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Serine proteases of the trypsin-like family have long been recognized to be
critical effectors of biological processes as diverse as digestion, blood coagula-
tion, fibrinolysis, and immunity. In recent years, a subgroup of these enzymes
has been identified that are anchored directly to plasma membranes, either by
a carboxy-terminal transmembrane domain (Type I), an amino-terminal trans-
membrane domain with a cytoplasmic extension (Type II or TTSP), or through
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2 ANTALIS ET AL.
a glycosylphosphatidylinositol (GPI) linkage. Recent biochemical, cellular, and
in vivo analyses have now established that membrane-anchored serine pro-
teases are key pericellular contributors to processes vital for development and
the maintenance of homeostasis. This chapter reviews our current knowledge
of the biological and physiological functions of these proteases, their molecular
substrates, and their contributions to disease.

I. Introduction

Proteolytic enzymes comprise over 2% of the known proteome, and their
participation in many essential biological processes is well established. The
serine proteases constitute one of the largest families of proteolytic enzymes
and are well recognized for their pivotal roles in physiological processes as
diverse as development, digestion, coagulation, inflammation, and immunity.
These enzymes share a common catalytic mechanism for selective cleavage of
specific substrates and are frequently involved in consecutive proteolytic reac-
tions or protease cascades, where one protease precursor or zymogen is the
substrate for an active protease. This shared mechanism confers the advantage
that a single signal may be specifically and irreversibly amplified every time a
downstream zymogen is activated, providing the capacity for unleashing a burst
of proteolytic potential.

Most of the well-characterized members of the S1 family of serine pro-
teases are either secreted enzymes or exocytosed from secretory vesicles into
the extracellular environment. Trypsin and chymotrypsin, the main intestinal
digestive enzymes, are prototype members of the S1 family. Over the past 10
years, a structurally distinct group of S1 serine proteases, termed broadly as the
membrane-anchored serine proteases, has emerged that are synthesized with
amino- or carboxy-terminal extensions that serve to anchor their serine prote-
ase catalytic domains directly at the plasma membrane1,2 (Fig. 1).

The largest group of membrane-anchored serine proteases is the Type II
transmembrane serine proteases or TTSPs.1 These proteases are synthesized
with an amino-terminal signal anchor that is not removed during synthesis, but
serves as a transmembrane domain that positions the protease in the plasma
membrane with a cytoplasmic amino-terminal domain of variable length (20–
160 amino acids) and the catalytic serine protease domain at the carboxy-
terminus.1 These serine proteases are synthesized as single-chain precursors
or zymogens; activation produces a two-chain form with the chains linked by a
disulfide bridge, so that the active enzyme remains membrane bound. Nine-
teen human TTSPs have been identified and may be categorized into four
subfamilies: Hepsin/TMPRSS, Matriptase, HAT/DESC, and Corin3,4 (Fig. 1).



Type l transmembrane

Type ll transmembrane
Hepsin/TMPRSS subfamily

Tryptase gamma 1

Enteropeptidase

Hepsin

TMPRSS2

TMPRSS3

TMPRSS4

Spinesin/TMPRSS5

MSPL

Matriptase

Matriptase-2

Matriptase-3

Polyserase-1

Corin

HAT

DESC1

TMPRSS11A/HATL1

HATL4/TMPRSS11F

HATL5/TMPRSS11B

Prostasin

Testisin

TM LDLRA domain CUB domain

SEA domain SR domain

Frizzled domain

MAM domain

GPI anchored

GPI anchor

Intracellular

Protease domain
Activation domain

Matriptase subfamily

Corin subfamily

HAT/DESC subfamily

Intracellular

CO
2
H

H
2
N

H
2
N

H
2
N

H
2
N

H
2
N

H
2
N

H
2
N

H
2
N

H
2
N

H
2
N

H
2
N

H
2
N

H
2
N

H
2
N

H
2
N

H
2
N

H
2
N

CO
2
H

CO
2
H

CO
2
H

CO
2
H

CO
2
H

CO
2
H

CO
2
H

CO
2
H

CO
2
H

CO
2
H

CO
2
H

CO
2
H

CO
2
H

CO
2
H

CO
2
H

CO
2
H

CO
2
H

CO
2
H

CO
2
H

S

3826
5

S

S S

S S

S S

S S

S S

S S

S S

S S

S S

S S

S SS SS S

S S

S S

S S

S S

S S

S S

S S

S S

NH
2

S D H

H D S

H D S

H D S

H D S

H D S

H D S

H D S

H D S

H D S

H D S

H D SH D SH D S

H D S

H D S

H D S

H D S

H D S

H D S

S D H

H D S

S

28
1

45

41 43 15
2

18
4

41
0

43
9

41
5

44
2

21
1

17
6

6643

18
9

15
8

464321
21

21
46

28
77 99 10

1

22
6

24
7

36
0

36
5

47
8

48
3

52
4

55
8

59
6

60
5

83
5

66 75 19
0

21
3

32
1

32
6

44
3

48
1

52
1

55
8

56
9

79
7

84
9

61
4

60
4

56
6

52
4

48
7

45
2

44
7

34
0

33
4

21
4

19
3

85

19
8

22
2

22
3

31
0

32
0

54
9

44
8

21
7

20
7

11
2

94 10
4

19
4

20
5

42
9

44
4

21
6

20
5

10
8

10
7

44
8

77
18

3
70

54
71

10
6

11
2

14
9

15
0

24
2

25
5

48
4

40
0

16
2

15
1

5443
43 52 17

2
18

3
22

3
22

5

33
4

34
2

50
4

52
4

63
4

64
2

67
8

76
9

78
4

10
14

44
55

16
1

48
31

49
83

21
21

50 15
3

19
1

20
2

43
1

50
3

73
1

82
6

10
53

68 13
8

24
8

26
8

30
5

34
1

37
8

41
7

45
2

45
4

57
5

57
9

61
7

65
5

69
0

78
6

80
1

11
30

15
3

44 18
6

41
7

30
19

20
8

16
7

5752

4228
1

D H

Extracellular

Extracellular
NH

2

NH
2

FIG. 1. Domain structures of the human membrane-anchored serine proteases. Structures are
grouped according to similarity in domain structure to each other. Consensus domains are as
indicated at the bottom of the figure. The location of each protein domain (amino acid numbering)
is indicated above the domain. Amino and carboxy termini are as indicated. Protease domain: serine
protease domain; activation domain: pro-domain; TM: transmembrane domain; GPI anchor:
glycosylphosphatidylinositol linkage domain; LDLRA: LDL receptor class A domain; MAM:
meprin, A5 antigen, and receptor protein phosphatase m domain; CUB: Cls/Clr, urchin embryonic
growth factor and bone morphogenetic protein-1; SEA: sea urchin sperm protein, enteropeptidase,
agrin domain; Fz: frizzled domain; SR: Group A scavenger receptor domain. Modified from Ref. 2.
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Mammalian orthologs, as well as different isoforms between humans and
rodents, exist for many if not all of the TTSPs.4–6 There also exist two nonmam-
malian TTSPs, Drosophila stubble-stubbloid (st-sb)7 and corin.8

