated levels of sperm
aneuploidy.
Conversely, 20.9% of couples had suf-

fered RIF and 21.0% had suffered RPL.
Donated oocytes and sperm were

used in 34.8% and 8.4% of the cycles,
respectively. The mean number of
oocytes retrieved after ovarian stimula-
tion was 12.73§6.25 oocytes, out of
which 10.63§5.01 were mature.
FIGURE 1
Performance metrics of different pred

Results obtained in terms of AUC, mean sensitivity
predictive model (A, aneuploidy; B, mosaicism). The
ADHD, high-dimensional discriminant analysis; ADP, penalized discrim
shrunken centroids; GRADBOOST, stochastic gradient boosting; KNN
support vector machines with radial basis function kernel; TAN, tree-a
boosting.

Ortiz. Prediction of aneuploid and mosaic embryos. Am J Obs
The rate of embryo aneuploidy
detected was 46.6% and the rate of
mosaicism was 16.5%. The segmental
alterations rate, including both mosai-
cism and aneuploidy, was 13.4%. Most
of the embryos analyzed were of very
good quality (A: 45.1% and B: 48.1%),
and biopsies were mainly performed on
days 5 (60.3%) or 6 (38.2%).

When a univariate analysis of the dif-
ferent characteristics of the patient, the
IVF cycle, and the embryos was per-
formed, a large number of variables
showed statistically significant differen-
ces between the euploid and aneuploid
embryo group, and between embryos
with and those without mosaicism
(Table 1). As expected, maternal age
was higher in aneuploid embryos
(36.27§6.21 vs 31.65§6.61 years in
euploid embryos). This was the opposite
in the case of mosaicism, with mosaic
embryos having slightly lower maternal
age (33.19§6.95 years) compared with
embryos without mosaicism (33.95§
6.79 years). The pattern of paternal age
was different. No differences were
observed in the case of aneuploidies
(39.35§6.87 vs 39.22§7.13 years), but
in contrast, mosaic embryos showed
slightly higher paternal ages (39.70§
ictive models.

, mean specificity, and accuracy for each of the ma
results obtained with Bagged CART are not shown
inant analysis; ADS, shrinkage discriminant analysis; AUC, area under
, k-nearest neighbors; MLP, multilayer perceptron; NBB, naive Bayes;
ugmented naive Bayes classifier; TAN_SEARCH, tree-augmented naive

tet Gynecol Glob Rep 2022.
7.00 years) than embryos without mosa-
icism (39.21§6.98 years). When one of
the members of the couple had an
abnormal karyotype, the proportion of
aneuploid embryos increased, both in
the case of paternal (3.1% vs 1.8%) and
maternal (2.0% vs 0.9%) origin. No dif-
ferences were observed in the case of
mosaicism. Semen quality did not seem
to be modified by either embryo aneu-
ploidy or mosaicism. The only excep-
tion was teratozoospermia, which was
higher in embryos without mosaicism
(14.8% vs 11.6%).
Surprisingly, FISH analysis in sper-

matozoa (euploid: 13.2% vs aneuploid:
8.8%), sperm DNA fragmentation
(euploid: 4.1% vs aneuploid: 3.7%), his-
tory of RIF (euploid: 20.5% vs aneu-
ploid: 16.3%), and RPL (euploid: 22.6%
vs aneuploid: 19.2%) showed inverse
tendencies relative to those previously
described in the literature.
Conversely, in both euploid and non-

mosaic embryos the proportion of
good-quality embryos was higher than
that observed in aneuploid or mosaic
embryos (54.0% vs 35.0% and 46.5% vs
38.2%, respectively).
Two machine learning models were

developed: one to predict aneuploidies
chine learning algorithms used in the multiclass
in the figure but are inferior to the best models.
the receiver operating characteristic curve; C5, C5.0; CEN, nearest
RF, Random Forest; RLM, penalized multinomial regression; SVM,
Bayes classifier structure learner wrapper; XGB, extreme gradient
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and the other to predict mosaicism. In
both cases, multiclass classification
models were chosen, in which the vari-
able to be predicted had 4 categories
depending on whether the identified
alteration was present or absent and
whether it affected a complete chromo-
some or only a part (segmental).
The metric to optimize was the

