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A B S T R A C T   

Background: Post-acute sequelae of COVID-19 (PASC) produce significant morbidity, prompting evaluation of 
interventions that might lower risk. Selective serotonin reuptake inhibitors (SSRIs) potentially could modulate 
risk of PASC via their central, hypothesized immunomodulatory, and/or antiplatelet properties although clinical 
trial data are lacking. 
Materials and Methods: This retrospective study was conducted leveraging real-world clinical data within the 
National COVID Cohort Collaborative (N3C) to evaluate whether SSRIs with agonist activity at the sigma-1 re-
ceptor (S1R) lower the risk of PASC, since agonism at this receptor may serve as a mechanism by which SSRIs 
attenuate an inflammatory response. Additionally, determine whether the potential benefit could be traced to 
S1R agonism. Presumed PASC was defined based on a computable PASC phenotype trained on the U09.9 ICD-10 
diagnosis code. 
Results: Of the 17,908 patients identified, 1521 were exposed at baseline to a S1R agonist SSRI, 1803 to a non- 
S1R agonist SSRI, and 14,584 to neither. Using inverse probability weighting and Poisson regression, relative risk 
(RR) of PASC was assessed. 
A 29% reduction in the RR of PASC (0.704 [95% CI, 0.58–0.85]; P = 4 ×10− 4) was seen among patients who 
received an S1R agonist SSRI compared to SSRI unexposed patients and a 21% reduction in the RR of PASC was 
seen among those receiving an SSRI without S1R agonist activity (0.79 [95% CI, 0.67 - 0.93]; P = 0.005). 
Thus, SSRIs with and without reported agonist activity at the S1R were associated with a significant decrease in 
the risk of PASC.   

1. Introduction 

1.1. Post-acute sequelae of SARS-CoV-2 

Post-Acute Sequelae of SARS-CoV-2 Infection (PASC) or “Long 
COVID” has been estimated by the World Health Organization to afflict 
between ~10–20% of patients with COVID-19, although estimates vary 
considerably based on methodology. [1] At least one relatively large 
EHR-based study suggested that approximately one-third of patients 
may have symptoms compatible with PASC 3–6 months after diagnosis 
of COVID-19, with a higher risk among females and those with more 
severe disease. [2] Symptoms of PASC are generally nonspecific across 

multiple organ systems including respiratory, neurological and gastro-
intestinal symptoms. [3–5] These symptoms may substantially impair 
function, persist for an extended duration, and fluctuate over time. [2, 
6]. 

The World Health Organization (WHO) has developed a case defi-
nition of “post COVID-19 condition” using Delphi methodology with 
input from researchers, patients, and others across all WHO regions, 
suggesting that the syndrome is usually diagnosed several months after 
the onset of acute symptoms of COVID-19 based on new-onset or 
lingering symptoms (e.g., fatigue, dyspnea, cognitive dysfunction) of at 
least two months duration which cannot be explained by an alternative 
etiology. At present, there is no specific recommended treatment for 
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PASC other than supportive care and rehabilitation, [7] although some 
preliminary observational and cross-sectional data suggest that 
SARS-CoV-2 vaccination, either before or shortly after infection, may 
attenuate the risk of PASC. [8–10]. 

1.2. Pathogenesis of PASC 

The characterization of PASC, its potentially variable phenotypes 
and possible pathophysiological underpinnings, remains at a relatively 
early stage, although insights have been provided by a number of 
studies. Hypotheses that have been adduced have focused primarily on 
immune dysregulation (discussed below), but other speculative expla-
nations have also been put forth, including redox imbalance and/or 
mitochondrial dysfunction, [11–13] persistence of virus in sanctuary 
sites, [14,15] and formation of fibrinolysis-resistant amyloid fibrin 
microclots. [16]. 

Most work attempting to clarify the pathogenesis of PASC has 
centered on a potentially aberrant immune response primarily because 
little to no evidence exists of productive viral replication in the vast 
majority of patients. Although viral RNA has been detected in various 
tissues at autopsy after extended follow-up [17] and shedding of virus in 
the stool may persist after respiratory shedding has ceased, prolonged 
shedding of virus over many months is unusual, with notable exceptions 
including reports in immunocompromised patients. [18–20] Swank and 
colleagues [15] customized an existing assay in order to detect spike 
and/or nucleocapsid antigen in the blood of 31 patients with PASC and 
found evidence for prolonged antigenemia, but, importantly, discor-
dance was noted between long-term expression of spike protein (60% of 
patients) and nucleocapsid antigen (a single patient). To our knowledge, 
there have been no reports of virus cultured from the blood of any pa-
tient with PASC. 

Markers of immune activation and inflammation among patients 
with PASC were evaluated by Peluso et al. [21] Trends in these data 
revealed that patients with PASC were more likely to be female (61.6%) 
and to have a history of autoimmune disease (11%) versus those who 
had recovered from COVID-19 without PASC (2.1%). Significantly 
higher levels of TNF-α and IP-10, and a trend toward higher levels of 
IL-6, were seen during early recovery among those patients who 
developed PASC. At the late recovery time point, IL-6 levels were 
significantly higher among patients with PASC. In another study, 
compared with healthy controls patients with PASC had higher plasma 
levels of CCL5/RANTES, IL-2, IL-4, CCL3, IL-6, IL-10, IFN-γ, and VEGF; 
decreased T regulatory cells and B cell elevations were also seen. [22]. 