In contrast to the TTSPs, additional membrane-anchored serine proteases
of the S1 family each possess an amino-terminal signal peptide and enter the
secretory pathway. These enzymes are also synthesized as zymogens, with an
amino-terminal extension that acts as a pro-peptide, requiring proteolytic
cleavage to generate the active enzyme. The Type I transmembrane serine
protease, tryptase g1, is the only human membrane-anchored serine protease
synthesized with a carboxy-terminal hydrophobic extension that serves as a
transmembrane domain.9,10 The carboxy-terminal extensions of prostasin and
testisin are modified posttranscriptionally with a glycosylphosphatidylinositol
(GPI) linkage that anchors these proteases in the plasma membrane.11–15

The membrane-anchored serine proteases are proving to be key compo-
nents of the cell machinery for activation of precursor molecules in the peri-
cellular microenvironment, with several playing vital roles during development
and the maintenance of homeostasis. There is also growing evidence for their
participation in the pathogenesis of inflammatory and neoplastic diseases.
Endogenous protein substrates targeted by membrane-anchored serine pro-
teases include peptide hormones, growth and differentiation factors, receptors,
enzymes, adhesion molecules, and viral coat proteins.16 A number of insights
into our understanding of the unique physiological functions of the membrane-
anchored serine proteases and their involvement in human pathology have
come from a combination of biochemical analyses, animal models, and human
patient studies. However, our current understanding of the impact of the
membrane-anchored serine proteases on many biological, physiological, and
pathological processes is far from complete. This chapter provides a historical
perspective on the discovery of these enzymes, current knowledge of their
activities and their regulation, and the functional consequences of the activities
of these proteases in mammalian physiology and disease. For the interested
reader, several other reviews have focused on different aspects of their nomen-
clature, classifications into subgroups, gene structure and chromosomal locali-
zation, tissue- and cell-specific distribution, and biochemical properties.1–4,16,17

II. Structural Features

All of the membrane-anchored serine proteases have membrane-anchoring
domains and structurally conserved serine protease catalytic domains. The
TTSPs have additional extracellular stem regions that separate the catalytic
domains from their transmembrane domains. The extracellular regions of the
membrane-anchored serine proteases are believed to be essential to the
biological and physiological functions ascribed to these enzymes.
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A. Catalytic Domains

The zymogen forms of the membrane-anchored serine proteases are acti-

vated by proteolytic cleavage following an arginine or lysine amino acid present
in a highly conserved activation motif separating the pro- and catalytic domains.
The catalytic mechanism of the membrane serine proteases involves a catalytic
triad of three amino acids, serine (nucleophile), aspartate (electrophile), and
histidine (base), present in highly conserved sequence motifs. While the geo-
metric orientations of these amino acid residues are similar, the protein folds
are variable, which contribute to their selective substrate specificities. The
catalytic reaction follows a two-step mechanism for hydrolysis of substrates in
which a covalently linked enzyme-peptide intermediate is formed, with the loss
of a peptide fragment.18 This acylation step is followed by a deacylation step
which occurs by a nucleophilic attack on the intermediate by water, resulting in
hydrolysis of the peptide.

Some insights into the structural features that contribute to the unique
catalytic and substrate specificities of the membrane-anchored serine proteases
have been obtained through comparative analyses of amino acid sequences1,2,19

combined with tertiary structural analyses.20–26 Consistent with the family of
S1 serine proteases, each catalytic domain possesses two adjacent, six-stranded
b-barrel domains that are connected by three trans-domain segments. The
catalytic triad amino acids are located along the junction between the two
barrels, with the active site cleft running perpendicular to this junction.27

The size, shape, and charge distribution within the formed binding pocket of
the active enzyme are determinants of substrate specificity. These pockets are
defined by differing substrate-binding subsites (e.g., S4–S20) and loop regions
that surround the active site cleft.23

The specificity for cleavage of substrates with the positively charged amino
acid residues, lysine or arginine, in the P1 position (the position directly
preceding the cleaved peptide bond) is conferred by the presence of a con-
served aspartate residue at the bottom of the binding pocket of all of the
activated enzymes.2 The rate of cleavage is influenced by the amino acid
residues surrounding the P1 residue, numbered P1 to Pn, counting outward
from the amino-terminal side of the peptide bond that is cleaved during
hydrolysis, and numbered P1

0 through Pn
0 from the carboxy-terminal side.28

In recent years, recombinant catalytic domains of several of the membrane-
anchored serine proteases have been produced in various laboratories and
peptide screening assays applied to quantitatively identify cleavage preferences
for the P1 and P10 amino acids, and surrounding amino acid positions.29–35

Several of the biochemically purified TTSPs rapidly undergo autocatalytic
activation in vitro (matriptase29,36 matriptase-2,37 hepsin,38 TMPRSS2,39

TMPRSS3,40 TMPRSS4,41 HAT-like 3/TMPRSS11C42). Thus, mutation of
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active site catalytic triad residues of several of these TTSPs prevents activation
site cleavage.3,36,42,43 It has been speculated that autoactivation of these TTSPs
could contribute to the initiation of proteolytic cascades at the cell membrane,
although the signals that induce internal cleavage or autoactivation in vivo have
not yet been defined.
B. Extracellular ‘‘Stem’’ Regions

