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Abstract
Multiple baseline designs—both concurrent and nonconcurrent—are the predomi-
nant experimental design in modern applied behavior analytic research and are 
increasingly employed in other disciplines. In the past, there was significant contro-
versy regarding the relative rigor of concurrent and nonconcurrent multiple base-
line designs. The consensus in recent textbooks and methodological papers is that 
nonconcurrent designs are less rigorous than concurrent designs because of their 
presumed limited ability to address the threat of coincidental events (i.e., history). 
This skepticism of nonconcurrent designs stems from an emphasis on the impor-
tance of across-tier comparisons and relatively low importance placed on replicated 
within-tier comparisons for addressing threats to internal validity and establishing 
experimental control. In this article, we argue that the primary reliance on across-
tier comparisons and the resulting deprecation of nonconcurrent designs are not 
well-justified. In this article, we first define multiple baseline designs, describe com-
mon threats to internal validity, and delineate the two bases for controlling these 
threats. Second, we briefly summarize historical methodological writing and cur-
rent textbook treatment of these designs. Third, we explore how concurrent and non-
concurrent multiple baselines address each of the main threats to internal validity. 
Finally, we make recommendations for more rigorous use, reporting, and evaluation 
of multiple baseline designs.
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Multiple baseline designs are the workhorses of single-case design (SCD) research 
and are the predominant design used in modern applied behavior analytic research 
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(Coon & Rapp, 2018; Cooper et al., 2020). In a review of the SCD literature, Shad-
ish and Sullivan (2011) found multiple baseline designs making up 79% of the SCD 
literature (54% multiple baseline alone, 25% mixed/combined designs). In addition, 
multiple baseline designs are increasingly used in literatures that are not explicitly 
behavior analytic. Smith (2012) found that SCD was reported in 143 different jour-
nals that span a variety of fields such as behavior analysis, psychology, education, 
speech, and pain management; across these fields, multiple baselines account for 
69% of SCDs.

Given that multiple baseline designs make up such a large proportion of 
the existing SCD literature and current research activity, it is critical that SCD 
researchers thoroughly understand the specific ways that multiple baseline designs 
address potential threats to internal validity so that they can make experimental 
design decisions that optimize internal validity and accurately evaluate, discuss, 
and interpret the results of their research. Peer reviewers and editors who serve 
as gatekeepers for the scientific literature must also have a deep understanding of 
these issues so that they can distinguish between stronger and weaker research, 
ensure that information critical to evaluating internal validity is included in 
research reports, and assess the appropriateness of discussion and interpretation 
of results. Finally, practitioners whose work may be influenced by SCD research 
must understand these issues so they can give appropriate weight to research find-
ings. A broad and general impression such as “these designs are relatively strong” 
is not sufficient to guide experimental design decisions or to evaluate particular 
variations of multiple baseline designs. Instead, a detailed understanding of how 
specific threats to internal validity are addressed in multiple baseline designs and 
specific design features that strengthen or weaken control for these threats are 
needed.

One area that has, in the past, been particularly controversial is the experimen-
tal rigor of concurrent versus nonconcurrent multiple baseline designs; that is, the 
degree to which each can rule out threats to internal validity. This controversy began 
soon after the first formal description of nonconcurrent multiple baseline designs 
by Hayes (1981) and Watson and Workman (1981). However, the specific issues 
in this controversy have never been thoroughly identified, discussed, and resolved; 
and instead a consensus emerged without the issues being explicitly addressed. This 
consensus is that nonconcurrent multiple baseline designs are substantially weaker 
than concurrent designs (e.g., Cooper et  al., 2020; Johnston et  al., 2020; Kazdin, 
2021). Nonconcurrent designs are said to be substantially compromised with respect 
to internal validity and in general this limitation is ascribed to their supposed weak-
ness in addressing threats of coincidental events (i.e., history). We challenge this 
assertion. A close examination of threats to internal validity in multiple baseline 
designs reveals and clarifies the critical design features that determine the degree 
of experimental control and internal validity of either type of multiple baseline. The 
purposes of this article are to (1) thoroughly examine the impact that threats to inter-
nal validity can have on concurrent and nonconcurrent multiple baseline designs; 
(2) describe the critical features of each design type that control for threats to inter-
nal validity; and (3) offer recommendations for use and reporting of concurrent and 
nonconcurrent multiple baseline designs.
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Basic Description of Multiple‑baseline Designs and Threats 
to Internal Validity

It is surprising that there is no single consensus definition of multiple baseline 
designs. Textbooks commonly describe and characterize the design without clearly 
defining it. For the purposes of this article, we define a multiple baseline design as 
a single-case experimental design that evaluates causal relations through the use of 
multiple baseline-treatment comparisons with phase changes that are offset in (1) 
real time (e.g., calendar date), (2) number of days in baseline, and (3) number of 
sessions in baseline. (Our specification of phase change offset in terms of real time, 
days in baseline, and sessions in baseline is unusual. Reasons for these specifica-
tions will become clear later in the article.) These baseline-treatment comparisons, 
which we will refer to as “tiers,” differ from one another with respect to participants, 
behaviors, settings, stimulus materials, and/or other variables. Concurrent multiple 
baseline designs are multiple baseline designs in which the tiers are synchronized in 
real time. By synchronized we mean that “session 1” in all tiers takes place before 
“session 2” in any tier, and this ordinal invariance of session number across tiers is 
true for all sessions. So, for example, session 10 in tier 2 must take place at some 
time between tier 1’s session 9 and 11. Nonconcurrent multiple baseline designs are 
those in which tiers are not synchronized in real time. That is, session numbers do 
not necessarily correspond to the same periods of real time across tiers. For exam-
ple, knowing the date of session 10 in tier 1 tells us nothing about the date of session 
10 in tier 2.

