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Many regions observed recurrent outbreaks of COVID-19 cases after relaxing social

distancing measures. It suggests that maintaining sufficient social distancing is important

for limiting the spread of COVID-19. The change of population behavior responding to the

social distancing measures becomes an important factor for the pandemic prediction.

In this paper, we develop a SEAIR model for studying the dynamics of COVID-19

transmission with population behavioral change. In our model, the population is divided

into several groups with their own social behavior in response to the delayed information

about the number of the infected population. The transmission rate depends on the

behavioral changes of all the population groups, forming a feedback loop to affect the

COVID-19 dynamics. Based on the data of Hong Kong, our simulations demonstrate

how the perceived cost after infection and the information delay affect the level and the

time period of the COVID-19 waves.

Keywords: COVID-19, mathematical modeling, population behavioral change, pandemic in Hong Kong, delay

differential equation

1. INTRODUCTION

Coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered coronavirus
known as SARS-CoV-2 (1). According to the report of WHO in April 2021, over 132 million
people were reported to be infected with COVID-19 and there were over 2.8 million deaths (2).
As such, COVID-19 has been declared as a public health emergency of international concern
on July 30, 2020. Since the beginning of the pandemic, many efforts were put into predicting
the disease dynamics and suggesting optimal disease control strategies. Mathematical modeling
is a major tool for COVID-19 prediction, for example using SIR (susceptible-infected-recovered)
or SEIR (susceptible-exposed-infected-recovered) model to describe the dynamics of COVID-19
(3–5). Different variations of the SIR model were also studied, such as COVID-19 network models
(6, 7) and a model with spatial impact on COVID-19 transmission (8).

Recurrent outbreaks of COVID-19 cases were observed in many locations. The existence of
asymptomatic patients and the change of population behavior responding to the social distancing
measures may be the factors for these recurrent outbreaks. Asymptomatic patients are individuals
who are infectious but are not reported and show no symptoms. Because of the unawareness of
infection status, asymptomatic infectious is not defined in SIRmodels. Recent research showed that
the incubation period of COVID-19 could be as long as 12 days while the latent period is about 4
days (9). This result emphasizes the importance of the consideration of asymptomatic patients. For
including the COVID-19 transmission with asymptomatic patients, some recent studies (10, 11)
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FIGURE 1 | The Hong Kong infected population obtained from Department of

Health, Government of HKSAR (20) is shown in the orange dotted curve. We

can see the infected population rebound multiple times in the data, causing

the dynamics of the infected population to look like waves. There are three

waves where we have boxed them and marked them as the first wave, the

second wave and the third wave as shown in the figure.

considered the extension of SIR model to SAIR model,
incorporating a new compartment for asymptomatic patients.

Another significant factor affecting COVID-19 transmission
is related to the behavioral change of individuals. Policymakers
enforced social distancing measures that aim to reduce the
contact in a population. It is observed that 139 countries
have implemented social distancing measures (12). Regulating
social distancing has been shown to be an effective strategy in
controlling the COVID-19 transmission (13–15) as it implies
a behavioral change in population which will reduce the rate
of COVID-19 transmission. In (16, 17), it was shown that
individual behavior has a huge impact on the disease dynamics
and sometimes leads to different predictions when comparing
to a standard SIR model (18). Besides the intervention by
the policymaker, individuals’ decisions can be based on the
perceived risk of infection (19) and the demands of a social
environment (6). In general, the behavior change depends on
the individual’s utility which measures the balance between
the risk of infection and the normal lifestyle. This adaptive
behavior change may lead to the recurrent outbreaks of
COVID-19 cases observed in many cities, such as Hong Kong
(Figure 1).

The population decides the activity using the information
about the infected population and the perceived cost after
infection, including treatment fee and loss in economic
productivity. How do the dynamics of COVID-19 transmission
depend on the cost after infection and the time delay for
receiving the information? In this paper, we will apply the
data of Hong Kong to study how self-learning behavioral
change affects the level and the time period of the COVID-19
waves. First, we will develop a SEAIR compartmental model
for simulating the dynamics of COVID-19 transmission,
in which the population can decide to reduce their
activity outside or to have a normal lifestyle based on the
evaluation of the utility functions. Then we will discuss the
parameter estimation and perform numerical simulations

to study the role of self-learning behavioral change in
disease transmission.

2. METHODS

In this section, we will develop a mathematical model for
studying COVID-19 transmission. We first discuss an existing
model from a recent study and then develop a novel model
with a consideration of population behavioral change and
asymptomatic patients.