AUC, which quantifies the predictive
power of the different models. Figure 1
shows the results of the best models for
each of the trained algorithms. The
results are detailed for the different
model quality metrics: AUC (macro),
TABLE 2
Confusion matrix and performance m
els for aneuploidy and mosaicism
mosaic embryos. Am J Obstet Gyneco
A

Prediction E A_CC

E 725 33

A_CC 24 731

A_CS 43 22

A_CC_CS 48 34

B
logLoss AUC Mean Sensitivity

1.119 0.792 0.561

C

Prediction NM M_CC

NM 578 23

M_CC 23 614

M_CS 19 26

M_CC_CS 20 21

D
logLoss AUC Mean Sensitivity

1.112 0.776 0.545
A: Confusion matrix for the final Random Forest model for the pr
Aneuploide Cromosoma Completo (Whole-chromosome aneupol
chromosome aneuploidy); A_CC_CS: Aneploide Cromosoma Com
ploidy). C: Confusion matrix for the final Random Forest model fo
mosaicism; M_CC: Mosaicismo Cromosoma Completo (Whole-ch
mentario (Segmental Chromosome Mosaicism): M_CC_CS: Mosa
whole-chromosome mosaicism) B y D: Results obtained in terms
the class probabilities), AUC (area under the ROC curve), mean se
learning algorithms used in the multiclass predictive model (IIB: an

Ortiz. Prediction of aneuploid and mosaic embryos. Am J O
mean sensitivity, mean specificity, and
accuracy.

For both aneuploidies (Figure 1, A)
and mosaicism (Figure 1, B), the model
with the highest AUC value was the
Random Forest (aneuploidies AUC,
0.780; mosaicism AUC, 0.744),
although statistically equivalent (t test)
to other models. In the case of aneu-
ploidy, the equivalent models to Ran-
dom Forest were XGBoost (AUC,
0.780), C5 (AUC, 0.762), and K-Near-
est-Neighbor (AUC, 0.725). For mosai-
cism the best models were, in addition
to the above-mentioned Random For-
est, XGBoost (AUC, 0.736), Support
etrics of final random forest mod-
Ortiz. Prediction of aneuploid and
l Glob Rep 2022.

Reference

A_CS A_CC_CS

12 13

8 13

784 15

16 819

Mean Specificity Accuracy

0.854 0.562

Reference
M_CS M_CC_CS

7 8

9 11

615 9

8 612

Mean Specificity Accuracy

0.847 0.542
ediction of embryo aneuploidy (multi-class). E: Euploid; A_CC:
idy); A_CS: Aneuploide Cromosoma Segmentario (Segmental
pleto y Segmentario (Segmental and whole-crhomosme aneu-
r the prediction of embryo mosaicism (multi-class). NM: Non-
omosome mosaicism); M_CS: Mosaicismo Cromosoma Seg-
icismo Cromosoma Completo y Segmentario (Segmental and
of logLoss (negative of the multinomial log-likelihood based on
nsitivity, mean specificity and accuracy for each of the machine
euploidy; IID: mosaicism).

bstet Gynecol Glob Rep 2022.
Vector Machine (AUC, 0.723), C5
(AUC, 0.715), and Gradient Boosting
(AUC, 0.692).
When analyzing the other metrics

such as accuracy, mean sensitivity, and
mean specificity, the final Random For-
est model was also the one that pre-
sented the highest value, although
statistically equivalent to the models
mentioned above, and therefore, it was
chosen as the final model.
To improve the results, the final

model for both aneuploidy and mosai-
cism was achieved using the Random
Forest algorithm, which allows the
entire database to be used without the
need to split it between training and val-
idation data. It also allows the validation
error to be calculated from the observa-
tions that have not been used when
training the model (OOB) (Supplemen-
tary Figure S2).
The AUC values for the final aneu-

ploidy and mosaicism models were
0.792 and 0.776, respectively, which
were better than those initially obtained
(0.780 and 0.744). The remaining met-
rics of both models are summarized in
Table 2, B and D. The confusion matrix
showing the high accuracy of the final
predictive models is shown in Table 2,
A and C.
Figure 2 shows the ROC curves for

