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Sepsis was first described by the ancient Greek physicians over 2000 years ago.

The pathophysiology of the disease, however, is still not fully understood and hence

the mortality rate is still unacceptably high due to lack of specific therapies. In

the last decade, great progress has been made by shifting the focus of research

from systemic inflammatory response syndrome (SIRS) to multiple organ dysfunction

syndrome (MODS). Sepsis has been re-defined as infection-inducedMODS in 2016. How

infection leads to MODS is not clear, but what mediates MODS becomes the major topic

in understanding the molecular mechanisms and developing specific therapies. Recently,

the mechanism of infection-induced extensive immune cell death which releases a

large quantity of damage-associated molecular patterns (DAMPs) and their roles in the

development of MODS as well as immunosuppression during sepsis have attracted

much attention. Growing evidence supports the hypothesis that DAMPs, including high-

mobility group box 1 protein (HMGB1), cell-free DNA (cfDNA) and histones as well as

neutrophil extracellular traps (NETs), may directly or indirectly contribute significantly

to the development of MODS. Here, we provide an overview of the mechanisms and

consequences of infection-induced extensive immune cell death during the development

of sepsis. We also propose a pivotal pathway from a local infection to eventual sepsis

and a potential combined therapeutic strategy for targeting sepsis.

Keywords: sepsis, extensive immune cell death, damage-associated molecular patterns (DAMPs), multiple organ

dysfunction syndrome (MODS), extracellular histones, immunosuppression

SEPSIS

Sepsis is still the leading cause of death inmost intensive care units (ICU) with an unacceptably high
mortality rate (10–20%), although there has been a significant decrease in mortality rates in recent
decades (from 1994 to 2014) (1, 2). Center for Disease Control in the United States estimated that
over half a million people developed sepsis there per year with about a 1.5% increase per annum
(3). A recent investigation of a cohort of 568 patients who died in six hospitals in the United States
showed that sepsis presented in 300 patients (52.8%) and was the most common immediate
cause of death in 198 patients (34.9%), indicating that sepsis is still the major cause of death in
hospitals (4). For years, it was believed that high morbidity and mortality were due to systemic
inflammatory response syndrome (SIRS), but many clinical trials to inhibit inflammation failed to
improve survival (5–7). In 2016, sepsis has been redefined as multiple organ dysfunction syndrome
(MODS) caused by a dysregulated host response to infection (8) and is now termed Sepsis-3.
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This has changed the focus from SIRS (9, 10) to MODS. Thus,
finding what mediates MODS is now the major challenge in
understanding the pathophysiology of sepsis (11).

DISCOVERY OF IMMUNE CELL DEATH IN
SEPSIS

Cheadle et al. (12) reported that a significant lymphopenia
occurred in a group of trauma patients with sepsis. Years
later, lymphopenia in sepsis began to attract increased attention
(13–16). In human, depletion of both B cells and CD4+ T
lymphocytes caused by sepsis-induced apoptosis were reported
(16). In baboon and murine sepsis models, extensive apoptosis
of lymphoid tissue was also found (17–19). Rapidly progressing
lymphocyte exhaustion after severe sepsis has been widely
recognized (20) and early circulating lymphocyte apoptosis was
associated with poor outcome in patients with sepsis (21, 22).
Thus, a number of research groups have focused on the role of
altered cell death in contributing to MODS in sepsis and clinical
trials for a new type of therapy has emerged (23–26).