Multiple baseline designs are intended to evaluate whether there is a functional 
(causal) relation between the introduction of the independent variable and changes 
in the dependent variable. A functional relation can be inferred if the pattern of data 
demonstrates experimental control—the experimenter’s ability to produce a change 
in the dependent variable in a precise and reliable fashion (Sidman, 1960). When 
determining whether a multiple baseline study demonstrates experimental control, 
researchers examine the data within and across tiers and also consider the extent to 
which alternative explanations (e.g., extraneous variables or confounds) could plau-
sibly account for the obtained data patterns. If factors other than the experimenter’s 
manipulation of the independent variable could plausibly account for the obtained 
data patterns, experimental control has not been demonstrated and functional rela-
tions cannot be inferred. Research methodologists have identified numerous poten-
tial alternative explanations that are threats to internal validity (e.g., Campbell & 
Stanley, 1963; Cooper et  al., 2020; Kazdin, 2021; Shadish et  al., 2002). We will 
focus on the three types of threats that are addressed through comparisons between 
baseline and treatment phases in multiple baseline designs: maturation, testing and 
session experience, and coincidental events.1

1  Other threats to internal validity such as (1) ambiguous temporal precedence, (2) selection, (3) regres-
sion, (4) attrition, and (5) instrumentation are addressed primarily through other design features. For 
example, instrumentation is addressed primarily through observer training, calibration, and IOA.

621Perspectives on Behavior Science (2022) 45:619–638



Maturation refers to extraneous variables such physical growth, physiologi-
cal changes, typical interactions with social and physical environments, academic 
instruction, and behavior management procedures that tend to cause changes in 
behavior over time (cf., Shadish et al., 2002). Maturational changes may be smooth 
and gradual, or they may be sudden and uneven. For example, physical growth and 
experiences with the environment can accumulate and result in relatively sudden 
behavioral changes when a toddler begins to walk. The key characteristic that matu-
rational processes share is that they may produce behavioral changes that would be 
expected to accumulate as a function of elapsed time in the absence of participation 
in research.2 In order to control for maturation, we must attend to the passage of 
time—typically, calendar days.

Testing and session experience encompasses features of experimental sessions 
(both baseline and intervention phases) other than the independent variable that 
could cause changes in behavior. These could include presence of observers, testing 
procedures, exposure to testing stimuli, attention from implementers, being removed 
from the typical setting, exposure to a special setting, and so on. These variables 
share the key characteristic that their impact would be expected to accumulate as a 
function of number of experimental sessions. Control for testing and session experi-
ence requires attention to the number of sessions that participants experience.

Coincidental events (i.e., history) are specific events that occur at a particular 
time (or across a particular period) and could cause changes in behavior. Coinciden-
tal events include divorce, changing of living situation, changes in school or work 
schedule, physical injury, changes in a setting such as construction, changes in cow-
orkers or staffing, and many others. Coincidental events share the characteristic that 
their behavioral impact is expected to be a function of particular dates. Controlling 
for coincidental events requires attention to the specific dates on which events occur.

Each of these three types of threats point us to distinct dimensions of the lag 
between phase changes that must be controlled for in order to achieve experimental 
control: for maturation, we control for elapsed time (e.g., days); for testing and ses-
sion experience, we must be concerned with the number of sessions; and for coin-
cidental events, we must be concerned with the specific time periods (i.e., calendar 
dates) of the study. Table  1 summarizes these threats to internal validity and the 
dimension of lag necessary to control for each.

Multiple baseline designs can rigorously control these threats to internal validity. 
The process begins with a simple baseline-treatment (AB) comparison—a change 
from baseline to treatment within a single tier. If the baseline phase provides suf-
ficiently stable data to support a strong prediction of the subsequent data path and 
the data path prediction is contradicted by the actual data after the introduction of 
the independent variable, this provides some suggestion that the independent vari-
able may have been the cause of the change—a potential treatment effect. We use 
the term potential treatment effect to emphasize that the evidence provided by this 

2  Elapsed time does not directly cause maturational changes in behavior. Rather, the passage of time 
allows for more opportunities for participants to interact with their environment—leading to maturational 
changes. We use function of elapsed time descriptively rather than causally.
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single AB within-tier comparison is not sufficient to draw a strong causal conclu-
sion because many threats to internal validity may be plausible alternative explana-
tions for the data patterns. That is, experimental control has not been convincingly 
demonstrated. Adding multiple tiers to the design allows for two types of additional 
comparisons to be used to evaluate, and perhaps rule out, these threats: (1) repli-
cations of baseline-treatment comparisons within subsequent tiers (i.e., horizontal 
analysis), and (2) comparisons across tiers (i.e., vertical analysis).

The within-tier analysis seeks replication of these potential treatment effects in 
additional tiers of the design. If this pattern—a clear prediction from baseline being 
contradicted when and only when the independent variable is introduced—can be 
replicated across additional tiers of the multiple baseline, then the evidence of a 
treatment effect is incrementally strengthened. Although it is plausible that an extra-
neous variable’s influence could coincide with one phase change, it is less plausible 
that such a coincidence would occur twice, and even less plausible that it would 
occur three times. Additional replications further reduce the plausibility of extra-
neous variables causing change at approximately the same time that the independ-
ent variable is applied to each tier. Any alternative explanation of this pattern of 
results would have to posit an alternative set of causes that could plausibly result in 
changes in the dependent variable in this specific pattern across the multiple tiers. 
A critical requirement of the within-tier analysis is that no single extraneous event 
could plausibly cause the observed changes in multiple tiers. If this requirement is 
not met and a single extraneous event could explain the pattern of data in multi-
ple tiers, then replications of the within-tier comparison do not rule out threats to 
internal validity as strongly. This critical requirement is mainly addressed by the lag 
between phase changes in successive phases. The time lag must be sufficiently long 
so that no single event could produce potential treatment effects in more than one 
tier. Other design features that contribute to the isolation of tiers such that any single 
extraneous variable is unlikely to contact multiple tiers can also strengthen the inde-
pendence of tiers.