Here we will define some terminologies and notations used in
the paper. We separate the population into five compartments:
susceptible compartment S, exposed compartment E,
asymptomatic compartment A, infected compartment I,
recovered compartment R. The susceptible compartment, the
exposed compartment and the asymptomatic compartment are
further divided into two types. We define the population who
behaves normally as “normal activity type” and the population
who reduces the frequency of outside activities as “reduced
activity type.” In our model, the normal activity type is labeled
by a superscript “ n ” and the reduced activity type is labeled by
“ r .” For example, Sn represents the susceptible compartment
that has normal activity and Ar represents the asymptomatic
compartment that has reduced activity. We define that Sn, Sr ,
En, Er , Ar , An, I, and R are the population numbers for the
corresponding compartments and types, which are the functions
of time t. The dot notation represents the derivative with respect
to t, for example, Ṡn represents the derivative of Sn with respect
to t.

2.1. Mathematical Model
In (19), based on the variables S, I, and R defined before, Amaral
et al. studied the behavioral change in a SIR model:



















Ṡn = −βNI
nSn − βaI

rSn + ρ8S,

Ṡr = −βNI
nSr − βQI

rSr − ρ8S,

İn = βNI
nSn + βaI

rSn + ρ8I − γ In,

İr = βNI
nSr + βQI

rSr − ρ8I − γ Ir ,

Ṙ = γ (In + Ir),

(1)

where βa, βN , βQ are the transmission rate, and γ is the
recovery rate. The functions 8S and 8I are the rates that the
population changes the behavior (normal activity or reduced
activity), defined as

8S = Sr(Sn + In)θ(pr , pn)− Sn(Sr + Ir)θ(pn, pr), (2)

8I = Ir(Sn + In)θ(pr , pn)− In(Sr + Ir)θ(pn, pr), (3)

where pn and pr are the payoffs for the normal and reduced
activity population, respectively. The payoffs depend on the
perceived cost after infection and the infection probability under
different types of activities. The function θ is the Fermi rule

θ(p1, p2) =
1

1+ e−(p2−p1)/k
, (4)
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which gives the probability of population to change from the
strategy with payoff p1 to the strategy with payoff p2. This
rule is used in many literature (19, 21–24). The term 1

k
gives

the intensity of selection. Equations (2) and (3) depend on the
probability (4) and the interaction rate among populations, which
is based on the social learning in the behavioral game theory (25).

Based on (19), we develop a new mathematical model
for capturing the spreading of COVID-19 with self-learning
behavioral change. Here, we consider two more compartments:
exposed patients E and asymptomatic patients A. So we will add
four new variables, Er and En, Ar and An, to system (1). Here
the asymptomatic patients refer to some patients who are in their
pre-symptomatic transmission period and will become infectious
in next stage. In our model, the rate of the behavior change is
based on the self-learning (25). This assumption is different from
the model in (19) that is based on the social learning. We assume
that, based on the information of the spreading of disease, each
individual can unilaterally decide his/her own strategy which will
affect the population distribution of the two activity types, normal
activity type and reduced activity type. Other than these two
types, we also consider that there are M different groups in the
population. Each compartment that belongs to the i-th group is
labeled by subscript “ i .” For example, we can decide the groups
according to the age groups of the population. The total number
of the whole population is constant during the time interval [0,T]
of the model where T denotes the final time of the simulation.
The model considered in this paper is

































Ṡri = aiS
n
i − biS

r
i − βr

i S
r
i ,

Ṡni = −aiS
n
i + biS

r
i − βn

i S
n
i ,

Ėri = aiE
n
i − biE

r
i − (1− µ)σEri − µσEri + βr

i S
r
i ,

Ėni = −aiE
n
i + biE

r
i − (1− µ)σEni − µσEni + βn

i S
n
i ,

Ȧr
i = aiA

n
i − biA

r
i + (1− µ)σEri − λAr

i ,

Ȧn
i = −aiA

n
i + biA

r
i + (1− µ)σEni − λAn

i ,

İi = λ(Ar
i + An

i )+ µσEri + µσEni − γiIi,

Ṙ =
∑M

i=1 γiIi.

(5)

A schematic diagram of our model is given in Figure 2. The
meanings of the functions and parameters used in Model (5) are
listed in Table 1.