While the catalytic domains of the Type I and GPI-anchored serine pro-

teases lie directly proximal to the membrane anchoring domain, the TTSPs are
characterized by the presence of up to 11 extracellular structural domains
present between their catalytic domains and the transmembrane domain
(Fig. 1). These ‘‘stem’’ regions appear to serve as regulatory and/or binding
interaction domains,1 and are believed to variously contribute to the cellular
localization, activation, inhibition, and/or substrate specificity of these
enzymes.44 The most common stem region structural domain is the low-density
lipoprotein (LDL) receptor class A domain (LDLRA): corin contains eight,
matriptase contains four, enteropeptidase two, and TMPRSS2 and TMPRSS4
one each of these domains (Fig. 1). In addition to the LDLRA domains, there
are Group A scavenger receptor (SR) domains, frizzled domains, Cls/Clr,
urchin embryonic growth factor and bone morphogenic protein 1 (CUB)
domains, sea urchin sperm protein, enterokinase, agrin (SEA) domains, and
meprin, A5 antigen, and receptor protein phosphatase m (MAM) domains. The
specific contributions of each stem domain to TTSP proteolytic activities have
not yet been well defined, although for several of the TTSPs, the stem domain
is required for efficient cleavage of their physiological substrates.45,46

Targeted release of the extracellular domain, or ectodomain shedding,
occurs for several of the membrane-anchored serine proteases, enabling the
release of the soluble catalytic domain into the extracellular space. Soluble shed
protease forms have been reported for enteropeptidase, HAT, matriptase,
matriptase-2, and prostasin.11,47–49
C. Membrane-Anchoring Domains

Surface localization studies demonstrate that membrane-anchored serine

proteases normally localize to the cell surface and are differentially distributed
on apical or basolateral surfaces of polarized cells in patterns unique for each
protease.3,4 Studies indicate that the TTSP transmembrane domains are dis-
pensable for the catalytic activities of many of the TTSPs, including entero-
peptidase, matriptase, hepsin, corin, and MSPL.4 It appears that the function
of the transmembrane domain in TTSPs is not to enhance their catalytic
activities but to target the TTSPs to plasma membranes and localize their
activities at specific sites. Similarly, the GPI-anchored serine proteases are
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found to associate with lipid raft microdomains at cell surfaces, but do not
require these anchors for catalytic activity. Loss of membrane polarity, such as
that in tumors, has been associated with redistribution and/or mislocalization of
several of the membrane-anchored serine proteases.50,51 In this regard, the
significance of cell membrane association for the membrane-anchored serine
proteases differs from that for blood-clotting proteases.
III. Regulation by Endogenous Inhibitors

As is the case with all serine proteases, enzyme activities must be tightly
regulated in order to prevent inappropriate and frequently destructive prote-
olysis. The catalytic activities of the membrane-anchored serine proteases are
regulated by endogenous protease inhibitors, specifically the Kunitz-type
transmembrane serine protease inhibitors, hepatocyte growth factor (HGF)
activator inhibitor (HAI)-1/SPINT1 and HAI-2/SPINT2, and several of the
serine protease inhibitor family known as serpins. Kunitz-type inhibitors are a
class of serine protease inhibitors present in all metazoa, whose prototype is the
bovine pancreatic trypsin inhibitor (BPTI). They are competitive inhibitors
acting in a substrate-like manner and form very stable complexes of 1:1
stoichiometry with their target enzymes, inhibiting their activity.52 Matrip-
tase,53–56 hepsin,57 and prostasin31,48,57,58 are regulated by the Kunitz inhibi-
tors, HAI-1 and/or HAI-2.

Serpin-type inhibitors utilize an irreversible conformational mechanism
presenting a ‘‘pseudo-substrate’’ exposed binding loop to the protease which,
upon cleavage, forms a covalent complex with the target protease.59,60 The
serpins a1-antitrypsin, a2-antiplasmin, antithrombin III, protein C inhibitor,
PAI-1, and protease nexin I are effective inhibitors of various recombinant
catalytic domains of the membrane-anchored serine proteases (reviewed in
Ref. 16).
IV. The Type I Transmembrane Serine Protease
A. Tryptase g1

Tryptase g1 or transmembrane tryptase (TMT) was identified as a major

granule constituent of numerous populations of human and mouse mast
cells.9,10,61,62 The gene that encodes tryptase g1 lies on human chromosome
16p13.3, a large locus that contains 14 serine protease-like genes.9,63 Expres-
sion of tryptase g1 is restricted to cells of hematopoietic origin and has
been studied in mast cells.62 The Type I transmembrane domain at the
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carboxy-terminus of tryptase g1 causes its cellular retention when mast cells are
induced to release the contents of their secretory granules, at which time it
reaches the external face of the plasma membrane.62

The physiological functions of tryptase g1 remain unknown. Mast cells play
beneficial immunosurveillance roles in host defense, particularly during para-
sitic infections, and are also implicated in asthma and other pathological
conditions.64,65 Administration of recombinant tryptase g1 into the trachea of
mice promotes airway hyperresponsiveness and increased expression of inter-
leukin-13 in bronchial alveolar lavage fluids of these animals. This effect was
not obtained in STAT6- and IL-4Ra-null mice, indicating that tryptase g1
exerts its adverse effect in the lung in this animal model primarily by inducing
the expression of IL-13, a central mediator of allergic asthma.

Tryptase g1 has been expressed as a recombinant catalytic domain and its
substrate specificity characterized using combinatorial peptide substrate
libraries.33 Tryptase g1 prefers multibasic residues in the P4–P1 positions and
has a strong preference for aromatic residues in the P2 position.

33 It has also
been shown to be rapidly inactivated by the human plasma serpin a1-antitryp-
sin62 and a submicromolar synthetic inhibitor,33 in vitro.
V. The Type II Transmembrane Serine Proteases
A. HEPSIN/TMPRSS Subfamily

The HEPSIN/TMPRSS (transmembrane protease/serine) subfamily has

seven members comprising hepsin, TMPRSS2, TMPRSS3, TMPRSS4,
TMPRSS5/spinesin, MSPL (mosaic serine protease large-form), and entero-
peptidase.4 All of these enzymes possess a Group A SR domain in their stem
region, preceded by a single LDLRA domain in TMPRSS2, TMPRSS3,
TMPRSS4, and MSPL or by an array of SEA, LDLRA, CUB, and MAM
domains in enteropeptidase (Fig. 1).
1. ENTEROPEPTIDASE
Enteropeptidase is an intestinal protease discovered by Ivan Pavlov in
Russia.66 Using surgically modified dogs, Pavlov and colleagues studied the
digestive system and found that pancreatic proteases were made as inactive
forms. Upon entering the gut, latent pancreatic proteases were activated by
another enzyme in the upper section of the intestine. Such an activation
mechanism, which occurs outside of the pancreas, is important to prevent
autoactivation of pancreatic proteases, thereby avoiding harmful tissue
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damage. Pavlov named the intestinal enzyme enterokinase for its transforma-
tive activation activity. Currently, the enzyme is called enteropeptidase to
reflect its proteolytic, but not kinase, activity.