The across-tier comparison is an additional basis for evaluating alternative expla-
nations. Data from the treatment phase in one tier can be compared to correspond-
ing baseline data in another tier. If a potential treatment effect is observed in the 
treated tier but a change in the dependent variable is also observed in corresponding 
sessions in a tier that is still in baseline, this provides evidence that an extraneous 
variable may have caused both changes. This pattern seriously weakens the argu-
ment that the independent variable was responsible for the change in the treated tier. 
On the other hand, if we see a change in a treated tier and no change in untreated 
tiers, does this constitute strong evidence to rule out threats to internal validity? This 
argument rests on the assumptions that any extraneous variable that affects one tier 
will (1) contact all tiers and (2) have a similar effect on all tiers. If these assumptions 
are not valid, then it would be possible to observe stable baselines in untreated tiers 
even though the change in the treated tier was a result of an extraneous variable. In 
this case, the across-tier comparison would give the false appearance of strong inter-
nal validity. It is clear that we cannot claim that these assumptions are always valid 
for multiple baseline designs. The details of situations in which this across-tier com-
parison is valid for ruling out threats to internal validity are more complex than they 
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may appear. We will explore these issues extensively after we sketch the historical 
development of multiple baseline designs and criticisms of nonconcurrent multiple 
baselines.

Early Literature and Development of Methodology of Concurrent 
Multiple Baseline Designs

The multiple baseline design was initially described by Baer et al. in their classic 
1968 article that defined applied behavior analysis. The authors discuss “two designs 
commonly used to demonstrate reliable control of an important behavior change” (p. 
94). The first is the reversal design and the authors describe the important applied 
limitation with this design—situations in which reversals are not possible or fea-
sible in applied settings. They then describe the “multiple baseline technique” (p. 
94) and two types of comparisons that contribute to its experimental control. First, 
in the replicated within-tier comparison, each tier of the design is exposed to the 
treatment at a different point in time. After implementing the treatment for the first 
tier, they say, “rather than reversing the just produced change, he instead applies the 
experimental variable to one of the other as yet unchanged responses. If it changes 
at that point, evidence is accruing that the experimental variable is indeed effective, 
and that the prior change was not simply a matter of coincidence” (p. 94). Second, 
in a remarkably understated reference to the across-tier comparison, Baer et al. write 
that after implementing the treatment in an initial tier, the experimenter “perhaps 
notes little or no change in the other baselines” (p. 94). They do not elaborate on the 
importance of this type of comparison.

Hersen and Barlow’s (1976) textbook appears to be the first complete description 
of the multiple baseline design with many of the ideas about experimental control 
that are current to this day. They describe the control afforded by the design: “The 
experimenter is assured that his treatment variable is effective when a change in 
rate appears after its application while the rate of concurrent (untreated) behaviors 
remains relatively constant” (p. 226). Later they present an overall evaluation of the 
strength of multiple baseline designs, attributing its primary weakness to its reli-
ance on the across-tier comparison, “The multiple baseline design is considerably 
weaker than the withdrawal design as the controlling effects of the treatment on each 
of the target behaviors is not directly demonstrated . . . the effects of the treatment 
variable are inferred from the untreated behaviors” (p. 227). In this highly influential 
early textbook on SCD, Hersen and Barlow describe only the across-tier analysis 
and fail to mention replicated within-tier comparisons. This has at least two effects: 
first, the multiple baseline is seen as weaker than the withdrawal design because of 
this dependence on the across-tier analysis; and second, when nonconcurrent mul-
tiple baseline designs are introduced years later, their rigor will be understood by 
many methodologists in terms of control by across-tier comparisons only, without 
consideration of replicated within-tier comparisons. These views of multiple base-
line designs have been carried through into much of the single-case methodologi-
cal literature and textbooks to the current day. It is interesting that this emphasis 
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on across-tier comparisons is the opposite of that evident in Baer et al. (1968) who 
emphasized the replicated within-tier comparison.

Kazdin and Kopel (1975) parallel much of Hersen and Barlow’s (1976) com-
mentary3 but they also point out an apparent contradiction in the assumptions about 
behavior on which the multiple baseline design is built. In order to demonstrate 
experimental control, the researcher makes two paradoxical assumptions. First, the 
design assumes that treatment effects will be tier-specific and not spread to untreated 
tiers. If an effective treatment were to have a broad impact on multiple tiers, the 
logic of the design would be to falsely attribute these effects to possible extraneous 
variables. Second, the across-tier comparison assumes that extraneous variables will 
affect multiple tiers similarly. If an extraneous variable were to have a tier-specific 
effect, it would be falsely interpreted as a treatment effect. This comparison can 
reveal the influence of an extraneous variable only if it causes a change in several 
tiers at about the same time. Thus, to demonstrate experimental control, the effects 
of the independent variable must not generalize; and to detect an extraneous variable 
through the across-tier comparison, the effects of that extraneous variable must gen-
eralize. As Kazdin and Kopel point out, it is clearly possible for treatments to have 
broad effects on multiple tiers and for extraneous variables to have narrow effects on 
a specific tier. This is a significant problem for the across-tier comparison because 
its logic is dependent on these two assumptions.

Introducing the Nonconcurrent Multiple Baseline Design

The concurrent multiple baseline design opened up many new opportunities to con-
duct applied research in contexts that were not amenable to other SCDs. However, 
researchers in clinical, educational, and other applied settings recognized that they 
could expand research much further if the tiers of a multiple baseline could be con-
ducted as they became available sequentially rather than simultaneously. Two arti-
cles published in 1981 described and advocated the use of nonconcurrent multiple 
baseline designs (Hayes, 1981; Watson & Workman, 1981).