the Random Forest model for each of
the classes of the variable to be pre-
dicted, and the global mean (macro and
micro).
Figure 3 shows the relative impor-

tance of the variables (in terms of num-
ber of trees and minimum depth) in the
Random Forest models predicting
embryo aneuploidy and mosaicism,
respectively. The size of the points is a
measure of the number of nodes into
which the corresponding variable is
split. The top 10 variables are
highlighted in blue.
For aneuploidies (Figure 3, A), the

most important variable was maternal
age, followed by embryo quality. Male
and female karyotype were also 2
important variables in the final model.
Surprisingly, the number of oocytes
retrieved after ovarian stimulation was
a variable that also achieved a high rela-
tive importance, whereas history of
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FIGURE 2
Receiver operating characteristic (ROC) curves for each of the classes of the multiclass response variable

(A, aneuploidy; B, mosaicism). The multi_ROC function of the multiROC library was used. The overall mean was calculated by 2 different methods
(macro and micro).
Ortiz. Prediction of aneuploid and mosaic embryos. Am J Obstet Gynecol Glob Rep 2022.
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chromosomal alterations was not
among the 10 most important variables.
The PGT-A diagnostic technique was

the variable with the highest relative
importance in the predictive model of
embryo mosaicism, whereas this was
not as important in the case of embryo
aneuploidy. The 2 variables associated
with embryo mosaicism were embryo
quality and day of biopsy. In this case,
maternal age did not play such a rele-
vant role as in aneuploidies.
In both models, paternal age was

one of the 10 variables with the great-
est relative importance, having a
FIGURE 3
Relative importance of the variables
Forest predictive model

Relative importance of the variables in terms of the
mosaicism). The size of the point is proportional to t
Ortiz. Prediction of aneuploid and mosaic embryos. Am J Obs
greater weight in mosaicism than in
aneuploidies. Among the variables
associated with the male factor, only
sperm aneuploidy (FISH) appeared in
both the aneuploidy and mosaicism
models. Sperm quality parameters
were not among the 10 most impor-
tant variables in any of the Random
Forest predictive models.

Variables related to the type of IVF
cycle (donated oocyte or sperm, vitrified
or fresh oocyte, frozen or fresh sperm,
and follicular or luteal phase stimula-
tion) played a minor role in the explan-
atory models.
in terms of the number of trees and the

number of trees and the minimum depth of the Ra
he total number of nodes into which it is finally divid
tet Gynecol Glob Rep 2022.
Discussion
There has been spectacular progress in
reproductive medicine and technology
since the first child conceived via IVF
was born in 1978. However, presently,
the pregnancy rates of couples undergo-
ing reproductive techniques seem to
have reached a limit that cannot be sur-
passed. This is why the scientific
community has doubled the efforts to
make incremental progress in a vari-
ety of stages of the IVF treatment,
such as embryo culture media and
conditions, protocols and hormones
used in ovarian stimulation,
minimum depth of the Random

ndom Forest predictive model (A, aneuploidy; B,
ed in that variable.
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endometrial preparation methods, and
embryo selection.
Artificial intelligence applied to other

fields of medicine, supported by big
data, is allowing analysis of data that
goes beyond basic statistical approaches
and is able to make predictions that
help clinicians increase their diagnostic
and therapeutic abilities.26−28

Machine learning applied to repro-
ductive medicine will provide special-
ized gynecologists with data analysis
methods that will allow them to maxi-
mize the potential of ART.29 These data
analysis methods represent an advance
in personalized medicine because they
facilitate knowledge about the contribu-
tion of each of the potential predictor
variables to the outcome of a fertility
treatment, and enable individually tai-
loring protocols for each patient.
Different machine learning and deep

learning algorithms are being applied in
various processes of reproductive medi-
cine, mainly in embryo classification,
supporting the work of embryologists
by helping them to select embryos with
the greatest implantation potential.30−32