Initial biochemical studies on enteropeptidase were carried out in the early
1900s, notably by Ernst Waldschmidt-Leitz and colleagues at the Biochemical
Institute of the German Technical College in Prague.67 Porcine enteropepti-
dase was partially purified from duodenal fluids and shown to activate trypsin-
ogen from pancreatic extracts. More kinetic studies were done by Moses
Kunitz at the Rockefeller Institute for Medical Research in Princeton, New
Jersey, demonstrating enzymatic conversion of crystalline trypsinogen to tryp-
sin using purified porcine enteropeptidase.68,69 By the 1970s, more advanced
methods were used to purify enteropeptidase from porcine, bovine, and human
intestinal mucosa.70,71 The protein was found to have a heavy chain of approxi-
mately 120 kDa and a light chain of approximately 35 kDa connected by a
disulfide bond. Such a two-chain structure was known for chymotrypsin and
other serine proteases. Enteropeptidase cleaves trypsinogen at the activation
site, DDDDK#I. The activity is inhibited by Kunitz pancreatic trypsin inhibi-
tor, BPTI, and small molecule serine protease inhibitors, such as diisopropyl
fluorophosphate (DFP), p-aminobenzamidine, and benzamidine, but not
by chicken ovomucoid, soybean trypsin inhibitor, chymostatin, pepstatin A,
or bestatin.66

The partial amino-terminal sequence of the bovine enteropeptidase
light chain was determined by Edman degradation, revealing its homology
to other trypsin-like serine proteases.72 This sequence information helped
to clone human, bovine, and porcine enteropeptidase cDNAs.73–76 The open
reading frame of human enteropeptidase cDNA encodes a Type II trans-
membrane protein of 1019 amino acids with a calculated mass of 113 kDa
and 17 potential N-linked glycosylation sites. The overall protein domain
structure is shown in Fig. 1. Within the protease domain, the activation
cleavage site, the catalytic triad, and the key cysteine residues are well
conserved, indicating that enteropeptidase and other trypsin-like proteases
have similar three-dimensional structures and comparable activation and cata-
lytic mechanisms.

The human PRSS7 gene, encoding enteropeptidase, is located on chromo-
some 21q21.73 The gene has 25 exons and spans approximately 90-kb in length.
Enteropeptidase mRNA is expressed mostly in the duodenum and, at lower
levels, in the proximal segment of jejunum, consistent with Pavlov’s finding that
the enzyme was in the upper part of the small intestine. In these tissues,
enteropeptidase mRNA is expressed in the enterocytes and goblet cells of the
villus.77 As a transmembrane protein, enteropeptidase is expected to remain at
the site of expression, consistent with the previous observation that its activity
was associated with the brush border of enterocytes.78,79 Low levels of
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enteropeptidase mRNA were detected in other tissues, including stomach,
colon, brain, and skin. The biological significance, if any, of its expression
outside the digestive system remains unknown.

Enteropeptidase is anchored on the cell surface through its amino-terminal
transmembrane domain. Other structural elements also play a role in its
membrane targeting. The mucin-like repeats in the SEA domain andN-glycans
in the protease domain have been found necessary for apical sorting.80,81 Like
many membrane proteins, enteropeptidase is shed from the cell surface.
Hadorn et al. showed that enteropeptidase was released into the small intestine
lumen when brush-border membranes were treated with bile-acids or
cholescystokinin–pancreozymin.82 To date, enzymes responsible for entero-
peptidase shedding have not been characterized. It remains to be determined
whether the shedding represents a physiological mechanism regulating enter-
opeptidase activity in the gut.

The mechanism responsible for the activation of the enteropeptidase
zymogen is unclear. In transfected cells, enteropeptidase was expressed as a
single-chain molecule and no autoactivation was observed, indicating that other
proteases are required to activate enteropeptidase.80 Trypsin activates enter-
opeptidase efficiently, suggesting a possible mechanism of reciprocal activation
between enteropeptidase and trypsin.66 For such an activation cycle to start,
however, at least a fraction of enteropeptidase needs to be activated before
trypsinogen enters the gut. Zamolodchikova et al. identified a novel serine
protease, duodenase, from bovine duodenal mucosa.83 The enzyme, which is
approximately 30 kDa and consists of 226 amino acids, is expressed in the
secretory epithelial cells of Brunner’s glands in the proximal segment of the
duodenum.84 Duodenase has a preferred cleavage sequence with Lys at P1 and
Pro at P2. It activated recombinant enteropeptidase, although the rate of the
activation was approximately 100 times slower than that of trypsin.85 It remains
to be firmly established whether duodenase is a physiological enteropeptidase
activator. More recently, other proteases have been shown to modulate enter-
opeptidase activity. For example, beta-site APP-cleaving enzyme1 (BACE1)
was detected in pancreatic islets and shown to inactivate enteropeptidase by
cleavage of its light chain.86 This inactivation may represent a defense mecha-
nism to inhibit enteropeptidase that enters the pancreatic duct accidentally,
thereby preventing trypsinogen activation in the pancreas.

One of the remarkable features of enteropeptidase is its unique substrate
specificity, which recognizes Lys at P1 and a cluster of four Asp residues at P2–
P5. Within this recognition sequence, a Lys or an Arg residue at P1 and Lys
residues at P2 and P3 appear to be most important for efficient cleavage.87 The
structural determinants for enteropeptidase substrate specificity have been
localized in its protease domain. There is a group of four conserved basic
residues, R/KRRK at positions 96–99, which were suspected to interact with
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the acidic P2–P5 residues in the trypsinogen activation site.74 In a crystal
structure of bovine enteropeptidase light chain, Lys99 residue was found to
have extensive contacts with the P2 and P4 Asp residues.22 Lys99 residue is
conserved in enteropeptidase from many species. Substitution of Lys99 with
Ala by mutagenesis prevented enteropeptidase from activating trypsinogen. In
contrast, substituting Lys96, Arg97, and Arg98 residues for bovine enteropep-
tidase activity had less significant effects.22 The unique enteropeptidase sub-
strate specificity has been exploited in protein engineering. The DDDDK#I
sequence is frequently used in recombinant proteins that require specific
cleavage.