Watson and Workman (1981) noted that “the requirement that observations be 
taken concurrently clearly poses problems for researchers in applied settings (e.g., 
schools, mental health centers), since clients with the same target behavior may only 
infrequently be referred at the same point in time” (p. 257). Watson and Workman 
described a nonconcurrent multiple baseline design in which participants could be 
begin a study as they became known to the researcher. The authors argue that like 
the concurrent multiple baseline design, the nonconcurrent form can rule out coinci-
dental events (i.e., history) as a threat to internal validity and that experimental con-
trol can be established by the replication of the within-tier comparison with phase 
changes offset relative to the beginning of baseline. They do not mention the across-
tier comparison, presumably because they believe that this analysis is not necessary 

3  Although publication dates would suggest that Kazdin and Kopel (1975) was published before Hersen 
and Barlow (1976), Kazdin and Kopel cite Hersen and Barlow, and not the other way around.
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to establish experimental control. Watson and Workman did not explicitly address 
threats to internal validity other than coincidental events.

Independent from Watson and Workman (1981), Hayes (1981) published a 
lengthy article introducing SCDs to clinical psychologists and made the point that 
these designs are well-suited to conducting research in clinical practice. When he 
turned to multiple baseline designs, Hayes argued that AB designs are natural to 
clinic work and that forming a multiple baseline can consist of collecting several 
AB replications, which would “inevitably have differing lengths of baseline” (i.e., 
a nonconcurrent multiple baseline; p. 206). He acknowledged that earlier authors 
had stated that multiple baselines must be concurrent and he noted that in a non-
concurrent multiple baseline the across-tier comparison could not reveal coinciden-
tal events. Hayes argued that “fortunately the logic of the strategy does not really 
require” (p. 206) an across-tier comparison because the within-tier comparison rules 
out these threats. Thus, both of the articles introducing nonconcurrent multiple base-
lines made explicit arguments that replicated within-tier comparisons are sufficient 
to address the threat of coincidental events.

The Primary Methodological Criticism of Nonconcurrent Multiple 
Baselines: Across‑Tier Comparisons

The current SCD methodological literature and most SCD textbooks claim that 
because the tiers of nonconcurrent multiple baseline are not synchronized in real 
time they have a diminished capacity to control for extraneous variables, in particu-
lar coincidental events (e.g., Carr, 2005; Gast et al., 2018; Harvey et al., 2004; John-
ston et al., 2020). For example, Gast et al. (2018) state:

Confidence that maturation and history [coincidental events] threats are under 
control is based on observing (a) an immediate change in the dependent vari-
able upon introduction of the independent variable, and (b) baseline (or probe) 
condition levels remaining stable while other tiers are exposed to the inter-
vention. Without the latter you cannot conclude, with confidence, that the 
intervention alone is responsible for observed behavior changes since baseline 
(or probe) data are not concurrently collected on all tiers from the start of the 
investigation. Only through repeated measurement across all tiers from the 
start of a study can you be confident that maturation and history threats are not 
influencing observed outcomes. (p. 325)
Johnston et al. (2020) write:
Compared to its concurrent multiple baseline design sibling, a non-concurrent 
arrangement is inherently weaker . . . because a non-concurrent design does 
not allow any AB comparisons across baselines, it omits the opportunity to see 
if responding under the control condition changes when the treatment condi-
tion is implemented in the other baseline. (p. 365)
Barlow et al. (2009) state:
Of course, the major problem with this [nonconcurrent multiple baseline] 
strategy is that the control for history (i.e., the ability to assess subjects con-
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currently) is greatly diminished. Therefore, we view this approach as less 
desirable than the standard multiple baseline design across subjects and sug-
gest that it should be employed only when the standard approach is not feasi-
ble. (pp. 234–235)

Although the claims that nonconcurrent multiple baseline designs are weaker 
than concurrent multiple baselines, especially with respect to threats of coincidental 
events, are nearly universal in the current literature, none of these authors acknowl-
edge or address, the arguments made by Watson and Workman (1981) and Hayes 
(1981) in support of these designs. They never raise the question of whether rep-
licated within-tier comparisons are sufficient to rule out threats to internal validity 
and establish experimental control. Having identified the criticisms of nonconcur-
rent multiple baseline designs, we now turn to a detailed analysis of threats to inter-
nal validity and features that can control these threats.

Analysis of Control and Threats

In this section, we examine how within- and across-tier comparisons may support 
(or fail to support), internal validity in concurrent and nonconcurrent multiple base-
line designs. We examine how these comparisons address maturation, testing and 
session experience, and coincidental events.

Maturation

Concurrent and nonconcurrent multiple baseline designs address maturation in vir-
tually identical ways through both within- and across-tier comparisons. For both 
types of comparisons, addressing maturation begins with an AB contrast in a sin-
gle tier. If, in the initial tier, a pattern of stable baseline data is followed by a dis-
tinct change soon after the phase change, this constitutes a potential treatment effect. 
However, it does not rule out maturation as an alternative explanation of the change 
in behavior. Although many maturational changes are gradual, more sudden changes 
are possible. Further, if the potential treatment effect is more gradual (as one might 
expect from an educational intervention on a complex skill), maturational changes 
may be impossible to distinguish from treatment effects. The replicated within-tier 
analysis looks to patterns of results within the other tiers. If the pattern of change 
shortly after implementation of the treatment is replicated in the other tiers after dif-
fering lengths of time in baseline (i.e., different amounts of maturation), maturation 
becomes increasingly implausible as an alternative explanation. For example, it is 
implausible that the effects of maturation would coincide with a phase change after 
5 days in one tier, after 10 days in a second tier, and after 15 days in a third. Thus, 
for any multiple baseline design to address the threat of maturation, it must show 
changes in multiple tiers after substantially differing numbers of days in baseline. 
The lag between phase changes must be long enough that maturation over any single 
amount of time cannot explain the results in multiple tiers.
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The across-tier comparison provides another possible source of control for matu-
ration. This comparison may reveal a likely maturation effect. If we observe a poten-
tial treatment effect in one tier and corresponding changes in untreated tiers after 
similar amounts of time (i.e., number of days), maturation becomes a more plausible 
alternative explanation of the initial potential treatment effect. On the other hand, if 
we observe that one tier shows a change whereas other tiers that have been observed 
for similar amounts of time do not show similar changes, this may reduce the plau-
sibility of the maturation threat. The assumption that maturation contacted all tiers 
is strong—participants were all exposed to maturational variables (i.e., unidentified 
biological events and environmental interactions) for the same amount of time. The 
assumption that all tiers respond similarly to maturation may be somewhat more 
problematic. A given period of maturation may affect various participants, various 
behaviors, or behaviors in various settings in different ways. For example, for a child 
who is on the cusp of walking, a month of exposure to maturational variables may 
result in a significant improvement in walking, but much less change in fine motor 
skills. (Similar arguments can be made for comparisons across settings, persons, and 
other variables that might define tiers.) The point is that although the across-tier 
comparison may reveal a maturation effect, there are also circumstances in which it 
may fail to do so. Thus, although the across-tier analysis does provide a test of the 
maturation threat, a lack of change in untreated tiers cannot definitively rule it out.