The populations can interchange between normal activity type
(Sni , E

n
i , and An

i ) and the reduced activity type (Sri , E
r
i , and Ar

i )
with rates ai and bi. The two rates ai and bi will be defined in the
later subsection. Susceptible populations Sni and S

r
i are infected at

rates βn
i and βr

i , respectively. The two rates βn
i and βr

i depend
on the numbers of infected populations and will be explained
later. After infection, the susceptible populations will become
corresponding exposed populations Eri or Eni . After the latent
period 1

σ
days, the exposed populations will show symptoms with

probability µ and enter the infected population. Otherwise, if
they show no symptoms with probability 1−µ, they will enter the
asymptomatic populations. When the asymptomatic populations
are reported through testing, contact tracing or developing
symptoms after some time, they will become infected population.
The report rate is denoted by λ. The infected population Ii is
recovered at rate γi to the recovered population R which is

FIGURE 2 | A schematic diagram of Model (5). S represents susceptible

compartment; E represents exposed compartment; A represents

asymptomatic compartment; I represents infected compartment; R represents

recovered compartment. The populations can interchange between normal

activity type (Sni , E
n
i , and Ani ) and the reduced activity type (Sri , E

r
i , and Ari ). The

biological meaning of the parameters can be found in Table 1.

TABLE 1 | Biological meaning of the function and the parameters used in Model

(5).

Variables Biological meanings

Sri The i-th susceptible compartment with reduced activity

Eni The i-th exposed compartment with normal activity

Eri The i-th exposed compartment with reduced activity

Ani The i-th asymptomatic compartment with normal activity

Ari The i-th asymptomatic compartment with reduced activity

Ii The i-th infected compartment

R The recovered compartment

Parameters Biological meanings

ai Rates at which Sni , E
n
i , and Ani goes to Sri , E

r
i , and Ari .

bi Rates at which Sri , E
r
i , and Ari goes to Sni , E

n
i , and Ani .

µ Probability that individuals show symptoms after exposed.

λ Report rate of asymptomatic populations.

γ Recovery rate of infected population.

σ Rate at which exposed population become infectious.

immune to further infection as the reinfection rate is not high
during the time period we considered.

2.2. Rate of Behavioral Change
Here we will introduce how the population decides to behave
normally or reduce the frequency of their outside activities. There
are two types of population, normal activity type and reduced
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activity type, in the S, E, and A compartments. The populations
choose to alter their types, based on a self-learning process which
depends on the utility functions.

The utility function of the individual in the i-th normal
activity type at time t is defined as vni (z

n, e(t)) which depends
on the response function zn and the environment vector
e = [I1(t − τ ), · · · , IM(t − τ )], where τ is the information
delay. The individuals will select the optimal response function
zn∗i :[0,T] → [0, 1] to maximize their own utility:

uni (t) := max
zni

vni (z
n
i , e(t)), (6)

where zn∗i (t) = argmax
zni

vni (z
n
i , e(t)).

The instantaneous optimization problem was applied in the
discrete SIR model of the study (18). Here we consider it in the
continuous model (5). Similarly we can define the utility for the
reduced activity type. The individuals in the reduced activity type
will select the optimal response function zr∗i :[0,T] → [0, rmax]
to maximize their own utility:

uri (t) := max
zr

vri (z
r , e(t)), (7)

where zr∗i = argmax
zri

vri (z
r
i , e(t)). The feasible set for the reduced

activity type is bounded above by a constant 0 < rmax < 1 to
reflect the reduced activity.

For the whole time interval [0,T], the function zn∗ :[0,T] →
[0, 1] which represents the optimal activity outside for Sni , E

n
i , and

An
i ; z

r∗
:[0,T] → [0, rmax] which represents the optimal activity

outside for Sri , E
r
i and Ar

i .
The normal activity populations can choose to reduce their

activity and enter the reduced activity populations at rate ai.
Similarly the reduced activity populations can choose to become
the normal activity populations at rate bi. The rates ai and bi are
given as

ai = ω1θ(u
n
i (t), u

r
i (t)), (8)

bi = ω1θ(u
r
i (t), u

n
i (t)), (9)

where ω1 is a positive constant and θ is the Fermi Rule defined
before. Here, ai and bi depend only on the utility function uni and
uri . They are different from the rates in Model (1).

2.3. Transmission Rate
In this subsection, we will discuss the transmission rates βr

i and
βn
i in Model (5). Since there are two different strategies in the

model, the population either can be a normal activity type or
reduce the frequency of their activities. Thus we formulate two
kinds of transmission rates, βn

i for the populations in the normal
activity type, and βr

i for the populations in the reduced activity
type. The transmission rates depend on the optimal function
zn∗ and zr∗. Let m(z) represent the rate of contact made outside
with the response function z. We assume that m is an increasing
function of z.