Enteropeptidase deficiency impairs food digestion and absorption.88 To
date, a number of patients who had low or undetectable enteropeptidase
activity in intestinal biopsies or duodenal fluid samples have been identified.
These patients suffer from diarrhea, vomiting, edema, anemia, and hypopro-
teinemia. Consequently, the patients fail to gain weight in early infancy. Genet-
ic studies have shown deletion or nonsense mutations in the PRSS7 gene in
enteropeptidase-deficient patients.66 For these patients, treatment with pan-
creatic extracts, which contain active trypsin, helps to initiate proteolytic reac-
tions in the gut. Usually, the therapy is effective for the patients to absorb
nutrients and gain weight. Apparently, the digestive enzyme reactions, once
started, are self-sustained. Pancreatic extracts can be discontinued over time
without causing gastrointestinal symptoms in these patients.89
2. HEPSIN
Hepsin was originally cloned in Earl Davie’s Laboratory at the University of
Washington. Leytus et al. screened human liver cDNA libraries, which were
rich in serine proteases.90 A novel cDNA encoding a trypsin-like serine prote-
ase was identified by degenerate oligonucleotides. The protease was named
hepsin for its hepatic expression. Rat and mouse hepsin cDNAs were isolated
subsequently, which share high sequence homology with human hepsin.91,92

The full-length human hepsin cDNA, approximately 1.8-kb in length, encodes
a polypeptide of 417 amino acids with a calculated mass of 45 kDa. Its protein
domain structure is shown in Fig. 1. There is one potential N-linked glycosyla-
tion site at residue 112 in the SR-like domain.

The human HPN gene, encoding hepsin, is on chromosome 19 at q11-13.2
and has 14 exons. Hepsin mRNA expression is abundant in the liver.93 Other
tissues such as the kidney, pancreas, stomach, prostate, and thyroid express low
levels of hepsin mRNA. The promoter sequence of the mouse Hpn gene has
been characterized.92 In a 274-bp sequence upstream of the transcription
initiation site, several potential binding sites for transcription factors such as
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SP1, AP2, C/EBP, LF-A1, and E-box have been identified. This sequence
showed strong promoter activities when tested in human HepG2 cells, indicat-
ing that it retains the essential elements required for hepatic expression.

In hepatocytes, hepsin is synthesized as a single-chain zymogen. Human
hepsin purified from hepatocytes had an apparent mass of approximately
51 kDa on Western blots.93 A similar molecular mass was found for native rat
and recombinant human hepsin. During protein purification, human and rat
hepsin were readily activated to become a two-chain molecule. It is unclear
whether the activation was mediated by autocleavage or other proteases in
hepatocytes. The membrane association and topology of hepsin have been
confirmed by immunostaining and proteolytic digestion.

In peptide substrate-based assays, hepsin favors basic residues at the P1

position. Thr/Leu/Asn, Gln/Lys, and Pro/Lys residues are favored at the P2, P3,
and P4 positions, respectively.31 This substrate profile does not appear to be
unique. Somoza et al. have solved the crystal structure of a soluble human
hepsin that included the SR-like and protease domains.21 As expected, hepsin
protease domain has an architecture of two six-stranded b barrels. There are
several structurally distinct loops, including an especially large one between
residues 241 and 256, which may interact with its substrates. The activity of
hepsin is inhibited by nonspecific inhibitors such as leupeptin, aprotinin,
antipain, 4-amidiophenylmethylsulfonyl fluoride, Na-tosyl-l-lysine chloro-
methyl ketone, soybean trypsin inhibitor, and antithrombin III.94 No inhibition
was detected with EDTA, indicating that divalent ions are not required for
hepsin activity toward peptide substrates. More recently, HAI-1 and HAI-
2 have been reported to be potent hepsin inhibitors.31,95

While many proteins are activated or cleaved by hepsin in vitro,96–99 the
physiological function of hepsin remains unclear. These proteins include blood
clotting factors VII, IX, and XII; pro-urokinase; pro-HGF; liver microsomal
glutathione transferase; matriptase; prostasin; epidermal growth factor recep-
tor; and laminin. It is unknown howmany of them are hepsin substrates in vivo.
Studies have suggested that hepsin may play a role in blood coagulation,
hepatocyte proliferation/growth, and embryonic development.43,100,101 Such
functions, however, have not been validated in vivo, as hepsin null mice are
fertile, grow normally, and exhibit no spontaneous bleeding.102,103 Unexpect-
edly, however, hepsin appears to be important in normal hearing. Guipponi
et al. detected hepsin mRNA expression in the inner ear.104 Hepsin null mice
have been found to have abnormal cochlea, reduced myelin protein expression
in the auditory nerve, and severely impaired hearing. The biochemical basis for
hepsin function in cochlear development has not been determined. Apparently,
hepsin null mice have low levels of plasma thyroxine, a hormone important for
cochlear development.104 It is unknown whether impaired hearing in hepsin
null mice is a result of thyroid hormone deficiency.
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Multiple lines of evidence suggest a potential role of hepsin in human
prostate cancer growth and progression. Microarray studies detected high
levels of hepsin mRNA in human prostate cancers.105–108 Elevated hepsin
mRNA expression appears to correlate with the disease severity. Single nucle-
otide polymorphisms (SNPs) in or near the human HPN gene are associated
with prostate cancer susceptibility and tumor aggressiveness.109 In functional
studies, Xuan et al. showed that antibodies neutralizing hepsin protease activity
did not block prostate or ovarian cancer cell growth in culture but inhibited
their invasion in a Matrigel basement membrane.110 In other studies, however,
prostate or other cancer cell lines stably transfected with hepsin cDNA were
less invasive in culture or nude mice. Because stably transfected cells often
undergo phenotypic changes during selection, it is difficult to determine
whether observed differences were related to different levels of hepsin expres-
sion. To circumvent this problem, Klezovitch et al. created transgenic mice
with high levels of hepsin in prostate epithelium, mimicking hepsin overexpres-
sion in prostate cancer patients.111 The results show that hepsin overexpression
did not affect cell proliferation but altered basement membrane structures in
prostates in these mice. When the mice were crossed with a nonmetastasizing
prostate cancer model, prostate cancer cells became more invasive, causing
metastasis in the liver, lung, and bone. Thus, hepsin promotes prostate cancer
progression and metastasis in vivo, suggesting that hepsin inhibitors may be
developed to treat prostate cancer in patients.
3. TMPRSS2
TMPRSS2 cDNA was originally cloned by exon trapping in a gene
mapping study of human chromosome 21.112 The TMPRSS2 gene, located
at human chromosome 21q22.3,112 is approximately 44 kb in length and includes
14 exons.113 The full-length TMPRSS2 cDNA encodes a polypeptide of 492
amino acids, with a domain structure shown in Fig. 1. Mouse TMPRSS2, also
called epitheliasin, was isolated from a kidney cDNA library.114 Human
TMPRSS2 mRNA is expressed in many tissues, including the prostate, breast,
bile duct, kidney, colon, small intestine, pancreas, ovary, salivary gland, stomach,
and lung.114,115 In these tissues, TMPRSS2 protein andmRNA aremostly in the
epithelial cells. In human prostate cancers, TMPRSS2 protein is localized on the
apical membrane of secretory epithelia and in the lumen of the glands.39 Similar
luminal staining patterns are found in human colon cancers. Many human
prostate- and colon-derived cells, including APC-4, LNCaP, LoVo, T84, and
Colo-205, also express TMPRSS2 mRNA.39