Su and colleagues [23] extensively characterized a primary cohort of 
over 200 SARS-CoV-2-infected inpatients and outpatients followed 
longitudinally for up to 2–3 months versus matched controls. In addi-
tion, a separate cohort of 100 COVID-19 inpatients and outpatients was 
asked to return at 60 or 90 days of follow-up and 33 COVID-19 patients 
from a third cohort also provided plasma samples to validate some of the 
findings. Significant associations were variably seen between certain 
late PASC manifestations and autoantibodies during acute infection 
directed at IFNα-2, U1-snRNP, and LL/SS-B, but given the number of 
comparisons and limited sample size, it is difficult to draw definitive 
conclusions from this observation. 

Of note, 44% of patients in the study by Su and colleagues had au-
toantibodies at the extended follow-up visit but 56% of patients had 
class-switched autoantibodies during the acute infection, suggesting 
that antibodies antedated COVID-19 infection. The vast majority of 
patients with autoantibodies had no prior diagnosis of an auto-immune 
condition. Patients with elevated plasma IFN-γ during acute infection 
had elevated autoantibodies directed at IFNα-2 at extended follow-up, 
and those with increased plasma levels of the chemokine CXCL9 
exhibited elevated autoantibody to P1 at delayed follow-up (P < 0.001). 
There was an anticorrelation between virus-specific antibody levels and 
autoantibodies (antinuclear and anti-IFNα-2). CMV-specific CD8 + T 
cells were seen at late follow-up in patients with gastrointestinal PASC 

symptoms, leading to the hypothesis that bystander activation of these 
cells may be seen in GI PASC. Several immune phenotypes at delayed 
follow-up were variably associated with different PASC symptoms, 
including myeloid-derived suppressor cells, memory-like NK cells, and 
innate immune activation, whereas activated Treg cells during acute 
infection seemed to augur PASC. 

Vijayakumar et al. identified an immunoproteomic signature in pa-
tients with respiratory disease after acute COVID-19, particularly using 
BAL (airway) samples. An increase in activated CD8 + T cells in bron-
choalveolar lavage fluid was associated with a reduction in forced vital 
capacity (FVC). [24] Chemokines that recruit T cells and NK cells were 
also highly associated with epithelial damage markers. In addition, 
increased memory B cells in airways was linked to reduction in FVC or 
TCLO, or imaging abnormalities. 

In aggregate, the data above suggest that immune dysregulation, 
associated with increased systemic and/or pulmonary levels of chemo-
kines, pro-inflammatory cytokines, and specific lymphocyte pheno-
types, may be responsible for the pathogenesis of PASC, although further 
study is needed, particularly of larger cohorts of patients followed pro-
spectively, with intensive evaluation of both plasma and cell-based 
biomarkers. Immune dysregulation may be associated with autoanti-
bodies, and the potential role of cross-reactive antibodies directed at 
host targets cannot be excluded, but early published data suggest that 
these autoantibodies may antedate COVID-19, possibly identifying a 
subset of patients predisposed to develop PASC. 

1.3. SSRIs as immunomodulatory agents in COVID-19 

SSRIs may harbor potential as immunomodulators. Abundant in 
vitro, animal model, and, to some extent, clinical data suggest SSRIs 
have immunomodulatory properties, primarily immunosuppressive ac-
tivity. [25–30] In interpreting these data, attention must be paid, 
however, to dose, concentration, activation status of lymphocytes, 
experimental design and the underlying disease/model. Doses and 
concentrations in preclinical studies may be higher than those in 
humans. For example, concentrations at which lymphocyte proliferation 
is inhibited by SSRIs are typically ≥ 1 μM, higher than those typically 
achieved in the clinic. Sertraline, however, at concentrations of 0.01 and 
1 µM decreases the IFN/IL-10 ratio in the supernatant of 
mitogen-stimulated whole blood. [26] SSRIs deplete platelet serotonin 
and, in mice, platelet-derived serotonin appears to promote neutrophil 
endothelial adhesion and inflammation-triggered extravasation of neu-
trophils into tissue [31], suggesting a possible mechanism for 
SSRI-mediated anti-inflammatory activity. Several other mechanisms 
have been proposed to explain the immunomodulatory effects of SSRIs. 
Inhibition of the serotonin transporter protein, resulting in increased 
extracellular concentrations of 5-HT, was thought to be responsible for 
the observed effects of SSRIs on lymphocytes, but multiple lines of 
experimental evidence contravene this hypothesis. [26] The impact of 
SSRIs on several signal transduction pathways has been posited as the 
basis for diminished lymphocyte proliferation and apoptosis; these ef-
fects include activation of PKA through induction of cAMP, inhibition of 
the translocation of PKC to the cell surface, and reduction in calcium 
influx. [26] However, reduced lymphocyte proliferation and apoptosis 
are generally not expected at typical clinical concentrations of 
commonly used SSRIs. Finally, a recent study [32] provided data that 
has led to the hypothesis that type I interferon-mediated depletion of 
serotonin through several mechanisms, including impaired gut absorp-
tion of its precursor (tryptophan), may be responsible for some mani-
festations of Long COVID through reduced vagal signaling, resulting in 
impaired cognition (e.g., brain fog, which is typical of Long COVID). 