TYPES OF IMMUNE CELL DEATH AND
CLINICAL RELEVANCE

Lymphocyte death occurs in the spleen, thymus, and lymphoid
tissues (27). The peripheral lymphocyte count is also dramatically
reduced in both sepsis models and patients (16, 22, 24). Changes
in the subsets of lymphocyte involved varies depending on the
bacterial origin of sepsis (28), but there is no doubt that both
T and B lymphocyte subsets are significantly changed by sepsis.
CD3+, CD3+CD4+, and CD3+CD8+ lymphocyte counts drop
significantly in septic patients, while CD3+CD4+ lymphocytes
return to normal after 14 days in most patient survivors, but
this is not true of the CD3+CD8+ counts (29). The ratio of
Th1/Th2 helper cells has been found to be significantly lower
in sepsis (30). Circulatory Th1, Th2, Th17, and Treg as well
as Th1/CD4 + ratios are significantly lower in non-survivors
compared to survivors (31). The αβ and γδ T cell subsets are
all reduced in sepsis, but the CD3+ CD56+ γδ T cells show the
largest decrease, and their loss is strongly associated with septic
severity and mortality (32, 33). Sepsis causes progressive and
profound depletion of B lymphocytes in patients (16). Thus, the
percentage of CD19+CD23+ was significantly lower in patients
who died of septic shock than in survivors (34). In a mouse poly-
microbial sepsis model, substantial apoptosis of lamina propria B
cells mediated by FasL has been reported (35).

Not only are B and T lymphocytes susceptible to programmed
cell death, many other types of immune cells including
neutrophils, macrophages and dendritic cells are also vulnerable
to cell death in sepsis (22, 36, 37). Neutrophils are the first line
of defense against invading bacteria. Neutrophils phagocytose
bacteria or form neutrophil extracellular traps (NETs), and
both these mechanisms are critical for clearance of invading
bacteria (38). After taking up bacteria, neutrophils undergo a
respiratory burst and die (39). NETs formation is also a novel
program for cell death (40–42). Therefore, large numbers of

neutrophils die during sepsis. In mouse models, apoptosis of
mouse peritoneal macrophages may be due to the release of
HMGB1 in sepsis (43). Dendritic cells have unique capabilities
to regulate the activity and survival of T and B cells. Thus splenic
interdigitating dendritic cells (IDCs) and follicular dendritic cells
(FDCs) initially expand in sepsis. The FDCs expand to fill the
entire lymphoid zone of spleen, which is otherwise occupied
by B cells (44). Twelve hours after the onset, these dendritic
cells undergo apoptosis (44). In contrast, natural killer (NK) cell
counts increase in early sepsis and higher levels predict mortality
in severe sepsis (45). Thus, the ratio of NK cells to CD4+
lymphocytes was used to predict the mortality of patients with
sepsis (46). NK cells also contribute to the lethality of a murine
model of sepsis, and NK cell-depleted and NK cell-deficient mice
showed much high survival rates than wild type controls (47).

MECHANISMS OF IMMUNE CELL DEATH

Apoptosis is the major mechanism of lymphocyte death in sepsis
(35, 48). Both the death receptor and mitochondrial pathways
activated by multiple triggers are involved in apoptosis of a broad
range of subsets of lymphocyte (49). Apoptosis could occur via
p53-dependent and -independent pathways (50). The increase
in apoptosis in the thymus, spleen, lungs, and gut during poly-
microbial sepsis of mice is mediated by FasL via death receptors,
but not by endotoxins nor TNF-α (14, 35). Monocytes can induce
Fas-mediated apoptosis of T lymphocytes (51). Caspase-1 is
involved in apoptosis of splenic B lymphocytes (52). Activation
of caspase-3 and externalization of phosphatidylserine in CD4+,
CD8+, and CD19+ lymphocytes were reported in patients with
sepsis (53). Activation of programmed cell death ligand 1 (PD-
L1) pathway is involved in T cell exhaustion in patients with
sepsis (54). In addition, endoplasmic reticulum (ER) stress can
mediate lymphocyte apoptosis in sepsis (55). Bcl-2 is an anti-
apoptosis protein and is found to be reduced in sepsis (56).
Overexpression of Bcl-2 in septic mice provides protection by
decreasing lymphocyte apoptosis (57, 58). In CD4+ T and B
lymphocytes isolated from septic patients, the Bcl-2 protein was
decreased but the expression of pro-apoptotic proteins Bim,
Bid, and Bak were massively upregulated (23, 53). It has also
been reported that overexpression of histamine H4 receptors
counteracts the effect of NF-kB in contributing to splenic cell
apoptosis in sepsis (59).