A priori knowledge of a couple’s
chances of achieving a euploid embryo
in ART is of utmost importance in the
search for the best therapy for couples
attending fertility clinics. Retrospective
data analysis using machine learning
can be a powerful tool for establishing
explanatory models of embryo aneu-
ploidy and mosaicism. There is a wide
range of machine learning algorithms
with different theoretical foundations
that can provide a great variety of these
models.
The data that we used in the optimi-

zation of the models were obtained
from approximately 7000 embryos ana-
lyzed by PGT-A (array comparative
genomic hybridization [aCGH] or
NGS) in the last 8 years. A total of 29
predictor variables were used, which
could be classified into 6 groups: gen-
eral, maternal, paternal, couple-related,
IVF cycle−related, and embryo-related.
When elaborating the predictive

models for embryo aneuploidy and
mosaicism, we used different strategies.
At first, they were used as binary varia-
bles for prediction (euploid vs
aneuploid; mosaic vs nonmosaic), but
the explanatory capacity of the obtained
models was very low (unpublished
data). The final multiclass models had
better quality compared with those
obtained by strategies analyzing aneu-
ploidy and mosacism individually. The
multiclass analysis results in AUC were
close to 80%, which were much higher
values than those obtained with the
individual strategies (AUC, 65%) and of
objectively good quality. A biological
explanation for this result is that the
origins of segmental and whole-chro-
mosome aneuploidies and mosaicism
are not identical, and therefore group-
ing them in the same class is not an
optimal solution in the search for a pre-
dictive model. The different types of
aneuploidy and mosaicism require sep-
arate categories.

For both aneuploidy and mosaicism,
the best model was achieved with the
Random Forest algorithm, which is
based on the combination of classifica-
tion trees generated from a random
sampling of the starting data and a ran-
dom selection of variables before evalu-
ating each split. Random Forest has
been widely used in predictive models
in the field of medicine.33−35 It can
reduce the variance in predictions by
averaging the set of models generated.
The number of randomly sampled vari-
ables in each split is a hyperparameter
(mtry) to optimize in the training of
predictive models. Specifically, the
model is evaluated on different combi-
nations of parameters included in a grid
(mtry values ranging from 1−100, at
intervals of 1 unit). In the predictive
model for embryo aneuploidy, the opti-
mal value of mtry that maximized the
AUC was 8, and in the case of the mosa-
icism model it was 7 (Supplemental Fig.
S1).

In the Random Forest algorithm, it is
possible to indirectly estimate the vali-
dation error without the need for cross-
validation or an independent test sam-
ple. This is why the initial sample has
not been split into a training and a vali-
dation sample. The response of the
excluded observations (OOB) can be
predicted when generating and averag-
ing the classification trees. If the
number of trees is sufficiently high, the
OOB error is comparable to the valida-
tion error. In this way, the model is
adjusted and validated while different
models are trained. Supplemental
Figure S1 shows the values of the OOB
error according to the hyperparameter
mtry (number of predictors used).
The relative importance of the varia-

bles used to predict embryo aneuploidy
and mosaicism was assessed by the
number of trees in which the variable
was included and the minimum depth
of the variable in the tree. The mini-
mum depth allows to determine the
importance of the variable by its posi-
tion in the classification tree, thus varia-
bles that tend to split near the root node
should have more importance in the
prediction. The size of the point is pro-
portional to the total number of nodes
into which it eventually splits on that
variable (Figure 3).
Although it is important to highlight

that what is quantified is the influence
of the predictors on the model and not
their relationship with the response var-
iable, it seems to be of interest to ana-
lyze which variables have greater
importance in the 2 predictive models
obtained, and the comparison between
them.
Many of the most influential varia-

bles in the aneuploidy model had been
previously described as being related to
an increased risk of chromosomal alter-
ations in the embryo. The most impor-
tant variable in this predictive model is
maternal age. It is well known that the
rate of embryonic aneuploidy increases
with maternal age. As ovarian aging
progresses, incorrect meiosis during
ovogenesis starts occurring, with
improperly segregated chromosomes,
resulting in unbalanced oocytes that
produce aneuploid embryos.5,6