Recently, attention has focused on the observation that several SSRIs 
bind with moderate to high affinity to the sigma-1 receptor (SIR) [33], 
and it has been suggested that ligands for this receptor may modulate the 
immune system. The S1R is a ubiquitous endoplasmic reticulum 
(ER)-resident chaperone protein that associates with IRE1 in the context 
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of ER stress, leading to regulation of the production of inflammatory 
cytokines. IRE1 is necessary for cytokine production, presumably 
through XBP1-mediated transactivation of IL-6 and TNF-α. Fluvox-
amine, which exhibits the highest affinity for the S1R among antide-
pressants and exerts agonistic activity, has been shown to produce 
anti-inflammatory effects in a variety of cell models. [34] Rosen et al. 
[35] showed that S1R KO mice experienced increased mortality in two 
sub-lethal models of sepsis, and that WT mice treated with fluvoxamine 
were protected from mortality and had lower IL-6 levels in a lethal 
model of sepsis. Data suggest that, at least for some SSRIs, typical clin-
ical concentrations may result in appreciable binding at the S1R (see 
Table S1 in Supplementary Appendix). In particular, we have calculated 
approximate ratios of free (unbound) typical clinical concentrations to 
the dissociation constant at the sigma-1 receptor of 2–8.5 for fluvox-
amine, 0.2 - 0.6 for citalopram, 0.2 to 0.4 for escitalopram, 0.1 to 0.5 for 
fluoxetine and 0.1 or less for sertraline. Of note, fluvoxamine, fluoxetine, 
and escitalopram are agonists at the S1R whereas sertraline is an 
antagonist; paroxetine is not expected to bind appreciably to the S1R 
and citalopram is not believed to be an agonist at the SIR. [33,36,37]. 

Whatever the mechanistic basis might be, some clinical data suggest 
that pro-inflammatory cytokine levels in the clinic may be affected by 
SSRIs. In a large meta-analysis of largely uncontrolled data from longi-
tudinal studies of depressed patients treated pharmacologically, IL-6 
levels fell significantly irrespective of treatment response. [38] This 
analysis was not stratified by type of antidepressant treatment, but, in 
another meta-analysis of pharmacologic treatment for depression that 
partially overlapped with the study above, changes in cytokine levels 
were also assessed by drug class. [39] Overall, treatment reduced levels 
of IL-1β. Selective serotonin reuptake inhibitors were also found to 
potentially affect levels of IL-6 and TNF-α, but other antidepressants in 
this meta-analysis did not appear to reduce measured cytokine levels. In 
a small randomized controlled study, decreases in IL-1β were seen 
among depressed patients treated with fluoxetine or acupuncture vs. 
placebo, [40] but only 68/95 subjects contributed baseline samples, and 
cytokine data were available at follow-up for only 72 subjects. There was 
no apparent impact of fluoxetine on TNF-α or Th2 cytokine levels. Other 
data suggest that other forms of treatment for depression may influence 
cytokine levels. [41,42] Thus, the vast majority of the available clinical 
data suggesting SSRIs may reduce cytokine levels derive from uncon-
trolled studies, and the paucity of prospective randomized controlled 
data in which cytokine data have been consistently measured make it 
difficult to determine if this effect is specific to SSRIs in the context of 
treatment for depression. 

In view of the earlier described findings suggesting SSRIs may exert 
immunomodulatory effects, possibly through sigma-1 receptor (S1R) 
binding, we hypothesized that chronically administered SSRIs might 
dampen a pro-inflammatory immune response during and after SARS- 
CoV-2 infection and thereby reduce the risk of PASC. As noted above, 
some data suggest that ongoing immune dysregulation may be respon-
sible for the pathogenesis of PASC. We therefore evaluated, in this 
retrospective study relying upon a dataset including de-identified EHR 
and PPRL-linked ancillary data, the risk of PASC among recipients of 
commonly prescribed SSRIs. In particular, we separately studied the 
effects of SSRIs with (a) agonist activity at the S1R or (b) no agonist 
activity at the S1R (i.e., no meaningful binding at the S1R or antagonist 
activity at that receptor) in an effort to discern whether SIR agonism 
played a role in any observed beneficial effect. 

2. Materials and Methods 

2.1. Setting and population 

We used data from the National COVID Cohort Collaborative (N3C), 
a centralized real-world repository of de-identified electronic health 
records supported by the National Institutes of Health (NIH). N3C in-
cludes detailed information on clinical encounters including procedures, 

diagnoses, ordered and administered medications, demographic data, 
vitals, and lab orders and results. Records in N3C are aggregated across 
participating clinical organizations in the United States, known as data 
partners, harmonized using the Observational Medical Outcomes Part-
nership (OMOP) data model, and subjected to quality review and 
checks. This research was possible because of the patients whose in-
formation is included within the data and the organizations (htt 
ps://ncats.nih.gov/n3c/resources/data-contribution/data-transfer-ag 
reement-signatories) and scientists who have contributed to the on- 
going development of this community resource. The N3C data transfer 
to NCATS is performed under a Johns Hopkins University Reliance 
Protocol #IRB00249128 or individual site agreements with the NIH. 
The N3C Data Enclave is managed under the authority of the NIH; in-
formation can be found at https://ncats.nih.goc/n3c/resources. The 
content is solely the responsibility of the authors and does not neces-
sarily represent the official views of the National Institutes of Health or 
the N3C program. Use of N3C data for this study does not involve human 
subjects (45 CFR 46.102) as determined by the NIH Office of IRB 
Operations. 