To summarize, the replicated within-tier analysis with sufficient lag can rigor-
ously control for the threat of maturation. The across-tier analysis can provide an 
additional set of comparisons that may reveal a maturation effect, but it is not a 
conclusive test. Neither the within-tier comparison, nor the across-tier comparison 
depends on the tiers being conducted simultaneously; both types of comparisons 
only require that phase changes occur after substantially different amounts of time 
since the beginning of baseline—that is, each tier is exposed to different amounts of 
maturation (i.e., days) prior to the phase change. As a result, concurrent and noncon-
current designs are virtually identical in their control for maturation threats. Concur-
rence is not necessary to detect and control for maturation.

Testing and Session Experience

In both forms of multiple baseline designs, a potential treatment effect in the first tier 
would be vulnerable to the threat that the changes in data could be a result of testing 
or session experience. However, if this within-tier pattern is replicated in multiple 
tiers after differing numbers of baseline sessions, this threat becomes increasingly 
implausible. An alternative explanation would have to suggest, for example, that in 
one tier, experience with 5 baseline sessions produced an effect coincident with the 
phase change; in a second tier, 10 baseline sessions had this effect, again coinciding 
with the phase change; and in a third tier, 15 baseline sessions produced this kind of 
change and happened to correlate with the phase change. Thus, a multiple baseline 
with phase changes sufficiently lagged (in terms of number of sessions) provides 
rigorous control for this threat.
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Both concurrent and nonconcurrent multiple baseline designs also afford the 
same across-tier comparison; both can show a potential treatment effect after a cer-
tain number of baseline sessions in one tier and a lack of effect after that same num-
ber of sessions in another tier. We can strongly argue that all tiers contact testing and 
session experience during baseline because we schedule and conduct these sessions. 
However, an across-tier comparison is not definitive because testing or session expe-
rience could affect the tiers differently. For example, in a multiple baseline across 
settings, the settings could present somewhat different demands. If session experi-
ence exerted a small degree of influence on the DV, an effect might be observed in 
settings where the behavior is more likely, but not in settings where the behavior is 
less likely. So, similar to maturation, the across-tier comparison is sometimes able 
to reveal effects of testing and session experience, but it may fail to do so in some 
circumstances.

In both within- and across-tier comparisons, the dates on which the sessions took 
place are not relevant to the effects of testing and session experience. Ten sessions 
of baseline would be expected to have similar effects whether they occur in January 
or June. Therefore, concurrent and nonconcurrent designs are virtually identical in 
control for testing and session experience.

Coincidental Events

The nature of control for coincidental events (i.e., history) provided by the within-
tier comparison in both concurrent and nonconcurrent multiple baseline designs is 
relatively straightforward. A potential treatment effect in any single tier could plau-
sibly be explained as a result of a coincidental event. However, each replication of 
the possible treatment effect that takes place at a substantially distinct calendar date 
reduces the plausibility of this threat. Each replication requires an assumption of a 
separate event coinciding with a distinct phase change. This control assumes that the 
replications are sufficiently offset in real time (e.g., calendar days) to ensure that a 
single coincidental event could not plausibly cause the effects observed in multiple 
tiers.

The strength of this control is a function of our certainty that no single coinciden-
tal event could have caused more than one change in the dependent variable. This 
certainty is increased by isolation of tiers in time and other dimensions. The dimen-
sion of time is recognized in the requirement that phase changes be lagged in real 
time—that is, the date on which the phase changes are made. In general, a longer lag 
is better because it reduces the chance that an event could impact multiple tiers. If a 
nonconcurrent multiple baseline has a long lag in real time between phase changes 
(e.g., weeks or months), this may provide stronger control than a design with 
a lag of one or several days. Thus, to the degree that nonconcurrent designs sup-
port longer lags between phases changes than concurrent designs, they may support 
stronger control of the threat of coincidental events through replicated within-tier 
comparisons. The within-tier comparison may be further strengthened by increasing 
independence of the tier in other dimensions. If each tier of a multiple baseline rep-
resents a different participant in a different environment (e.g., school versus clinic) 
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located in a different city, this would further reduce the chance that any single event 
or pattern of events could have contacted the participants coincident with the phase 
changes. The logic of replicated within-tier analysis applies equally to concurrent 
and nonconcurrent designs.

The across-tier analysis of coincidental events is the main way that concurrent and 
nonconcurrent multiple baselines differ. According to conventional wisdom, concur-
rent multiple baselines are superior because they allow for across-tier comparisons 
that can rule out coincidental events. If a potential treatment effect is seen in one tier 
and on the same day there is no change in other tiers, this is taken as strong evidence 
that the potential treatment effect was not a result of a coincidental event, because 
a coincidental event would have had an effect on all tiers. Nonconcurrent multiple 
baseline designs, however, do not afford this comparison. If a potential treatment 
effect is seen in one tier, the researcher cannot refer to data from the same day in an 
untreated tier because the tiers are not synchronized in real time and may not even 
overlap in real time. This has been the sharpest point of criticism of nonconcurrent 
multiple baselines. However, critics of nonconcurrent designs have rarely (1) made a 
thorough and critical analysis of the potential weaknesses of across-tier comparisons 
in concurrent multiple baselines, or (2) evaluated the degree of experimental control 
that can be demonstrated by replicated within-tier comparisons.