Among the embryo-related varia-
bles, embryo quality and the day of the
biopsy were among the most relevant
ones in the predictive model. It has
been described that embryos of better
quality (A and B) have a lower aneu-
ploidy rate9; therefore, embryo quality,
at the morphologic level, is a good
prognostic factor for correct chromo-
somal endowment. Likewise, embryos
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that have been biopsied on day 5 of
development and that have conse-
quently had a normal evolution have
lower aneuploidy rates compared with
those with slower growth that have
been biopsied on day 6 or 7 of embryo
development.
The number of embryos biopsied also

appears among the important variables,
and is to a certain extent a measure of
good-quality embryos at days 5, 6, and
7 and therefore susceptible to PGT-A
analysis.
Another group of important variables

in the explanatory model of embryo
aneuploidy is the karyotype of both the
male and the female. It is widely
acknowledged in the literature that
chromosomal alterations in the karyo-
type increase the proportion of aneu-
ploid embryos.7

Regarding the male factor, among the
important variables we found sperm
aneuploidy (FISH) and, surprisingly,
paternal age. Different articles have pro-
posed the implication of sperm aneu-
ploidy with an increased risk of embryo
aneuploidy, although other studies ruled
it out.10−13 Two recent publications have
analyzed the possible correlation between
paternal age and chromosomal aberra-
tions in the embryo. Carraquillo et al36

observed no association between paternal
age and chromosomal alterations in blas-
tocyst biopsies from egg donor cycles,
whereas Dviri et al37 observed that seg-
mental alterations are increase with pater-
nal age.
It is surprising that sperm quality

variables do not appear among the 10
most important variables in the predic-
tive model of aneuploidy. Previous
studies have pointed to an important
role of different sperm parameters in
embryo aneuploidy, especially terato-
zoospermia.38−41

The most important variable in the
machine learning predictive model of
embryo mosaicism was the type of diag-
nostic technique used for PGT-A. NGS
has a higher diagnostic sensitivity than
aCGH for the detection of embryo
mosaicism.42 However, diagnostic sen-
sitivity does not seem to be as tech-
nique-dependent in the case of
aneuploidies.
There is scarce literature on the type
of factors associated with mosaicism,
and therefore there is no consensus. In
regard to the most important variables
in the final models, there was quite a lot
of similarity with aneuploidies, although
the relative position varied in some
cases. Embryo quality and the day of
the biopsy continue to be important
variables, but paternal and maternal
karyotypes were moved to the last posi-
tions in the ranking of the top 10 varia-
bles. These 2 variables had not been
previously proposed as predictors of
embryo mosaicism.

For mosaicism, paternal and mater-
nal variables had nearly equal impor-
tance in the final selected model, with
paternal and maternal age being the
most important variables. Studies of our
own group had already noted the asso-
ciation of these variables with embryo
mosaicism (unpublished data).

Among the important variables we
also found the number of biopsied
embryos and the number of retrieved
oocytes, which are related to the results
of ovarian stimulation. Different studies
have analyzed the possible association
between the different parameters of
ovarian stimulation and aneuploidy and
mosaicism, with contradictory conclu-
sions in some cases.15

With this study, we have described
predictive models for embryo aneu-
ploidy and mosaicism that can be of
great relevance in establishing the best
protocol in personalized assisted repro-
duction treatment for maximizing the
chances of achieving an euploid
embryo.

The knowledge of predictive variables
for aneuploidy and mosaicism can be of
great importance in the field of repro-
ductive medicine. It can also be a very
useful tool for clinicians to offer patients
different therapeutic alternatives (eg,
own or donated oocytes or sperm, stim-
ulation in the luteal or follicular phase)
to achieve euploid embryos, thus mini-
mizing the possibility of miscarriage
and increasing the probability of ongo-
ing pregnancy.

This study is not intended to be an
endpoint; we intend to carry out a pro-
spective study in which we can
confirm the goodness of our model
and assess if there is need to increase
the number of embryos analyzed or to
incorporate additional variables in the
model.
Highlights
There are paternal, maternal, embryo,
and in vitro fertilization−related factors
associated with embryonic chromo-
somal status that can be used as predic-
tors in machine learning models.
The variable for predicting aneuploi-

dies and mosaicisms used in the
machine learning models was multi-
class, with 4 categories based on
whether the identified alteration was
present or absent and whether it
affected the whole or only a part of the
chromosome (segmental).
The best prediction model for both

aneuploidy and mosaicism was
obtained with the Random Forest algo-
rithm. &
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