We included adult patients (≥ 18 years) with either RT-PCR or an-
tigen (AG) confirmed SARS-CoV-2 infection or a recorded U07.1 diag-
nosis for COVID-19. Due to the delayed availability of the U09.9 
diagnosis code for PASC on which our computable phenotype was 
trained (see below), only patients with an index date, defined as the 
earliest record of infection or diagnosis, on or after October 1, 2021 
through April 7, 2022 were included. This would mitigate the potential 
lack of generalizability of the algorithm over time and also limit the 
analysis to the inclusion of subjects with either Delta or Omicron 
infection. Patients were required to have at least one interaction with 
the participating health care system prior to and following the index 
diagnosis of COVID-19. Since collection of vaccination data in the EHR 
may have been incomplete, the analysis was restricted to participating 
N3C sites with vaccination rates comparable to those reported by the 
CDC for the corresponding geographic region, as vaccination may affect 
the risk of PASC and was considered a covariate. To allow enough time 
for collection of data relevant to a PASC diagnosis, we included only 
patients with at least 90 days between their index diagnosis date and the 
data extraction date. We excluded patients with missing gender data and 
those who died during COVID-19-related hospitalization or within 45 
days of their index date. 

2.2. Exposures 

Three groups were defined: (1) patients with documented baseline 
exposure to least one SSRI with agonist activity at the S1R (fluvoxamine, 
fluoxetine, escitalopram) [33], (2) patients with documented baseline 
exposure to at least one SSRI without agonist activity at S1R (sertraline, 
which is a SIR antagonist; paroxetine, which does not appreciably bind 
to the S1R; and citalopram, which did not show agonist activity at the 
sigma-1 receptor in nerve growth factor-induced neurite outgrowth in 
PC12 cells) [33,36,37], and (3) control patients with no documented 
baseline exposure to either (1) or (2). Baseline use of a drug was defined 
as recorded at or prior to the COVID-19 index diagnosis date. Records in 
N3C date back to January 1, 2018 for patients who had been followed 
for the longest period of time. Patients with documented baseline 
exposure to both (1) and (2) were excluded. Treatment comparisons 
were performed between patients in the exposure group (1) versus 
controls and the exposure group (2) versus controls. To further inter-
rogate the effect of S1R agonism as a mechanism of action, we conducted 
a secondary analysis with non-S1R agonist SSRI exposure as a compar-
ator to S1R agonist SSRI exposure. 

2.3. Outcomes 

The primary outcome consisted of a presumptive diagnosis of PASC 
using an XGBoost-based machine learning algorithm trained on patients 
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assigned the U09.9 (PASC) diagnosis code. [43] This surrogate was 
chosen in an effort to more comprehensively capture patients with Long 
COVID because the U09.9 code was established in October of 2021 and 
was not rapidly and fully embraced by all participating healthcare or-
ganizations. Neither vaccination nor the SSRIs under study were 
included as features in this predictive model. The prediction threshold 
for the model was chosen to be 0.53 (see Fig. 1), which corresponds to 
15% of the total patient population receiving a PASC diagnosis. Rates of 
PASC reported in the literature have varied widely, but the likely rate is 
generally believed to reside within a range of approximately 10–20%. 
[1] In view of this, a supplementary analysis was performed using a 
lower and higher score threshold yielding a rate of 10% and 20% 
respectively. 

2.4. Statistical analysis 

For the primary analyses we compared the risk of PASC among pa-
tients receiving a S1R agonist SSRI (fluvoxamine, fluoxetine, or escita-
lopram) at baseline to patients not receiving any SSRI and we also 
compared the risk of PASC among patients receiving an SSRI with no 
S1R agonism (sertraline, paroxetine, or citalopram) at baseline to pa-
tients not receiving any SSRI. Relative risks (RRs) and 95% CIs were 
estimated using weighted Poisson regression with robust standard er-
rors. Inverse probability weighting (IPW) as implemented in the R 
WeightIt package, version 0.9.0, was used to adjust for confounding. 
IPW as a method to adjust for baseline confounding is a common and 
effective method to elucidate causal relationships between exposures 
and outcomes [44]. The inverse propensity scores are used as weights in 
the final Poisson model between exposure and outcome. The individual 
exposure propensity scores were calculated using multivariate logistic 
regression and included a variety of potential baseline confounders: age, 
sex, body mass index (BMI), race and ethnicity, baseline comorbidities 
(myocardial infarction, congestive heart failure, cerebrovascular dis-
ease, dementia, chronic lung disease, uncomplicated type II diabetes, 
complicated type II diabetes, kidney disease, liver disease, HIV infection, 
and cancer), record of post-infection hospitalization, use of approved 
immunomodulatory therapy for acute COVID-19 (dexamethasone, 