In vitro-translated TMPRSS2 protein is detected as a zymogen of approxi-
mately 54 kDa,39 whereas native and recombinant human TMPRSS2 proteins
have a higher molecular mass (� 60–70 kDa) due to N-linked glycosylation.39,116
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In human prostate cancer tissues or cells, approximately 32-kDa TMPRSS2
protease domain may also be detected, suggesting that the protease is partially
activated. This cleavage appears to be due to TMPRSS2 autoactivation, as active
site mutation prevented the cleavage of TMPRSS2 in transfected HEK 293T
cells.39 To date, TMPRSS2 substrate specificity and catalytic properties have not
been well characterized.

The physiological roles of TMPRSS2 are currently unknown. In a Xenopus
oocyte expression system, TMPRSS2 expression reduced epithelial sodium
channel (ENaC) current and protein levels.117 In addition, TMPRSS2 activates
influenza virus by cleaving hemagglutinin, suggesting that the enzyme may
contribute to virus invasion of human airways.118,119 Secreted forms of
TMPRSS2 have recently been found in human seminal prostasomes, suggest-
ing its potential role in regulating sperm function.116 In prostate cancer cells,
TMPRSS2 was shown to activate PAR-2.120 It is unclear whether these activ-
ities are critical in vivo. TMPRSS2 null mice are viable and fertile with no
reported abnormalities.121

The human TMPRSS2 gene promoter has a 15-bp androgen response
element at position � 148 relative to the putative transcription start site.
Consistently, TMPRSS2 mRNA expression is elevated in androgen-stimulated
prostate cancer (LNCaP) cells.115 The upregulation of TMPRSS2 mRNA by
androgen appears to be mediated by the androgen receptor.39 Androgen
treatment is also reported to increase TMPRSS2 zymogen activation in cell
culture and in a mouse xenograft model, suggesting that TMPRSS2 may
contribute to prostate cancer development and progression in an androgen-
dependent manner.

Frequent gene fusions between TMPRSS2 and members of the E26 trans-
formation specific (ETS) transcription factor family have been identified in
many prostate cancer patients.122 In these patients, the 50-untranslated region
of TMPRSS2 is fused with the transcription factor ERG or ETV genes. As a
result, the androgen-responsive promoter elements of TMPRSS2 drive the
expression of the ETS family transcription factors to promote prostate cancer
progression and invasion. Among these chromosomal rearrangements,
TMPRSS2–ERG gene fusions are most frequent, accounting for approximately
50% of prostate cancers. Molecular studies show that abnormal ERG expres-
sion disrupts normal androgen receptor signaling and activates epigenetic
programs, thereby inducing tumorigenesis.123 Although ERG enhances the
expression of many proteases, including urokinase-type plasminogen activator
(uPA), matrix metalloproteinase (MMP)-3, and MMP9, TMPRSS2 protease
activity is unlikely to have a direct role in ERG downstream events, because the
TMPRSS2 protease domain coding sequence is never included in the fusion
genes.124 Studies have shown that in prostate cancers, ETS transcription factor
genes are also fused to other genes that contain androgen-responsive
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elements.125 These rearrangements have been attributed recently to androgen-
induced co-recruitment of the DNA-processing enzyme topoisomerase 2B to
sites of genomic breakpoints.126
4. TMPRSS3
TMPRSS3was identified as a novel serine protease overexpressed in ovarian
cancers and was originally named TADG-12 (tumor-associated differentially
expressed gene-12).127 Subsequent reports showed that this protease was also
overexpressed in pancreatic and breast cancers. Independently, the gene encod-
ing TMPRSS3was identified as a candidate gene locatedwithin the disease locus
(DFNB10) for autosomal recessive deafness,128 previously mapped by linkage
analysis to chromosome 21q22.129 The human TMPRSS3 is approximately 24 kb
in length and contains 13 exons.130 The approximately 2.4-kb TMPRSS3 cDNA
encodes a polypeptide of 454 amino acids, with an overall domain structure
similar to TMPRSS2 (Fig. 1). In fact, these two proteins share approximately
63% sequence similarities. TMPRSS3mRNA is expressed in a variety of tissues,
including the kidney, lung, colon, thymus, stomach, and cochlea.130

TMPRSS3 mutations have been found in patients with congenital and
childhood onset autosomal recessive deafness. Scott et al. first identified an
8-bp deletion and insertion of 18 b-satellite tandem repeats in the TMPRSS3
gene in a Palestinian family with congenital deafness.128 In the same study, a
second splice site mutation in the TMPRSS3 gene causing a frameshift was
found in a Pakistani family with childhood-onset deafness. To date, deletion,
insertion, frameshift, and nonsense TMPRSS3 gene mutations have been
reported in over 20 patient families with nonsyndromic autosomal recessive
deafness.130 Most mutations occur in exons coding for the LDL receptor
repeat, SR repeat, or protease domain, resulting in complete or near complete
loss of the protease activity. These studies demonstrate that defects in the
TMPRSS3 gene are responsible for hearing loss in these patient families.