As we mentioned above, across-tier comparisons require the assumptions that 
coincidental events will (1) contact and (2) have similar effects on all tiers of the 
design. To understand the ability of concurrent designs to meet these assumptions 
we must distinguish different types of coincidental events based on the scope of 
their effects. A coincidental event may contact a single unit of analysis (e.g., one 
of four participants) or multiple units (e.g., all participants). Events that contact a 
single participant may be termed participant-level. Examples could include family 
events, illness, changed social interactions (e.g., breaking up with a partner), los-
ing or gaining access to a social service program, etc. These coincidental events 
would contact all tiers of a multiple baseline that include this individual participant, 
but not tiers that do not involve this participant. In a concurrent multiple baseline 
that involves a single participant across settings, behaviors, antecedent stimuli etc., 
this kind of event would be expected to contact all tiers. Thus, the assumption that 
the coincidental event contacts all tiers would be valid and the across-tier analy-
sis might reveal the effects of this sort of event. However, in a concurrent multiple 
baseline across participants, participant-level events contact only a single tier (par-
ticipant)—the coincidental event would not contact other tiers (participants)—we 
might say that the across-tier analysis is inherently insensitive to detecting this kind 
of event. This insensitivity is not due to poor experimental design or implementa-
tion, it is built in to the nature of multiple baseline designs across participants. Each 
tier involves a unique participant and there is a class of coincidental events that con-
tact a single participant.

Likewise, setting-level coincidental events are those that contact a single setting. 
Potential setting-level events include staffing changes in classroom, redecoration 
or renovation of the physical environment, and changes in the composition of the 
peer group in a classroom, group home, or worksite. These events would contact 
all tiers of a MB that take place in that single setting, but not tiers in other settings. 
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In concurrent multiple baseline across participants, behaviors, or stimulus materials 
that take place in a single setting, this kind of event would contact all the tiers of 
the multiple baseline. In this case, the effects of this kind of event could be revealed 
through the across-tier comparison of participants or behaviors that have not been 
exposed to the independent variable. However, in  a concurrent multiple baseline 
across settings a setting-level event would contact only a single tier—the design 
would be inherently insensitive to these coincidental events.

In general, in a concurrent multiple baseline design across any factor, the across-
tier analysis is inherently insensitive to coincidental events that are limited to a 
single tier of that factor. Under these conditions, the experimental rigor of concur-
rent multiple baselines is identical to nonconcurrent multiple baselines; coinciden-
tal events that contact a single tier cannot be detected by an across-tier analysis. 
The problem of tier-specific coincidental events can be reduced by selecting tiers 
that differ on only a single factor (e.g., participants, settings, behaviors) and are as 
similar as possible on that factor. For example, there is less room for participant-
level coincidental events if all participants reside in a single group home than if they 
reside in different group homes in different states. However, as Hayes (1985) pointed 
out, even with the most rigorous care in experimental design, we can never give two 
individuals the same experiences outside of our experimental sessions. Likewise, in 
a multiple baseline across settings, selecting settings that tend to share extraneous 
events would make the across-tier analysis more powerful than would selecting set-
tings that share few common events. For example, two rooms in the same treatment 
center would share more coincidental events than a room in a treatment center and 
another room at home. However, we can never ensure that any two contexts or any 
two session times are not subject to unique events during the study. The bottom line 
is that the experimenter can never know whether a coincidental event has contacted 
only a single tier of a concurrent multiple baseline and, therefore, whether it is pos-
sible for the across-tier comparison to detect this threat.

Further, for the across-tier comparison to detect the influence of a coincidental 
event, that event must not only contact multiple tiers, it must cause similar changes 
in the dependent measure across multiple tiers. It is possible that a coincidental 
event may be present for all tiers but have different effects on different tiers. As 
Kazdin and Kopel (1975) pointed out, multiple baseline designs require that the 
effects of the independent variable must have tier-specific effects, yet the across-
tier analysis requires that extraneous variables must not have tier-specific effects. 
For example, in a multiple baseline across participants, all the residents of a group 
home may contact peanut butter and jelly sandwiches for lunch but this change 
may disrupt the behavior of residents with a mild peanut allergy, but not other 
residents. Or in a multiple baseline across settings that are assessed at different 
times of the day, a socially challenging event such as an increase in daily bullying 
on a morning bus ride could disrupt the target behavior of a participant for the first 
hour of the day, but have reduced effects thereafter. A multiple baseline design with 
tiers conducted at different times during each day could show disruption due to 
this coincidental event in the tier assessed early in the day but not in tiers that are 
assessed later in the day. Such events might be said to contact all tiers, but affect 
only one of them.
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There is ample empirical evidence of differential impact of variables across 
tiers. Every multiple baseline design in which potential treatment effects are 
observed in some but not all tiers demonstrates that tiers are not always equally 
sensitive to interventions. And researchers generally design and implement 
interventions, select tiers, and employ measures that will likely show consistent 
treatment effects. Coincidental events might be expected to be more variable in 
their effect than interventions that are designed to have consistent effects. This 
assumption was initially identified by Kazdin and Kopel in 1975, but its implica-
tions for the rigor of the across-tier comparison have rarely been discussed since 
that time. These observations lead us to the conclusion that neither of the critical 
assumptions that coincidental events will (1) contact and (2) have similar impact 
on all tiers can be assumed to be valid. If either of these assumptions are not valid 
for a coincidental event, then the presence and function of that event would not 
be revealed by the across-tier analysis. We are not pointing to flaws in execu-
tion of the design; we are pointing to inherent weaknesses. Poor execution can 
certainly worsen these problems, but good execution cannot eliminate them. The 
across-tier comparison of concurrent multiple baseline designs is less certain and 
definitive than it may appear. Although the across-tier comparison may detect 
some coincidental events; it cannot be assumed to detect them all. Further, it is 
impossible to know how many events, which events, or the severity of the events 
that are missed by an across-tier comparison. By nature, undetected events are 
unknown. A researcher who puts great confidence in the across-tier comparison 
could falsely reject the idea that coincidental events were the cause of observed 
effects.