baricitinib, tocilizumab), baseline immunotherapy treatment (eta-
nercept, infliximab, adalimumab, certolizumab pegol, golimumab, sar-
ilumab, tocilizumab, baricitinib, tofacitinib, or upadacitinib), baseline 
exposure to other ligands exhibiting S1R binding with moderate to high 
affinity defined as a dissociation constant of less than 250 nanomolar 
(trifluoperazine, pimozide, fluphenazine, chlorpromazine, perphena-
zine, haloperidol, pentazocine, progesterone, methamphetamine, 
hydroxychloroquine, dextromethorphan, clemastine, hydroxyzine, 
tamoxifen), any baseline SNRI medication (desvenlafaxine, duloxetine, 
levomilnacipran, venlafaxine), baseline bupropion exposure, any base-
line tricyclic antidepressant medication (clomipramine, amoxapine, 
amitriptyline, desipramine, nortriptyline), any baseline benzodiazepine 
medication (alprazolam, chlordiazepoxide, diazepam, lorazepam), any 
baseline antipsychotic medication (risperidone, quetiapine, ziprasidone, 
aripiprazole, aripiprazole lauroxil, clozapine), and any record of 
COVID-19 vaccination. For BMI, which was the only variable with 
missing data, a missing data indicator was created. The estimated 
probabilities were used to calculate stabilized inverse probability 
weights and used to weight each patient’s contribution to the Poisson 
regression model. Covariate balance before and after inverse probability 
weighting was assessed by calculating absolute standardized mean dif-
ferences (SMDs) and comparing the distributions of propensity scores for 
exposed and unexposed groups, which were generated using the R Co-
balt package, version 4.2.2. 

We performed additional analyses using the methods detailed above 
for the primary analysis. To isolate and determine the significance of 
S1R agonism in reducing the risk of long-COVID, we used non-S1R 
agonist SSRIs as a comparator to S1R agonist SSRIs. The effect of both 
SSRI classes across sex and COVID-19 vaccination status (record of any 
COVID-19 vaccination vs. unvaccinated) subgroups was also assessed. 
As a sensitivity analysis, we repeated our primary analysis with lower 
and higher probability thresholds for the PASC computable phenotype 
ML model of 0.67 and 0.29, which correspond to 10% and 20% of the 
population respectively, to establish the robustness of the results to the 
long-COVID diagnosis assignments. Finally, to assess the impact of 
increased specificity to recent ongoing SSRI treatment prior to infection, 
we limited the exposure definition to include only patients with a record 
of exposure within 180 days of the index COVID-19 diagnosis date. 

Data extraction was carried out in the N3C enclave using Spark SQL 
3.2.1 and Python 3.6.7, and all statistical analysis was done using R 
version 3.5. 

3. Results 

There were 17 908 eligible patients identified, with a total of 1521 
patients exposed to S1R agonist SSRIs at baseline, 1803 exposed to non- 
S1R agonist SSRIs, and 14 584 unexposed patients (Fig. 2). Both the S1R 
and non-S1R agonist SSRI exposed patients were more female compared 
with unexposed patients (1180 [78%] and 1327 [74%] vs 8943 [61] and 
more likely to be White non-Hispanic (1177 [77%] and 1367 [76%] vs 
9860 [68%]). Exposed patients generally had more comorbidities 
(congestive heart failure, 141 [9.3%] and 217 [12%] vs 1181 [8.1%]; 
cerebrovascular disease, 99 [6.5%] and 138 [7.7%] vs 641 [4.4%]; 
chronic lung disease, 434 [29%] and 512 [28%] vs 2967 [20%]; un-
complicated type II diabetes, 301 [20%] and 455 [25%] vs 2793 [19%]; 
cancer, 168 [11%] and 248 [14%] vs 1621 [11%]); exposed patients 
were also more likely to have been exposed to other high S1R affinity 
ligands at baseline (402 [26%] and 495 [27%] vs 1931 [13%]), and 
more likely to have received other classes of psychiatric medication at 
baseline (bupropion, 289 [19%] and 250 [14%] vs 586 [4.0%]; benzo-
diazepines, 514 [34%] and 574 [32%] vs 2113 [14%]; tricyclic anti-
depressants, 99 [6.5%] and 116 [6.4%] vs 392 [2.7%]; antipsychotics, 
135 [8.9%] and 139 [7.7%] vs 298 [2.0%]; SNRIs, 189 [12%] and 230 
[13%] vs 987 [6.8%]). Exposed patients were more likely to have 
received a COVID-19 vaccine (1026 [67%] and 1215 [67%] vs 8744 
[60%]). COVID-19 related hospitalization was similar across all three 

Fig. 1. Fraction of patient population receiving a PASC diagnosis as a function 
of predictive model probability threshold. A cutoff of 0.53 was chosen for the 
main analysis which corresponds to 15% of the patient population. Cutoffs of 
0.29 and 0.67 are also shown, corresponding to 10% and 20% of the population 
respectively. 
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groups (208 [14%] and 270 [15%] vs 2308 [16%]) as was baseline 
immunotherapy (24 [1.6%] and 35 [1.9%] vs 244 [1.7%]) and COVID- 
19 immunotherapy (24 [1.6%] and 46 [2.6%] vs 372 [2.6%]) but un-
exposed patients, unadjusted, were more likely to develop long-COVID 
(175 [12%] and 215 [12%] vs 2352 [16%]). Complete cohort charac-
teristics are shown in Table 1. 