There is no doubt that multiple factors are involved in
lymphocyte apoptosis, but the detailed molecular mechanisms
are still not fully understood. In addition, apoptosis has been the
major focus of cell death in last two decades, but recently other
processes have emerged, e.g., pyroptosis, necroptosis, ferroptosis,
parthanatos, entotic cell death, NETotic cell death, immunogenic
cell death, and mitotic catastrophe, to explain the complexity of
cell death (60). Pyroptosis is caused by rapid plasma-membrane
rupture by non-selective gasdermin-D pore and releases of
DAMPs (61). Neutrophil and endothelial cell pyroptosis has been
considered as a major pathological factor in sepsis (62, 63).
Increased membrane permeabilization in necroptosis releases
specific DAMPs, and lipid peroxidation in ferroptosis may be
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involved in renal failure (64–66). These regulated cell deaths may
turn to necrosis if their resolution is delayed (67). The roles and
mechanisms of different types of cell death in sepsis is far from
clear and more work need to be done to understand how the
immune cells die so extensively in sepsis.

Neutrophil respiratory burst and NETosis all involve
generation of reactive oxygen species (ROS) and NADPH
oxidase pays a critical role (40). Endotoxin reduced CD95-
mediated neutrophil apoptosis occurs via cIAP-2 activation
and the degradation of caspase-3 (68). The detailed molecular
mechanisms of neutrophil respiratory burst, NETosis, and
homeostasis will not be discussed in this review.

In summary, the types of cell death and underlying
molecular mechanisms are still not fully understood, although
the subpopulations of immune cells that die during sepsis is
almost clarified.

ROLES AND CONSEQUENCE OF IMMUNE
CELL DEATH

It is known that the extent of immune cell death is strongly
associated with severity and mortality of sepsis. However,
the biological roles are still not clear. The direct cause-effect
relationship of extensive immune cell death with sepsis has not
yet been proven. When splenectomy to remove the largest lymph
organ in mice prior to septic modeling was undertaken, it is
found that this procedure protects mice against secondary sepsis
(69, 70). This observation suggests that extensive splenocyte
death is potentially pathogenic in sepsis. Neutrophil death,
particularly NETosis, has been reported to be involved in the
development of multiple organ failure in sepsis (71–73). Abrams
et al. (74) recently showed that strong NETs formation mainly
occurs in severe sepsis and is associated with disseminated
intravascular coagulation (DIC) and ultimately poor outcomes.
Patel et al. (75) recently showed that a reduction in ex vivo
PMA-induced NETosis of neutrophils isolated from patients
with severe sepsis is associated with poorer outcomes. This
observation demonstrates the pathological role of in vivo NETs
formation, a mechanism that eliminates the majority of pro-
NETosis neutrophils. This result is also consistent with the
current general consensus (72, 74). However, the pathological
role of immune cell death in sepsis is still not fully understood,
but the following mechanisms are widely considered to be
very important.

DAMPs and Histone Release
The “danger” theory was proposed by Matzinger in 1994 (76)
that damaged cells initiate immune responses by releasing
substances were termed damage-associated molecular patterns
(DAMPs) byWalter Land in 2003 (77). DAMPs represent danger-
associated or damage-associated molecular patterns, which are
released from the cell through activation of inflammasome or
passively following cell death (78–80) and recognized by pattern
recognition receptors (PRRs), including Toll-like receptors
(TLRs) NOD-like receptors, DNA sensors, C-type lectin receptor,
and non-PRR DAMP receptors, including RAGE receptor (81).

Many DAMPs that origin from extracellular matrix and different
components or organelles of cells have been identified, such as
histones, DNAs, HMGB1, heat shock protein, and ATP. More
information can be found in a recent review (82). In sepsis, a
large number of immune cell death releases a large quantity of
DAMPs (83, 84). Similarly, NETs are released from neutrophils
during inflammation (41). These NETs are brokendown into free
DNA and histones and become a source of DAMPs (72, 85).
DAMPs trigger the host’s immune response, activate coagulation
and mediate MODS (86–88). Therefore, they play a central role
in development of sepsis and its progression (84, 89). DAMPs
include a large group of molecules and are involved in different
pathological processes during sepsis.