Infection occurs when susceptible individuals make contact
with the infectious compartment [An

i , A
r
i and Ii in Model (5)]

and that contact may lead to successful infection. The number of
infection increases when the number of contact increases. From
this assumption, we define that

βr
i (z

r∗, t) = m(zr∗)

M
∑

j=1

knA
n
j + krA

r
j + kIIj, (10)

βn
i (z

n∗, t) = m(zn∗)

M
∑

j=1

knA
n
j + krA

r
j + kIIj, (11)

where kn, kr and kI are the infection rates.

2.4. Value Functions
Now, we define the utility function in (6). The function vni models
the internal decision process of behavioral change of individuals.
It depends on the optimal value of zn∗, the environment vector
e(t − τ ), and includes the present value and the expected cost in
the future. This form is similar to the Bellman equation and has
been used by other studies (18, 26, 27). Here, vni is defined as

vni (t, e) = v̄(zn∗i (t))
︸ ︷︷ ︸

Present value

− cω2m(zn∗)

M
∑

j=1

kIIj(t − τ )

︸ ︷︷ ︸

Expected cost after infection

−



1− ω2m(zn∗)

M
∑

j=1

kIIj(t − τ )





︸ ︷︷ ︸

Expected cost of susceptible

, (12)

where ω2 is a positive constant. In Equation (12), the present
value is given by v̄(zn∗i (t)). The perceived cost after infection
is a product of the perceived cost c and the transmission rate
without asymptomatic infection m(zn∗)

∑M
j=1 kIIj(t − τ ). The

transmission rate is different from Equation (11). Equation
(12) does not depend on Ar

i nor An
i as we assume that

individuals do not have any information about the asymptomatic
population when making decision. We also assume that there
is a time delay τ for the information. The delay τ is the
time period that an individual becomes infected and this
information reaches the decision-maker. The perceived cost
after infection is related to treatment fee or loss in economic
productivity but is not meant to be the exact measurement
of the monetary value of the economical loss. It should be
considered as the generic measurement and is relative to the cost
of susceptible.

Similarly, we can define the value function for the reduced
activity type as in (12) but zn∗ is replaced by zr∗:

vri (t, e) = v̄(zr∗i (t))
︸ ︷︷ ︸

Present value

− cω2m(zr∗)

M
∑

j=1

kIIj(t − τ )

︸ ︷︷ ︸

Expected cost after infection

−



1− ω2m(zr∗
M

∑

j=1

kIIj(t − τ )





︸ ︷︷ ︸

Expected cost of susceptible

. (13)
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TABLE 2 | Parameters used in numerical simulations and the references.

Parameters Values References

µ 0.21 (20)

λ 1
5.7 days = 0.1754 days−1 (28)

γ 1
10 days = 0.1 days−1 (29)

σ 1
3 days = 0.3333 days−1 (30)

k 0.1 (19)

2.5. Parameter Estimation
First we provide the estimation of the parameters used in the
numerical simulations. For the contact ratem(x), we set it as

m(x) = 2.2x, (14)

which is based on (18).We define the present value v̄(x) as in (18),

v̄(x) = x−
x2

2
. (15)

The fraction of asymptomatic patient is based on the data from
Department of Health, Government of HKSAR (20):

number of reported asymptomatic patients

number of reported infected patients
= 0.21. (16)

We assume that the probability of showing symptoms after
infection is 0.79. We take λ =

1
5.7 days

, γ =
1

10 days
, σ =

1
3 days

. Here, λ−1 is the mean time period of contact to illness

onset, which is estimated from the study (28); γ−1 is the median
recovery time of Remdesivir treatment, which is estimated from
the study (29); the mean latent period, σ−1, is based on (30). We
set k = 0.1 in the intensity of selection in the Fermi Rule as in
(19). We summarize the parameter values mentioned above in
Table 2.

The reduced activity type is assumed to have a maximum
activity at rmax = 0.8. The impact of other rmax will be
studied in section 3. We assumed that kn = 2kr = 2kI .
The cost after infection is assumed to be c = 106 and the
impact of varying the value of c will be discussed in the next
section. The constants ω1 and ω2 are both set to be 1 in
the simulations.

The initial condition used for the case of Hong Kong
is based on the data from The Department of Health,
Government of HKSAR (20). The simulation starts on March
25, 2020 which is the day that HK Government announced
that border closures measure and all returning residents are
subjected to Compulsory Quarantine Order (31). We consider
all infected cases after this day are local cases. The final
time for the simulation is T = 350 days. We assumed that
initially the normal activity and reduced activity populations
are both halves of the susceptible, asymptomatic and infected
population. In the case of the simulations with more than
one group, the population is distributed equally among
the groups.

FIGURE 3 | The effect of varying the cost after infection. The cost after

infection is the scalar c in Equations (12) and (13). The infected population with

different cost after infection is shown in different color. The corresponding c is

shown in the legend.