After applying IPW, patient characteristics between exposed and 
unexposed groups for both S1R agonist and non-S1R agonist SSRIs an-
alyses were adequately balanced, with absolute standardized mean 
differences (SMDs) under 0.1 for almost all covariates. Fig. 3 shows the 
SMDs for treated and control groups along with the propensity score 
distributions before and after weighting. Covariate balances for sec-
ondary and subgroup analyses were also adequate and are presented in 
the Supplement (eFigure 1 to eFigure 11). 

In the weighted analysis, there was a 29% reduction in the RR of 
long-COVID (0.704 [95% CI, 0.58–0.85]; P = 4 ×10− 4) among patients 
with baseline S1R agonist SSRI exposure compared to unexposed pa-
tients. For patients with baseline non-S1R agonist SSRI exposure 
compared to unexposed patients, there was a 21% reduction in RR (0.79 
[95% CI, 0.67 - 0.93]; P = 0.005). When considering non-S1R agonist 
SSRIs as a comparator, no statistically significant difference in RR (0.96 
[95% CI, 0.80 - 1.16]; P = 0.7) was observed between S1R agonist SSRI 
recipients and non-S1R agonist SSRIs. Additional analysis showed that 
the significance of RR reduction among both genders for S1R agonist 

SSRI exposure was maintained (male: 0.64 [95% CI, 0.44 - 0.93], 
P = 0.02; female: 0.73 [95% CI, 0.60 - 0.90], P = 0.003) but not for non- 
S1R agonist SSRIs (male: 0.61 [95% CI, 0.43 - 0.87], P = 0.006; female: 
0.92 [95% CI, 0.77 - 1.1], P = 0.4). Subgroup analysis on vaccinated and 
non-vaccinated patients with S1R agonist SSRI exposure revealed a 
significant RR reduction for vaccinated patients (0.73 [95% CI, 0.57 - 
0.94]; P = 0.01) but not among unvaccinated patients (0.75 [95% CI, 
0.55 - 1.03]; P = 0.1) and similarly for vaccinated (0.76 [95% CI, 0.60 – 
0.97]; P = 0.03) and unvaccinated patients (0.87 [95% CI, 0.68 - 1.1]; 
P = 0.2) with non-S1R agonist SSRI exposure. 

The results of our analyses proved to be robust to the ML model 
threshold for Long-COVID assignment. At a threshold of 0.29 where 20% 
of the patient population received a long-COVID diagnosis, we still 
observed a 19% reduction in the RR of long-COVID (0.80 [95% CI, 0.68 - 
0.94]; P = 0.007) among S1R agonist SSRI exposed patients and a 18% 
reduction in RR of long-COVID (0.82 [95% CI, 0.72 - 0.94]; P = 0.004) 
among non-S1R agonist SSRI exposed patients, both compared to un-
exposed patients. At a threshold of 0.67 where 10% of the patient 
population received a long-COVID diagnosis, RR significance is lost for 
both S1R agonist exposure (0.80 [95% CI, 0.64 - 1.0]; P = 0.06) and 
non-S1R agonist exposure versus control (0.84 [95% CI, 0.69 – 1.03]; 
P = 0.1). Furthermore, the second sensitivity analysis limiting the SSRI 
exposure window to 180 days prior to the COVID-19 index date yielded 
a lower RR (0.67 [95% CI, 0.54 - 0.83]; P = 2 ×10− 4) compared to the 

Fig. 2. Flow diagram of patient selection. Note that SSRI exposure is non-exclusive and small numbers (<20) were obscured to protect patient identities.  
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primary analysis for the S1R agonist exposure. For the corresponding 
non-S1R agonist exposure analysis, the RR (0.78 [95% CI, 0.62 - 0.99]; 
P = 0.04) was similar to the primary analysis. Fig. 4 summarizes the RR 
estimates for all these analyses. 

4. Discussion 

In this multicenter retrospective study, we observed a statistically 
significant 29% reduction in the RR of long-COVID among patients 

receiving baseline S1R agonist SSRIs when compared with controls. A 
similar effect size of 21% reduction in the RR of long-COVID was 
observed for patients receiving non-S1R agonist SSRIs compared to 
controls. Furthermore, when comparing patients receiving baseline S1R 
agonist SSRIs to those receiving non-S1R agonist SSRIs, no significant 
difference was observed. Our findings suggest that use of SSRIs, initiated 
prior to diagnosis of COVID-19, may be effective in reducing the risk of 
long-COVID compared with controls. We did not, however, find 
conclusive evidence to attribute this effect to SSRI-related S1R-agonism. 
We speculate that part of the reason why a statistically significant dif-
ference was observed for both S1R agonist SSRIs and non-S1R agonist 
SSRIs versus controls may reside in protective effects unrelated to S1R 
agonism. We did not see a higher risk of PASC among the group of pa-
tients receiving paroxetine, sertraline or citalopram even though ser-
traline is an S1R antagonist. We hypothesize that this is related to the 
fact that typical free circulating concentrations of sertraline relative to 
its dissociation constant are low (see eTable 1 in the Supplementary 
Appendix). 