Release of chromatin protein HMGB1 triggers inflammation
and mediates endotoxin lethality in mice (90, 91). HMGB1
facilitates LPS entering cells to trigger pyroptosis, which plays
an important role in sepsis (63, 92, 93). In 2009, extracellular
histones were shown to be major mediators of death in sepsis
(94) and have attracted more and more attention. Extracellular
histones bind to the cell membrane and form pores to allow
calcium influx which leads to calcium overload, which directly
damages cells that contacted (87, 88). Histones also induce rapid
thrombocytopenia, increase thrombin generation and contribute
to DIC (95–99). Anti-histone antibodies and non-anticoagulant
heparin neutralize extracellular histones and improves survival
in sepsis (87, 88, 99–101). Recently, the role of extracellular
histones in the development of MODS in critical illnesses and
animal models, including sepsis, pancreatitis, and trauma, has
been demonstrated (86). Mitochondrial DNA released into the
cytosol or outside cells also serves as DAMPs and play important
roles in sepsis (11, 102). In addition, circulating cell-free DNA
is associated with poor outcomes in patients with severe sepsis
(103–106). The pathological roles of these cell-free DNAs are
not clear but strengthening blood clots resistant to fibrin lysis
may facilitate DIC development (107). A recent report shows
increased S100 proteins, including A8/A9 and A12, which are
types of DAMPs, are associated with a higher risk of death in
patients with sepsis (108).

NETs Formation
Although NETs are an important source of DAMPs,
NETs formation has specific roles in thrombosis, DIC and
microcirculatory impairment. NETs formation induces organ
injury and exacerbates the severity of sepsis (42, 73, 74, 109–112).
Suppression of NETosis using PAD4 inhibitors or cleavage of
NETs using DNase 1 improves survival in a murine sepsis model
(113), but other reports showed the opposite effect (114, 115).
Recently it has been reported that delayed, not early treatment
with DNase 1 reduces organ injury and improves outcome in
sepsis model (116). These observations strongly indicate the
complex roles of NETs formation during sepsis.

Coagulopathy and DIC
Sepsis-induced coagulopathy and DIC play a major role
in microcirculatory impairment and MODS development
(117). DAMPs play important roles in septic coagulopathy
(118). Extracellular histones are the most important DAMPs
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that promote coagulation activation by inducing rapid
thrombocytopenia, enhancing thrombin generation, impairing
thrombomodulin-dependent protein C activation, damaging
endothelial cells and increasing tissue factor activity (95–
99). cfDNA exert both pro- and anti-fibrinolytic effects and
NETs serve as scaffolds for immunothrombosis and promote
intracellular coagulation together with platelets (107, 119, 120).
The overall consequence is the development of coagulopathy and
DIC, which significantly enhance disease severity and worsen the
outcomes (74, 86, 99, 104, 105).