3. RESULTS

For the long-term dynamics, the infected population will go to
zero and the outcome will reach the disease-free equilibrium
at the end. The intermediate dynamics of Model (5) is not
trivial and we will apply numerical simulations to investigate
the intermediate dynamics of Model (5). The detailed numerical
scheme is discussed in Supporting Information.

3.1. Impact of Key Parameters
Based on the parameter setting before, we study the impact of
some key parameters including the perceived cost after infection
c, the time delay constant τ and the upper bound of reduced
activity rmax.

3.1.1. Perceived Cost After Infection c

In this subsection, we investigate the impact of varying the cost
after infection. We consider the case that M = 1, that is, for
example, the susceptible population is divided into Sr1 and Sn1 .
The perceived cost after infection, c, in Equations (12) and (13),
is the perceived cost that the individuals need to pay if they
are infected, which is related to the treatment fee or the loss
in economic productivity due to sick leave. In Figure 3, we can
see the simulations of the infected population with different
values of c. As shown in Figure 3, the infected population is
the least when c is the largest (c = 107, yellow curve). When c
decreases, the infected population increases. When the perceived
cost c is small, such population may not choose to reduce their
activity to prevent infection. In Equations (12) and (13), the
second part is the expected cost, which depends on the perceived
cost c. Thus, the lower the perceived cost after infection, the
more the population will increase their activity to gain the
optimal utility. Ultimately, this kind of response will contribute
to more infections.

3.1.2. Time Delay τ

In this subsection, we study the dynamics of Model (5) under
different values of time delay τ . The parameter τ represents
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FIGURE 4 | The impact of time delay. (A) We present the simulation with different delays. (B) We use exponential curve to fit the maximum in the first wave of the

simulation. The fitted exponential curves are the black dotted line.

the time lag between infected time and the moment that the
information of the infected individuals reaches the decision-
maker. This time delay is the sum of the latent period, the
time period for testing and the delay of reporting. As shown
in Figure 4, the time period between the maxima increases
as the time delay increases. Also, a longer time delay will
lead to a larger outbreak. The maximum of the infected
population for each wave increases exponentially as the time
delay increases. In Figure 4B, we plot the maximum of the first
waves using the exponential form aeb×days. The fitted curve has
the formula 5.61× 10−12e0.1335t .

3.1.3. Upper Bound of Reduced Activity rmax

Now, we study the dynamics of Model (5) with varying the
upper bound of reduced activity rmax. The simulations of the
infected population with different rmax are shown in Figure 5.
The infected population decreases as rmax decreases from 1 to
0.6. But the infected population increases as rmax decreases from
0.4 to 0.2. The local maximum in each wave of the infected
population is the highest when rmax = 0.2 and the lowest
when rmax = 0.6. This result shows that the infected population
is not monotonically decreasing with rmax. In the subsequent
simulations we will use rmax = 0.8.

3.2. Simulation With the Data of Hong Kong
In this section, we present the simulation of our model
comparing with the data of the infected population in Hong
Kong. We first start with the case of M = 1. We set the
parameters kn = 0.595 and τ = 21 days. As seen in Figure 6, the
simulation can produce several waves of infection. The number
of infections reaches the local maximum point between day 100
and day 150 and decreases to a low level on around day 200. After
day 200, the infected population starts to rise and reaches another
local maximumon around day 250 before the infected population
decreases to a low level again.

The infection waves are due to the change in the optimal
activity as shown in Figure 6. As we can see in Figure 6 that when

the infected population is at a low level, the optimal activity will
increase and lead to a higher transmission rate; when the infected
population is at a high level, the optimal activity will decrease and
lead to a lower transmission rate. The third wave in Figure 6A,
that is the wave between day 200 and day 250, is higher than the
observed third wave in the data. As our simulation consider a
long time horizon, many parametersmay change along with time,
such as the report rate λ. The Government in Hong Kong aims
to improve the surveillance strategy by increasing the number
of COVID-19 tests continuously (13). It would be reasonable to
assume that the report rate will increase over time. In Figure 6C,
we set the report rate λ to be 1

3.7 days
= 0.2702 days−1 after day

200 and observe a lower local maximum of the third wave which
is similar to the one observed in the data.