A Second Methodological Criticism of Nonconcurrent Designs: Prediction, 
Verification, Replication

Cooper et  al. (2020) make a somewhat different methodological criticism of non-
concurrent multiple baseline designs. Throughout their discussion of SCD, these 
authors describe experimental control in terms of three processes: prediction, veri-
fication, and replication. In the case of multiple baseline designs, a stable baseline 
supports a strong prediction that the data path would continue on the same trajectory 
in the absence of an effective treatment; these predictions are said to be verified by 
observing no change in trajectories of data in other tiers that are not subjected to 
treatment; and replication is demonstrated when a treatment effect is seen in multi-
ple tiers. They argue that because nonconcurrent multiple baseline designs lack an 
across-tier comparison in real time (the criticism described above), they cannot ver-
ify the prediction of the behavior pattern in the absences of intervention. They state,

the nonconcurrent multiple baseline across participants design is inherently 
weaker than other multiple baseline design variations. Although the design 
entails two of the three elements of baseline logic—prediction and replica-
tion—the absence of concurrent baseline measures precludes the verification 
of [the prediction]. (p. 206)
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Carr (2005) invokes this prediction, verification, and replication logic, and con-
cludes, “The nonconcurrent MB design only controls for threats associated with 
maturation/exposure; it does not control for historical [coincidental events] threats to 
internal validity, as does a concurrent MB design” (p. 220).

As we argued above, the observation of no change in an untreated tier is not 
strong evidence against a coincidental event affecting the treated tier. That is, it is 
not strong evidence verifying the prediction of no change in the initial tier in the 
absence of an intervention. However, this kind of support is not necessary: lagged 
replications of baseline predictions being contradicted by data in the treatment phase 
provide strong control for all of these threats to internal validity. Perhaps a more 
general and powerful triad of processes that support demonstration of experimental 
control would be prediction, contradiction, and replication. This would draw atten-
tion to the relationship between the prediction from baseline and the (possible) con-
tradiction of that prediction by the obtained treatment-phase data, and the replica-
tion of this prediction-contradiction pair in subsequent tiers.

Number of Tiers Required to Demonstrate Experimental Control

Throughout this article we have referred to the importance of replicating within-tier 
comparisons, emphasizing the idea that tiers must be arranged with sufficient lag 
in phase changes so that specific threats to internal validity are logically ruled out. 
This raises the question of how many replications are necessary to establish inter-
nal validity. The functional answer to this question is that there must be sufficient 
tiers so that none of the threats to internal validity are plausible explanations for the 
pattern of effects across the set of tiers. This statement, of course, fails to satisfy 
the operational desire for a specific number of tiers that accomplishes this function. 
Because experimental circumstances and design elements vary so greatly, no univer-
sal answer can be given. We can identify at least three general categories of issues 
that influence the number of tiers required to render threats implausible: challenges 
associated with the phenomena under study, experimental design features, and data 
analysis issues.

First, studies differ with respect to the experimental challenges imposed by the 
phenomena under study. Features of the target behaviors, participants, measurement, 
and so forth can make threats to internal validity more or less likely. For example, 
in a study of language skills in typically developing 3-year-old children, matura-
tion would be a particular concern. It would be an even greater concern if the treat-
ment were an instructional program that requires several weeks or months to imple-
ment. Testing and session exposure may be particularly troublesome in a study that 
requires taking the participant to an unusual location and exposing them to unusual 
assessment situations in order to obtain baseline data. A study may be at heightened 
risk of coincidental events if the target behavior is particularly sensitive to events in 
the environment that are uncontrolled by the experimenter. Any of these types of cir-
cumstances may require additional tiers in order to clearly address threats to internal 
validity.

Second, as we have discussed above, the amount of lag between phase changes 
(in terms of sessions in baseline, days in baseline, and elapsed days) is the primary 

634 Perspectives on Behavior Science (2022) 45:619–638



design feature that reduces the plausibility of any single threat accounting for 
changes in multiple tiers, and thereby threatening the internal validity of the design 
as a whole. In addition, functionally isolating tiers (e.g., across settings) such that 
they are highly unlikely to be subjected to the same instances of a threat can also 
contribute to this goal. Longer lags and more isolated tiers can reduce the number 
of tiers necessary to render extraneous variables implausible explanations of results.

Third, patterns of results influence the number of tiers needed to yield defini-
tive conclusions. Data analysis issues concern two closely related questions: (1) Was 
there a change in data patterns after the phase change? and (2) Was any change the 
result of the independent variable? To answer the first question, the one must dis-
tinguish signal (systematic change) from noise (unsystematic variance). This has 
been the topic of important recent methodological research, including studies of the 
interobserver reliability of expert judgements of changes seen in published multiple 
baseline designs (Wolfe et al., 2016) and use of simulated data to test Type I and II 
error rates when judgements of experimental control are made based on different 
numbers of tiers (Lanovaz & Turgeon, 2020). The present article is focused on the 
second question—whether systematic changes in data can be attributed to the treat-
ment. This question cannot be addressed by data analysis alone; any pattern of data, 
no matter how dramatic, could be a result of an extraneous variable if the experi-
mental design features are not properly arranged. Addressing the second question 
requires data analysis that is informed by the specifics of the study. Still, for a given 
study, the results influence the number to tiers required in a rigorous multiple base-
line design. When changes in data occur immediately after the phase change, are 
large in magnitude, and are consistent across tiers, threats to internal validity tend to 
be less plausible explanations of the data patterns, and fewer tiers would be required 
to rule them out.