Immune Suppression
As our understanding of the pathophysiology in sepsis has
improved, we now know that the role of immunosuppression is
more important than previously thought. IL-7, as an immune-
adjuvant therapy that increased absolute lymphocyte counts
and in circulating CD4+ and CD8+ T cells (3–4 fold), and T
cell proliferation and activation (121), supports this contention.
However, why IL-7 protected mice with sepsis but showed
no effects on 28-days survival of patients with sepsis is not
clear and further investigation is required (122). IL-15 is also
reported to prevent apoptosis, reverse innate and adaptive
immune dysfunction, and improve survival in murine models
of sepsis (123). Changes associated with immunosuppression
is more obvious in patients who died of sepsis than those
who survived (31, 124). Immune cell death, particularly T
and B lymphocytic apoptosis, is a major contributor to the
development of immunosuppression (15, 32, 125), besides
the usual anti-inflammatory cytokine release, such as that
of IL-10 (126). Myeloid-derived suppressor cells (MDSCs)
are closely related to neutrophils and monocytes. They
are immature myeloid cells that have immunosuppressive
functions and play important roles in the development of
immunosuppression in sepsis (2, 127–129). DAMPs activate
TLR-4 to enhance MDSCs accumulation (130). Many DAMPs
possess both pro- and anti-inflammatory properties to induce
both immune response and immunosuppression, which
has been well-studied in trauma (131). Recently, the roles
of PD-1 and PD-L1 in sepsis as key mediators of T-cell
exhaustion in infections have been investigated (132, 133).
Blocking PD-1 or PD-L1 inhibits lymphocytic apoptosis,
reverses monocyte and immune dysfunction, and improves
survival during sepsis (54, 134–136). Monneret et al. (137)
demonstrated that after septic shock anti-inflammatory response
became dominate with high IL-10 and low HLA-DR on
monocytes, a surrogate marker of monocyte non-responsiveness
(138). IL-7 and anti-PD-1 or blocking IL-10 reverse sepsis-
induced immunosuppression, including increasing HLA-DR
expression and IFN-γ production, and improve survival
in mouse models (126, 139). Monitoring HLA-DR, PD-1,
or PD-L1 may guide clinical immunotherapies (140). All
available evidences showed no doubt that immunosuppression
is the major pathological feature and immunotherapies
will become a critical management in severe sepsis with
poor outcomes.

In summary, the major consequence of immune cell death
is the DAMPs release and NETs formation, both of which

contribute to the development of coagulopathy and MODS.
Another major consequence is immunosuppression. All these
consequences are the major pathological changes during severe
sepsis, strongly indicating that DAMPs and NETs are critical in
the development of severe sepsis.

INHIBITION OF IMMUNE CELL DEATH IN
SEPSIS AND POTENTIAL DOWNSTREAM
THERAPY

Caspase inhibitors, which inhibit apoptosis and improve the
survival of immune cells, have been demonstrated to improve
survival in sepsis. Thus, caspase-3−/− mice have decreased levels
of apoptosis (141, 142). Increasing anti-apoptotic proteins, such
as Bcl-2, or decreasing pro-apoptotic proteins, such as Bim,
reduces immune cell apoptosis and improves survival in septic
animal models (57, 58, 142–145). The Protease Inhibitor (PI)
class of antiretroviral agents also significantly improved survival
of mouse septic models by reducing lymphocyte apoptosis (146).
These anti-apoptosis therapies have been demonstrated in animal
models (147), but there have been no successful clinical trials in
humans as yet.

Therapies with immune modulators have attracted
more attention in recent years. The success of the IL-
7 clinical trial shed some light on the management
of sepsis (121). Immunotherapy is potentially a major
strategy (145, 148, 149), but the focus of research has
shifted from simply suppressing the immune response to
immune modulation and precision medicine based on
immune status (148, 150–153). Targeting immune cell
checkpoints during sepsis is also a potential therapeutic
strategy (154).

Another promising strategy is to neutralize DAMPs, including
histones, DNAs and HMGB1. Anti-histone therapy has been
proposed by Xu et al. from 2009 (94). Anti-histone antibodies
or heparin can neutralize extracellular histones and reduce
their toxicity so as to increase survival rates in septic animal
models, but no clinical trial has been reported yet (86–88,
94, 100). Normal heparin has anticoagulant activity which
may cause side effects if it is used at a wrong time with
high doses. Non-anticoagulant heparin has been developed and
hold the promise for future clinical application (100, 155).
DNase 1, used to digest free DNA or NETs, has also been
shown to increase the survival rate of septic animal models
(116, 156). Many reagents targeting HMGB1, its release or
downstream pathways have been reported, but no drug has
yet been fully developed for clinical management of sepsis
(157, 158).