3.3. The System With Bipartite
Transmission Rates
In the previous simulation, we observe that the difference
between the data and the simulation in the third wave of
infection. To improve the accuracy of the simulation, we will
investigate the situation where the transmission rate is modified
to be the following form

βn
i = m(zn∗i )

︸ ︷︷ ︸

First part




kn m(zn∗i )

︸ ︷︷ ︸

Second part

M
∑

j=1

An
j + kr m(zr∗i )

︸ ︷︷ ︸

Second part

M
∑

j=1

Ar
j




 ,

(17)

βr
i = m(zr∗i )

︸ ︷︷ ︸

First part




kn m(zn∗i )

︸ ︷︷ ︸

Second part

M
∑

j=1

An
j + kr m(zr∗i )

︸ ︷︷ ︸

Second part

M
∑

j=1

Ar
j




 ,

(18)

where kn = kr is the infection rate. The biological meaning
of this transmission rate is that the asymptomatic population
has no symptoms and behaves like the susceptible population.
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FIGURE 5 | The simulation of the infected population with different rmax.

FIGURE 6 | The simulation with the data of Hong Kong. (A) The comparison between the simulated and observed data. (B) The optimal activity. (C) The comparison

of the infected population from the data and the simulation of our model with report rate λ increase to 0.2702 after day 200.
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FIGURE 7 | The simulation result with M = 1 and transmission rates in the form of Equations (17) and (18). (A) The comparison of data and the simulation. (B) The

corresponding optimal activity for different types. Normal activity type and reduced activity type are the same except in the three intervals of behavioral change. They

are from around day 75 to day 175, from around day 180 to day 250 and from around day 320 to day 350.

For the normal activity type and the reduced activity type
asymptomatic populations, similar to the susceptible population,
we solve (6) and (7) to find out their optimal activity. The
asymptomatic population contributes to less transmission if the
population has a smaller optimal activity because a smaller
optimal activity means less contact with other populations. The
contact function in the first part models the contact made by
the susceptible population. The contact function in the second
part models the contact made by the asymptomatic population
of the normal activity type and the reduced activity type. Thus,
Equations (17) and (18) are bipartite transmission rates which
involves the activity of the susceptible population and the
asymptomatic population.

3.3.1. Simulation With Single Group M = 1
Here we present the simulation with M = 1 for the system with
bipartite transmission rates. In the simulations, we set kn = 0.95
and τ = 18 days. The cost after infection is 106. The result
shown in Figure 7 provides a better agreement with the third
wave observed in the data.

Figure 7B shows the optimal activity for the normal activity
type and the reduced activity type. We refer to the interval that
shows different behavior for the normal activity type and the
reduced activity type as interval of behavioral change. The optimal
activity for the normal activity type and the reduced activity type
is the same except in three intervals of behavioral change as

depicted by Figure 7. The intervals of behavioral change are from
day 75 to day 125, from day 180 to day 250 and from day 320 to
day 350. On day 100, the population receives information about
the infected population with 18 days delay, which corresponds
to a moment with a small infected population (Figure 7A). On
day 100, the normal activity type population perceives the risk
of infection to be low and their optimal activity will be higher
than the reduced activity type. Due to the definition of the
reduced activity type, the reduced activity type will not increase
their optimal activity despite having more utility. Finally, it
causes the difference in the optimal activity in the intervals of
behavioral change.

3.3.2. Simulation With Multiple Groups M > 1
Here we present the simulation when there are two groups,
M = 2, for the population. We investigate the situation where
the older people perceive the cost after infection to be higher
than the young people as older people have longer recovery
time (32) which will cost more in treatment fee. According to
the discussion before, the behavioral change depends on the
perceived cost after infection. Thus we define the first group
corresponding to the older people who have higher perceived cost
after infection c = 106, and the second group corresponding to
themiddle-aged and young people who have lower perceived cost
after infection c = 105. We set the time delay τ = 15 days and
kn = 1.81. All other parameters are the same as those used before.
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In Figure 8A, this simulation with two groups still produces
wave-form dynamics of the infected population. By observing
the susceptible population, the reduced activity type susceptible
population decreases and the normal activity type susceptible
population increases in the intervals of behavioral change. We
can observe that there are three intervals of behavioral change
shown in Figure 8. In these intervals of behavioral change, the
utility will be larger for being the normal activity type. Figure 8
shows that the intervals of behavioral change are different for
group 1 and group 2. Each interval of behavioral change of group
2 is longer than the interval of behavioral change of group 1.
It means that the individuals in group 2, which have a smaller
perceived cost after infection, increase their activity faster and
remain their activity level longer than the individuals in group
1 which have a higher perceived cost after infection.