As discussed in the introduction, the pathogenesis of PASC has not 
yet been firmly established, but immune dysregulation with an elevation 
in proinflammatory cytokine levels may play a role in the condition. We 
speculate that SSRIs may attenuate such an aberrant response through 
immunomodulation. In addition, SSRIs exert antiplatelet activity, which 
might, hypothetically, provide benefit in PASC, as microclots may 
contribute to the pathology of PASC. [16]. 

Several antidepressant drugs, such as fluoxetine, have been shown to 
have antiviral properties. The in vitro antiviral effect of fluoxetine has 
been tentatively ascribed to a reduction in intra-lysosomal ceramide 
related to inhibition of acid sphingomyelinase, but fluoxetine exhibits 
only low micromolar antiviral potency [34] raising doubt that it would 
show evidence of in vivo antiviral efficacy at clinically achieved con-
centrations. In a prospective randomized double-blind controlled study 
of COVID-19 outpatients, fluvoxamine exerted no antiviral effect. [45]. 

Retrospective studies evaluating the potential clinical benefit of 
SSRIs in hospitalized patients with acute COVID-19 have yielded con-
flicting findings, ranging from protective effects, such as decreased risk 
of intubation or death, to absence of any discernible benefit. [46–48] 
Similarly, several, [45,49] though not all [50-52] prospective, ran-
domized, controlled investigations into the potential therapeutic effects 
of fluvoxamine in outpatients with acute COVID-19, have suggested 
evidence of benefit. A number of other investigators have been inter-
ested in the evaluating whether SSRIs prevent COVID-19, exert a 
treatment effect in acute infection or lower early mortality after acute 
COVID-19 [53–57], and a recent uncontrolled study including 95 pa-
tients with PASC treated with SSRI therapy has been published [58], but 
to our knowledge, ours is the first study to suggest a diminished risk of 
the development of Long COVID in patients receiving SSRIs at baseline 
(i.e., prior to SARS-CoV-2 infection). Although an immunological basis 
for this observation has been postulated, we acknowledge the possibility 
that the findings in the current study may reflect non-immunological 
effects of SSRIs. Future prospective studies of SSRIs in patients with 
PASC or at high risk for PASC that also include immunologic biomarkers 
seem warranted. 

This study has several limitations. First, as a retrospective study 
using IPW, residual confounding and confounding by indication are two 
relevant concerns. Residual confounding is a known concern in obser-
vational research, but we verify that all known confounders in the 
weighted population were balanced. For confounding by indication, we 
minimize this through the inclusion of other medications that share 
indications with SSRIs. Second, the ICD diagnosis code for PASC (U09.9) 
is of recent vintage, so it is likely that many subjects in N3C without that 
code may have had PASC. We restricted our analysis to the time during 
which the code has been available but, since the U09.9 code was not 
immediately and widely adopted at all sites, we relied on ML predictions 
of the PASC phenotype to identify patients more likely to have the 
condition, including those without a U09.9 code. Using the model’s 

Table 1 
Cohort characteristics by SSRI exposure group. Note that small numbers (<20) 
were obscured to protect patient identities.  

Characteristic S1R agonist 
SSRI exposure 
N = 1521a 

Non-S1R agonist 
SSRI exposure 
N = 1803a 

Unexposed 
N = 14584a 

Sex    
Male 341 (22%) 476 (26%) 5641 (39%) 
Female 1180 (78%) 1327 (74%) 8943 (61%) 
Age, median (years)    
Age (years) 826 (54%) 883 (49%) 7006 (48%) 
18-49 194 (13%) 311 (17%) 2332 (16%) 
≥ 70 286 (19%) 341 (19%) 2765 (19%) 
50-59 215 (14%) 268 (15%) 2481 (17%) 
60-69    
BMI, median (kg/m2) 166 (11%) 195 (11%) 1957 (13%) 
BMI (kg/m2) 382 (25%) 424 (24%) 2518 (17%) 
< 25 339 (22%) 393 (22%) 3595 (25%) 
≥ 40 373 (25%) 454 (25%) 3457 (24%) 
25-29 249 (16%) 322 (18%) 2250 (15%) 
30-34 12 (0.8%) 15 (0.8%) 807 (5.5%) 
35-39.9    
Missing 1177 (77%) 1367 (76%) 9860 (68%) 
Race and ethnicity 25 (1.6%) 24 (1.3%) 309 (2.1%) 
White Non-Hispanic 208 (14%) 289 (16%) 3094 (21%) 
Asian Non-Hispanic 62 (4.1%) 88 (4.9%) 899 (6.2%) 
Black or African 

American Non- 
Hispanic 

49 (3.2%) 35 (1.9%) 422 (2.9%) 

Hispanic or Latino Any 
Race 

54 (3.6%) 102 (5.7%) 630 (4.3%) 

Other Non-Hispanic / 
Unknown 

141 (9.3%) 217 (12%) 1181 (8.1%) 

Myocardial infarction 99 (6.5%) 138 (7.7%) 641 (4.4%) 
Congestive heart 

failure 
42 (2.8%) 70 (3.9%) 245 (1.7%) 

Cerebrovascular 
disease 

434 (29%) 512 (28%) 2967 (20%) 