Correction of downstream events, such as coagulopathy, have
been trialed. Activated protein C, an anti-coagulant enzyme, was
used clinically for a few years, but was withdrawn from the
market due to failure in randomized controlled trials (159). It
is very difficult to justify the correct time to use anti-coagulants
and fibrinolysis reagents, such as low-molecular-weight heparin,
antithrombin, thrombomodulin, and tissue factor inhibitors
(117). Therefore, anti-coagulant therapy for sepsis is difficult to
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FIGURE 1 | Potential pathological mechanisms of sepsis which develops from a local bacterial infection and potential therapeutic strategies. Gray boxes: pathways

from a local infection to sepsis. Once a local bacterial infection causes host abnormal immune responses to pathogen-associated molecular pattern (PAMPs),

extensive immune cell death, including B/T lymphocytes (spleen, thymus, lymphoid tissues, and peripheral blood), and neutrophils could occur and result in

immunosuppression. Neutrophils could also form NETs. NETs and immune cell death could release a large quantity of DAMPs, mainly HMGB1, cfDNA, and histones.

HMGB1 can delivers LPS into cells to trigger pyroptosis by forming pores in the cell membrane. Extracellular histones could also bind to cell membrane to form pores

which may cause calcium overload and subsequently endothelial damage and organ injury. Indirectly, extracellular histones activate coagulation to form thrombi in the

microvascular lumen to impair microcirculation. cfDNA could serve as scaffolds for thrombosis or stabilize thrombi by increasing their resistance to fibrinolysis.

Microcirculatory impairment is the major feature of sepsis and a major contributor to MODS. Red boxes: Potential therapeutic strategies. Besides early diagnosis,

prompt use of effective antibiotics, and supportive therapies, such as maintaining blood pressure and circulation, improving microcirculation, and protecting individual

organs, the potential specific therapies include the combination of modulating immune status, preventing immune cell death and NETosis, neutralizing or clearing

DAMPs. These new approaches could become the leading research directions in reducing the mortality rate of sepsis.

use clinically. Developing therapies to target upstream events
appears a better strategy.

CLINICAL PERSPECTIVE

Sepsis was first described by the ancient Greek physicians.
Despite millennia of experience with this illness, we are still
investigating the nature of sepsis. In the last decade, great
progress has been made by shifting the focus of research from

SIRS to MODS. However, the pathophysiology of sepsis is
still not fully understood, particularly the roles of extensive
immune cell death and DAMPs. Many types of DAMPs could
directly or indirectly mediate MODS by their cytotoxicity or by
triggering inflammation and activating coagulation, respectively.
Therefore, the axis of infection, immune response, immune
cell death, DAMPs release and MODS could be the central
pathological pathway in the transition of a local infection
to sepsis (Figure 1).
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Targeting this central pathological pathway is already
underway. However, fully understand the pathophysiology
of sepsis is still the first task toward the success in
clinical management.

DISCUSSION

There is no doubt that extensive immune cell death is a major
driver of sepsis. This mainly involves T and B lymphocyte
apoptosis in the spleen, thymus, lymphoid tissues, and
circulation. Neutrophil apoptosis, respiratory burst, and
NETosis are also involved in this event. Macrophages and
dendritic cells may also be involved, but their contributions
may be negligible. However, the mechanism of how bacterial
infection leads to extensive immune cell death is still not
fully understood. Moreover, significant gaps still exist in our
understanding of how extensive immune cell death proceeds
to the development of sepsis. The obvious consequence
of immune cell death would be immunosuppression but
no direct link has been demonstrated. It is clear that
the release of large quantities of DAMPs can enhance
inflammation, directly damage endothelial cells, impair
microcirculation and cause multiple organ injury, but to

what extent these DAMPs contribute to the development
of sepsis is still unclear. Some DAMPs, such as histones
and NETs, strongly activate coagulation and eventually lead
to DIC. Therefore, the importance of DAMPs in sepsis
development and progression cannot be underestimated. In
the future, targeting the axis of immune cell death-DAMPs
release-and microcirculatory impairment, will become the
most comprehensive strategy to reduce the unacceptably high
mortality rate of sepsis.
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