Figures 9A,B show the difference in the utility of the normal
activity type and the reduced activity type. The utility of the
normal activity type is always bigger than or equal to the reduced
activity type since the activity of the reduced activity type is
bounded by rmax. Figures 9A,B show that the difference in the
utility for group 2 forms a valley in each interval of behavioral
change. The difference in the utilities controls the exchange rates
ai and bi. The two rates ai and bi are shown in Figures 9B,C.
The normal activity type will gain more utility than the reduced
activity type when the number of the infected population is small.
As a result, the population in the reduced activity type will move
to the normal activity type according to the Fermi Rule in the
intervals of behavioral change.

After day 125, the activity of the normal activity type begins
to decrease due to the delayed information of a large infected
population has reached the normal activity type. Thus, the
optimal responses of the two types are the same again as both
of them are now below rmax. S

n decreases to the initial level
and then the normal activity type moves to the reduced activity
type as the infected population becomes larger. Sr and Sn remain
constant outside the intervals of behavioral change. Also, the
rates ai, bi and the utility are the same outside the intervals of
behavioral change.

Figure 10 shows the dynamics of different compartments.
We can observe that the local maximum in each wave in the
asymptomatic population (Figures 10B,C) constituted roughly
68% of all infected population. The asymptomatic population in
group 1 is roughly 41% of the asymptomatic population in group
2 in both the normal activity type and the reduced activity type.
But the infected population (Figure 10A) of group 1 and group 2
are the same.

Similar to Figure 6A, Figure 11 shows a simulation with the
report rate λ increased to 0.195 days−1 after day 200. We observe
a lower local maximum of the third wave which is similar to the
one observed in the data.

Now, we consider more groups M = 3 for the population.
We assume that the population is divided into three groups:
young people, middle-aged people, and old people. In this case,
we set the young people having c = 104, the middle-aged
people having c = 105, the old people having c = 106.
This reflects a finer group division scheme for age-specific
perceived cost after infection. We model the old people to have

FIGURE 8 | The simulation result with M = 2 and transmission rates in the

form of Equations (18) and (17). (A) The comparison of the infected population

in the simulation with the data. (B,C) The optimal activity of the two groups.

the highest cost after infection due to the highest treatment
fee and longest recovery time (32), followed by the middle-
aged people who have a medium cost after infection and the
young people who have the lowest cost after infection since they
often has a less economic burden and short recovery time. The
cost after infection for group 1, group 2 and group 3 are 106,
105 and 104, respectively. We set kn = 0.865 and τ = 19
days. In our simulations, we observe that the properties of the
system with more groups are similar to what we observed in the
system with two groups. Figure 11 shows that the simulation
with more groups can provide a better agreement with the
real data.

4. DISCUSSION

Many surveys suggest that different individuals in the population
behave differently to COVID-19 due to various reasons, for
example, age (33), gender (34, 35), political orientation (36–39),
and education level (40). The aim of this study is to formulate
a mathematical model for COVID-19 transmission with self-
learning behavioral change in multiple population groups.
In this paper, we have introduced a SEAIR compartmental
model in which the transmission rates depend on the
population’s optimal activity. The population decides the
optimal activity using the information about the infected
population and the perceived cost after infection.We investigated
the simulation with varying the cost after infection (c),
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FIGURE 9 | The difference in the utilities and the rates of change ai and bi . (A,B) The difference in the utility of the normal activity type and the reduced activity type in

different groups. The utility of normal activity type un and the reduced activity type ur are calculated using Problem (6) and Problem (7). (C,D) The rates of changing

type for different groups. ai is the rate at which normal activity type becomes reduced activity type. bi is the rate at which reduced activity type becomes normal

activity type.

the time delay for receiving the information (τ ) and the
upper bound for the optimal activity in the reduced activity
type population (rmax). The cost after infection is high in
our model.

The model developed in our paper incorporated population
behavior change which was discussed in some recent papers (18,
19, 41, 42). In (19), the authors consider the population dynamics
as an evolutionary process. In their model, the population
needs to learn from another population to make new decisions.
One of the fundamental differences between our model and
the model by Amaral et al. (19) is that we have relaxed their
evolutionary assumption by allowing the population to change
their strategy without contacting another population. Instead,
the population changes their strategy based on what kind of
information they received. We made this change in a way that
is closely related to the daily life of people nowadays since
people make their decision based on the information they receive
from, for example, TV and newspapers. Nardin et al. (41) also
studied the case where the population can change their strategy
without meeting other populations. In their model, the rate of
behavioral change is based on a discrete mechanism, unlike in
our model where we used the Fermi rule for behavioral change.
This also affects the dynamics of the infected population in
which the waves of the infected population are less prominent
in (41) than the waves in the models with a continuous rate of
behavioral change in our study. In (42), the behavioral change
with reduced activity is modeled as a percentage reduction in
the transmission rate for the behavioral changed individual.
This method works well for a relatively small time window of
5 months. In our study, the activity rate can vary with the

utility function and be predicted in a longer time window of
about 12 months.