Dementia 301 (20%) 455 (25%) 2793 (19%) 
Chronic lung disease 171 (11%) 281 (16%) 1564 (11%) 
Type II diabetes, 

uncomplicated 
176 (12%) 270 (15%) 1567 (11%) 

Type II diabetes, 
complicated 

165 (11%) 179 (9.9%) 1009 (6.9%) 

Kidney disease 9 (0.6%) 13 (0.7%) 82 (0.6%) 
Liver disease 168 (11%) 248 (14%) 1621 (11%) 
HIV infection 208 (14%) 270 (15%) 2308 (16%) 
Cancer 289 (19%) 250 (14%) 586 (4.0%) 
COVID-19 related 

hospitalization 
514 (34%) 574 (32%) 2113 (14%) 

Baseline bupropion use 99 (6.5%) 116 (6.4%) 392 (2.7%) 
Baseline 

benzodiazepine use 
135 (8.9%) 139 (7.7%) 298 (2.0%) 

Baseline tricyclic 
antidepressant use 

189 (12%) 230 (13%) 987 (6.8%) 

Baseline antipsychotic 
use 

24 (1.6%) 35 (1.9%) 244 (1.7%) 

Baseline SNRI use 402 (26%) 495 (27%) 1931 (13%) 
Baseline 

immunotherapy 
treatment 

24 (1.6%) 46 (2.6%) 372 (2.6%) 

Baseline moderate to 
high affinity S1R 
ligand use 

1026 (67%) 1215 (67%) 8744 (60%)  

a Statistics presented: n (%); median (IQR). 
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predictions requires the selection of a probability threshold beyond 
which patients are labeled with the outcome. We conducted a sensitivity 
analysis which established a degree of robustness to our choice of pre-
diction threshold, although at the lowest computable phenotype prev-
alence, significance was lost for S1R agonist SSRIs. Additionally, the ML 
model relies exclusively on structured data, whereas symptoms and 
signs of PASC may not be fully captured in structured data fields of de- 
identified EHRs. Although the ML model did not include the medications 
investigated here as predictors, it did include several of the comorbid-
ities we included as covariates (diabetes, chronic kidney disease, 
congestive heart failure, and chronic lung disease). We do not consider 
this to be a major concern because IPW balances these characteristics in 
the exposed and unexposed groups, and all relevant comorbidities are 
more prevalent in the exposed population (see Table 1). 

Another limitation imposed by the ML model is the inability to 
conduct a sensitivity analysis on patient healthcare interaction. Since 
N3C contains de-identified EHR records, it is not possible to distinguish 
between previously healthy patients with a genuine lack of baseline 
medical history and patients who are new to a healthcare organization 
for whom prior medical history was not collected. The same applies to 
interactions with a healthcare organization after the index date: there 
are many possible reasons why a patient may have no further in-
teractions. Our analyses were therefore limited to patients with some 
record of interaction with the healthcare organization prior to and after 
their index diagnosis. Yet since the ML model has a 90-day blackout 
window around the COVID-19 index date, we could not assess how a 
lack of baseline medical history and loss to follow-up affected the 
analysis. We were further unable to study the competing risk of death 
within 45 days of the COVID-19 index date. However, patients who died 
represented a very small fraction of the total population (118/ 109 183). 

Third, data on vaccination, which may affect the risk of PASC, are 
potentially incompletely captured in the N3C database, though we did 
mitigate this by selecting sites with vaccination rates comparable to 
those of CDC records. Fourth, our primary analyses did not consider 
timing, duration, and dosage of the medications at baseline. However, 
these medications are typically administered chronically and therefore 
patient exposure will typically be for an extended period. We further 
conducted a sensitivity analysis by restricting treatment to patients who 
were exposed to the SSRIs within 180 days prior to their COVID-19 index 
diagnosis date. This analysis is more rigorous in capturing active SSRI 
use prior to infection and the resulting estimates remained significant. 
Fifth, by exclusively relying on de-identified EHR records and selecting 
for patients with any baseline medical history, the data may not be 
representative of the general population. Patients with limited access to 
healthcare or those who seek care at small practices or community 
hospitals are likely underrepresented. Finally, our results are applicable 
only to the Delta and Omicron variant given the period of study. Future 
use of adapted machine learning models to reliably identify additional 
PASC patients prior to the advent of the U09.9 code may be useful to 
increase the sizes of the populations in analyses, enabling a finer analysis 
of the contributions of individual SSRI agents and the influence of spe-
cific variants on the risk of PASC. Similarly, repeated analyses in the 
future, including patients infected with the most recent variants of 
SARS-CoV-2 will be of interest. 

In conclusion, baseline exposure to either S1R agonist or non-S1R 
agonist SSRIs was associated with a significant reduction in relative 
risk of long-COVID. Our findings can be used to guide additional 
research into mechanisms of action of SSRIs on COVID-19. Future pro-
spective, randomized, double-blind, placebo-controlled clinical studies 
of SSRIs as a potential means of preventing Long COVID appear 

Fig. 3. Covariate balance and propensity score distributions before and after weighting for (left) S1R agonist SSRI exposed group vs control and (right) non-S1R 
agonist SSRI exposed group vs control. 
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warranted. 
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