To offer some guidance, we believe that under ideal conditions—adequate lags 
between phase changes, circumstances that do not suggest that threats are particu-
larly likely, and clear results across tiers—three tiers in a multiple baseline can pro-
vide strong control against threats to internal validity. This is consistent with the 
judgements made by numerous existing standards and recommendations (e.g., Gast 
et al., 2018; Horner et al., 2005; Kazdin, 2021; Kratochwill et al., 2013). When con-
ditions are less ideal, additional tiers may be necessary. In the end, judgments about 
the plausibility of threats and number of tiers needed must be made by researchers, 
editors, and critical readers of research.

Conclusions and Recommendations

Throughout this article we have argued that controlling for the three main threats 
to internal validity—maturation, testing and session experience, and coincidental 
events—in multiple baseline designs requires attention to three distinct dimensions 
of lag of phase changes across tiers. Controlling for maturation requires baseline 
phases of distinctly different temporal durations (i.e., number of days); controlling 
for testing and session experience requires baseline phases of substantially different 
number of sessions; and controlling for coincidental events requires phase changes 
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on sufficiently offset calendar dates. All three of these dimensions of lag are neces-
sary to rigorously control for commonly recognized threats to internal validity and 
establish experimental control. Therefore, we believe that these features should be 
explicitly included in the definition of multiple baseline designs. We recommend that 
multiple baseline design be defined as a single-case experimental design that evalu-
ates causal relations through multiple baseline-treatment comparisons with phase 
changes that are sufficiently offset in (1) real time (i.e., calendar date), (2) number 
of days in baseline, and (3) number of sessions in baseline. This would align the 
definition with the critical features required to demonstrate experimental control and 
thereby allow strong causal statements based on multiple baseline designs. With-
out these dimensions of lag explicitly stated in the definition, we cannot claim that 
multiple baseline designs will necessarily include the features required to establish 
experimental control. The definition states that there must be sufficient lag between 
phase changes—this is not further specified because the amount of lag necessary to 
ensure that any single amount of maturation, number of sessions, or coincidental 
event could not cause changes in multiple tiers must be determined in the context of 
the particular study. An important question for researchers, reviewers, and readers of 
research is whether the amount of lag is sufficient for a specific study.

Recognizing these three dimensions of lag has implications for reporting multi-
ple baseline designs. The vast majority of contemporary published multiple base-
line designs describe the timing of phases in terms of sessions rather than days or 
dates. This provides clear information about the number of sessions that precede the 
phase change in each tier, and therefore constitutes a strong basis for controlling the 
threat of testing and session experience. However, current practice provides little or 
no direct information on either the temporal duration (e.g., number of days) of base-
line nor the offset between phase changes in real time (i.e., number of calendar days 
between phase changes). These reports do not provide the information necessary to 
rigorously evaluate maturation or coincidental events. For example, phase changes 
in two consecutive tiers may be lagged by three sessions, but if one to three sessions 
are conducted per day, the baseline phases could include the same number of days 
(problem for controlling maturation) and the phase change could occur on the same 
day in both tiers (problem for controlling coincidental events). Under the proposed 
definition, such a study would not be considered a full-fledged multiple baseline. In 
order to meet the terms of the definition, and confirm the critical characteristics for 
controlling threats to internal validity, we recommend that all multiple baseline stud-
ies explicitly report, for each tier, the number of days and sessions in each phase, 
and the number of calendar days of phase change lag from the previous tier. This 
might be conveniently reported in the methods section or a small table in an appen-
dix. This information would allow readers to evaluate the sufficiency of each dimen-
sion of lag given the specific characteristics of the particular study.

Based on the logic laid out in this article, we believe that the treats of matura-
tion and testing and session experience are controlled equivalently in concurrent 
and nonconcurrent design. Further, for both types of multiple baselines, the threat 
of coincidental events should be evaluated primarily based on replicated within-tier 
comparisons. Any one tier may, at best, demonstrate a potential treatment effect; 
however, a set of three or more tiers may strongly address the threat of coincidental 
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events and clearly demonstrate experimental control. The across-tier comparison is 
valuable primarily when it suggests the presence of a threat by showing a change in 
an untreated tier at approximately the same time (i.e., days, sessions, or dates) as a 
potential treatment effect. The lack of change in untreated tiers should be interpreted 
only as weak evidence supporting internal validity given the plausible alternative 
explanations of this lack of change.

This understanding of the primary role of replicated within-tier comparisons also 
implies that, when there is a trade-off, design options that improve control through 
the within-tier comparisons should take precedence over those that would improve 
control through across-tier comparisons. In particular, within-tier comparisons may 
be strengthened by isolating tiers from one another in ways that reduce the chance 
that any single coincidental event could coincide with a phase change in more than 
one tier (e.g., temporal separation). On the other hand, across-tier comparisons may 
be strengthened by arranging tiers to be as similar as possible so that they would be 
more likely to be exposed to the same coincidental events. Given this dilemma, pri-
ority should be given to optimizing the within-tier comparisons because this is the 
comparison that can confer stronger control. Thus, the additional temporal separa-
tion that is possible in a nonconcurrent design is a strength rather than a weakness 
in controlling for coincidental events. In addition, arranging tiers that are isolated 
in other dimensions (e.g., location, behaviors, participants) confers overall strength, 
not weakness, for addressing coincidental events.

With control for coincidental events in multiple baseline designs resting squarely 
on replicated within-tier comparisons, there is no basis for claiming that, in gen-
eral, concurrent designs are methodologically stronger than nonconcurrent designs. 
Textbook authors, editors, and readers of research should consider nonconcurrent 
multiple baseline designs to be capable of supporting conclusions every bit as strong 
as those from concurrent designs. The issue of concurrence of tiers should be con-
sidered along with many other design variations that can be manipulated to create a 
design that fits the particular experimental challenges of a particular study. Instead, 
the idea that lag across phase changes includes three important dimensions and that 
these lags are critical for establishing experimental control and justifying strong 
causal conclusions should be elevated in importance.
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