We presented numerical simulations with unipartite
transmission rates and bipartite transmission rates. Through
the numerical simulations, we found that the mathematical
model reproduces the observed waves of infection in Hong
Kong. One main mechanism in our model that leads to the
waves is the self-learning behavioral change. The population
will choose an optimal response that balances the infection risk
and the benefit from the outside activity. Our results suggest
that the different waves of the infected population appear in
the intervals of behavioral change. The interval of behavioral
change is the time interval where the normal activity type
population can obtain a higher utility by choosing a higher
activity. A higher activity will lead to a higher transmission rate
and more infections. Social distancing measures will alter the
population behavior by lowering the population activity over
a period of time, thus social distancing measure is an effective
strategy in COVID-19 control. This supports the observed
effectiveness of social distancing as a disease control measure
(13–15).

In this paper, we investigated an alternate disease control
measure that is in the absence of centralized agencies like the
government. Instead, the disease control measure is initiated by
individuals. In the model, the populations make a decision of
reducing activity or not mainly based on the delayed information
and their utility functions. Our simulations explained that
different waves of the infected population are due to the
individuals trying to balance the risk of infection and normal
lifestyle. The perceived cost after infection and the delayed
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FIGURE 10 | The dynamics of different compartments in the simulation. From figures (A–G) shows the infected population, the normal asymptomatic population, the

reduced asymptomatic population, the reduced susceptible population, the normal susceptible population, the reduced exposed population and the normal exposed

population. The blue curve shows the fraction of population for group 1 and the orange curve shows the fraction of population of group 2. We can see that the group

1 and group 2 are the same except at the normal asymptomatic and the normal exposed population.

FIGURE 11 | The comparison of the data and the simulation for the system with M = 2 with λ increased to 0.195 after day 200.
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FIGURE 12 | The comparison of the data and the simulation for the system with M = 3 with λ increased to 0.185 after day 200.

information are two determining aspects when individuals make
a decision. As shown in Figure 3, for a smaller cost after infection,
the infected population is larger. When the perceived cost c
is small, the population will not reduce the chance of being
infected by reducing the frequency of their activity. It will
contribute to more infections. Another significant factor is the
time delay τ . Long time-delayed information causes a larger
outbreak. To effectively prevent an outbreak, we should decrease
the time delay. This conclusion is consistent with the result
in (43) which shows that the short time delay will reduce the
number of the infected population. The numerical simulations
suggest that information about the infected population should be
disclosed as fast as possible to minimize the delay. Individuals
with the latest information can make the best decision as a
response to the disease. This implies that policymakers should
let the population have full information about the consequence
of infection.

Although in our simulations, the local maximum in the
second wave is similar to the data, the number of the infected
population is less than the data in other times (for example,
between day 100 and day 175 in Figure 6). One possible reason
for this is that the mean-field assumption of a well-mixed
population is not valid. It can be seen that our simulations reach
the local maximum in a shorter time than the data from zero.
This means that our simulations increase faster than the data.
It is well-known that the infected population in a SIR model
has exponential growth. Thus the data has a growth rate slower
than exponential growth. It was shown that the population could
be in the so-called small-world network, and this network leads
to linear growth of the pandemic (44). We did not opt for a
network model, but we used a continuous model because the
network model is limited by computational power and speed,
which is not feasible in simulating a large population. Apart
from the underestimation of the infected population in some
times, it can be seen that our model agrees quite well with
the COVID-19 dynamics in Hong Kong for the first 150 days.

But the numerical simulations appear to be inaccurate after
150 days. Specifically it seems that in most of our simulations
(Figures 6–8), we overestimated the local maximum in the third
wave. This inaccuracy is possibly due to our long prediction
interval of 350 days. As the pandemic radically evolves, many
of the parameters will change over these 350 days. For example,
better disease control measures and increased usage of face masks
could lower the transmission rate, a different variant of COVID-
19 could increase the transmission rate and, better treatment
methods could increase the recovery rate. In Figure 11, we
investigated one such possible scenario in which the report rate
increased over time. By introducing a time-dependent report
rate, the numerical simulations, and the observed data showed a
better agreement. The increase in report rate can lower the local
maximum of the infected population as seen from the height
in the third wave of the infected population in Figures 11, 12.
This result suggests that increasing the report rate is a feasible
COVID-19 control measure which is also noticed by the study
in (45). One way to increase the report rate is by increasing the
number of tests done, which was shown to be effective in practice
(13, 46).
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