Biochemical mechanisms by which TMPRSS3 regulates normal hearing
remain unknown. Analogous to hepsin, TMPRSS3 mRNA is expressed in the
cochlea.131 Considering that hepsin null mice have severely impaired hearing,
it is possible that the TTSPs participate in a proteolytic pathway required for
normal cochlear structure and/or hearing function. ENaC is known to regulate
Naþ levels in the perilymph of the inner ear. Guipponi et al. have shown that
TMPRSS3 activates ENaC in vitro and that most naturally occurring mutations
prevented TMPRSS3 activation in cell-based experiments.40 It is unclear,
however, whether ENaC is a physiological TMPRSS3 substrate in the inner
ear. It has been reported that pseudohypoaldosteronism type 1 patients, who
are homozygous for mutations in the ENaCa subunit, do not suffer hearing
loss,132 suggesting that TMPRSS3 may act on other substrates in vivo.
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5. TMPRSS4
TMPRSS4, initially called TMPRSS3 and also known as CAP2, was origi-
nally identified in pancreatic cancers.133 The gene encoding TMPRSS4 is
located on human chromosome 11q23.3. Human TMPRSS4 protein consists
of 437 amino acids and a domain structure, as shown in Fig. 1. TMPRSS4
mRNA is expressed in the pancreas, lung, stomach, colon, kidney, skin, and
eye.131,133 The biological function of TMPRSS4 in these tissues is unknown.
Like TMPRSS2, TMPRSS4 is able to activate ENaC when coexpressed in
Xenopus oocytes40,134, and TMPRSS4 was recently shown to cleave in the
inhibitory ENaCg subunit.135 TMPRSS4 activates influenza virus hemaggluti-
nin, suggesting that it may facilitate viral infection in lung tissues.136

TMPRSS4 mRNA overexpression has been documented in many cancers,
including pancreatic, gastric, colorectal, lung, and thyroid. 133,137 In lung and
colon cancer cells, knockdown of TMPRSS4 expression by siRNA reduced cell
proliferation and invasion, whereas TMPRSS4 overexpression promoted
epithelial–mesenchymal-like transition in culture and metastasis in nude
mice.138,139 The effects of TMPRSS4 in cancer cells appeared to be mediated
by upregulating integrin a5 and its downstream molecules.140 These data
suggest a role of TMPRSS4 in cancer progression and metastasis, although its
proteolytic targets remain unknown.
6. SPINESIN
Spinesin, also known as TMPRSS5, was cloned from a human spinal cord
library,141 and named spinesin for spinal cord-enriched trypsin-like protease.
The human TMPRSS5 gene is located on human chromosome 11q23. The
spinesin protein domain structure is shown in Fig. 1. On Western blots, human
spinesin appeared as a major band of approximately 52 kDa, representing its
zymogen form.141 In cerebrospinal fluids, a smaller spinesin band of approxi-
mately 50 kDa was detected, suggesting that spinesin may be shed from the cell
surface.142 Recombinant soluble spinesin is active toward peptide substrates
with an optimal pH of approximately 10.142 The functions of spinesin are
unknown, although its predominant expression in the brain and spinal cord
may suggest that its primary function will be in the central nervous system.
More recently, spinesin mRNA was detected in rat inner ear tissues, indicating
a possible role in the auditory system.131
7. MSPL
Mosaic serine protease long-form (MSPL), also known as TMPRSS13, was
isolated from a human lung cDNA library.143 The human TMPRSS13 gene has
12 exons and is located on chromosome 11q23.2. Several alternatively spliced
forms from this gene have been identified.34 MSPL mRNA is expressed in the
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lung, placenta, pancreas, and prostate, and encodes a protease of 581 amino
acids (Fig. 1). The recombinant human MSPL migrated at approximately
60 kDa and prefers synthetic peptide substrates with Arg at the P1 position.
MSPL activity is inhibited by aprotinin, benzamidine, and soybean trypsin
inhibitor.34 The physiological functions of MSPL remain unknown. Similar to
other TTSPs, MSPL was recently shown to induce avian influenza virus repli-
cation by activating the viral hemagglutinin, suggesting a potential role in
human airway viral infections.144
B. Matriptase Subfamily

The matriptase subfamily consists of the three highly homologous pro-

teases: matriptase, matriptase-2, and matriptase-3, and a protein with an
atypical mosaic structure, polyserase-1 (Fig. 1). All matriptases exhibit a similar
stem region with one SEA, two CUB, and three (matriptase-2 and matriptase-
3) or four (matriptase) LDLRA domains. In polyserase-1, the transmembrane
domain is followed by a single LDLRA domain and a tandem repeat of three
serine protease catalytic domains, referred to as serase-1, -2, and -3. Although
structurally similar, the members of this TTSP subfamily appear to have quite
divergent biological functions.
1. MATRIPTASE
In 1993, Matriptase (also known as MT-SP1, TADG-15, CAP3, epithin, and
ST14) was identified as a new gelatinolytic activity in conditioned medium from
cultured breast cancer cells.145 It was molecularly cloned by several groups at
the turn of the millennium.53,146,147 The matriptase gene, ST14, is located on
human chromosome 11q24-25 and encodes a polypeptide of 855 amino acids.
Orthologs of matriptase are present in all vertebrate genomes examined to
date, indicating conserved evolutionary functions.3 Matriptase is the most
widely expressed member of the matriptase subfamily and is found in the
epithelial compartments of most embryonic and adult tissues.148–153 A number
of studies in different laboratories have revealed insights into the catalytic
properties and unique physiological functions of matriptase.

Matriptase is an 80- to 90-kDa cell surface glycoprotein, with the modular
structure illustrated in Fig. 1. Matriptase is synthesized as an inactive, single-
chain zymogen and its activation is extraordinarily complex (reviewed in44).
Matriptase activation requires two sequential endoproteolytic cleavages, the
first in the amino-terminal SEA domain and the second within the highly
conserved activation cleavage site R#VVGG, in the serine protease domain.
Proteolytic autoactivation of matriptase appears to be controlled by the stem
region, posttranslational modifications, and the cellular localization of the
protease44; however, the specific mechanisms that trigger the activation of
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matriptase are incompletely understood.154 The inhibition of activated matrip-
tase by HAI-1 was first documented by the identification of matriptase/HAI-1
complexes in human milk, in conditioned medium of cultured mammary
epithelial cells, and in a number of cancer cell lines.50

Matriptase is widely expressed in various epithelial cells during mouse
development. Matriptase can first be detected on embryonic day (E)10 in the
epithelial lining of several tissues of the embryo proper, such as the forming
olfactory placode, oral cavity and foregut, intestine, inner ear, and apical
ectodermal regions of the limbs.149 However, matriptase may be expressed
even earlier in development, possibly already at the pre- or peri-implantation
stage.155 At E14.5 and E16.5, respectively, matriptase becomes expressed in
the developing hair follicles and the interfollicular epidermis.148 Starting on
E8.5, matriptase is also present in chorionic trophoblasts of the mouse
placenta, and a similar pattern of expression is also observed in the human
placenta.149,151 During postnatal life, the highest levels of matriptase expres-
sion are found in the epithelium of the gastrointestinal tract, matrix cells of
the hair follicles, and the distal and collecting tubules of the kidney, while
lower levels of matriptase are present in the granular/transitional layer of the
epidermis and in the epithelial compartments of developing teeth, vomero-
nasal cavity, trachea, bronchioles, thymus, inner ear, gall bladder, urinary
bladder, ureter, prostate, seminal vesicle, epididymis, uterus, and ovi-
duct.148,152,153 In addition to epithelial tissues, matriptase is also expressed
by certain leukocyte populations in humans, including monocytoid cells and
mast cells.152,156,157

Matriptase has emerged to play a critical role in skin formation, in
epidermal differentiation and skin function (Fig. 2). Initial analyses of matrip-
tase null mice uncovered a critical function for matriptase in the development
of epidermal tissues.158,159 Matriptase-ablated mice die shortly after birth,
due to a severe dehydration that results from an impaired epidermal barrier
function. Follicular structures are also affected by matriptase loss, as shown
by the absence of whiskers and generalized hypoplasia of pelage hair follicles
of null mice. These phenotypes were linked to defects in the initiation of
caspase-14-calpain I, bleomycin hydrolase-mediated processing of the epider-
mal polyprotein, profilaggrin, into filaggrin monomer units and subsequently,
into free hygroscopic amino acids, which partake in the formation of the
cornified envelope of the uppermost layers of the epidermis and serve as a
source of water binding free amino acids that contribute to skin hydration.160

Matriptase-deficient epidermis also exhibits a defect in the formation of
lamellar granules, specialized secretory vesicles that contain lipid material
required for the formation of extracellular lipid lamellae within the cornified
layer, and display impaired formation of epidermal tight junctions within the
granular layer.158,161



FIG. 2. Matriptase is critical for the development and functions of the epidermis. Matriptase
activation, triggered by unknown mechanisms in skin, activates the GPI-anchored prostasin zymo-
gen. Prostasin activation is required for epidermal tight junction formation, epidermal lipid
synthesis, and induction of caspase-14-calpain I, and bleomysin hydrolase-mediated processing of
the epidermal polyprotein, profilaggrin, into filaggrin monomer units, and subsequently, into free
hygroscopic amino acids, which participate in the formation of the cornified envelope and contrib-
ute to skin hydration. Matriptase deficiency is linked to a rare form of skin disease, referred to as
autosomal recessive ichthyosis with hypotrichosis (ARIH), or ichthyosis, follicular atrophoderma,
and hypotrichosis (IFAH). Matriptase is also capable of activating proinflammatory pro-kallikrein-
related peptidases that are associated with stratum corneum detachment and are responsible for
the runaway kallikrein proteolytic cascade associated with LEKTI-deficiency/Netherton syndrome.
HAI-1 regulates matriptase in the epidermis.
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More recent studies suggest that matriptase is part of an epidermal proteo-
lytic cascade and enables epidermal differentiation through the activation of
the GPI-anchored membrane serine protease, prostasin. This is evidenced in
part by the identical phenotype of matriptase- and prostasin-deficient mouse
skin, and by the absence of active prostasin in matriptase-deficient epider-
mis.150,162 Matriptase and prostasin are found together in a variety of other
simple, stratified, and pseudo-stratified epithelia,163 suggesting that matriptase
may be a candidate activator of the prostasin zymogen in additional physiologi-
cal settings.

Several recent reports have linked a rare form of skin disease, referred to,
respectively, as autosomal recessive ichthyosis with hypotrichosis (ARIH) or
ichthyosis, follicular atrophoderma, and hypotrichosis (IFAH), to homozygosity
or compound heterozygosity for an assortment of mutations in the human ST14
gene, encoding matriptase.164–166 ARIH/IFAH patients present with mild to
moderate ichthyosis, indicative of impaired barrier function, and hair follicle
hypoplasia associated with fragile, brittle, dry, and slow-growing scalp hair. All
these symptoms resemble transplanted skin from matriptase null mice or skin
from matriptase hypomorphic mice.158,167 Importantly, prostasin activation is
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impaired in ARIH/IFAH epidermis,165 further supporting the belief that acti-
vation of the prostasin zymogen may be a principal function for matriptase
during epidermal differentiation.

Matriptase is also linked to the initiation of the Netherton syndrome in a
LEKTI-deficient mouse model through the premature activation of an epider-
mal pro-kallikrein protease cascade.168 Deficiency in the serine protease inhib-
itor, LEKTI, is the etiological origin of the Netherton syndrome, and causes
detachment of the stratum corneum and chronic inflammation due to excessive
kallikrein-related protease activity. Matriptase was demonstrated to initiate
activation of proinflammatory pro-kallikrein-related peptidases that are asso-
ciated with stratum corneum detachment. Moreover, ablation of matriptase
from LEKTI-deficient mice dampened inflammation, eliminated aberrant
protease activity, prevented detachment of the stratum corneum, and improved
the barrier function of the epidermis, demonstrating that the runaway kallikre-
in proteolytic cascade associated with LEKTI-deficiency was dependent on
matriptase activity.

The wide expression of matriptase in epithelial tissues, including simple
epithelia of most organs, suggested that matriptase could have functions in
epithelial biology beyond the epidermis, but attempts to investigate this
notion were initially hampered by the perinatal lethality of matriptase null
mice. The subsequent generation of viable matriptase hypomorphic mice167

and matriptase conditional knockout mice161 afforded the opportunity to
explore the function of matriptase in global epithelial biology. Tissue-specific
embryonic and postnatal ablation of matriptase from a variety of epithelial
tissues, including orofacial epithelium, salivary gland epithelium, lacrimal
gland epithelium, and the epithelium of stomach, and small and large intes-
tine, in all cases were associated with severe epithelial dysfunction, with two
distinct phenotypes emerging: (a) loss of epithelial function, such as barrier
and secretory capacity, but preservation of epithelial anatomy (salivary glands,
tear glands, stomach, small intestine) and (b) loss of epithelial function,
followed by loss of anatomical integrity (skin, orofacial, and colonic epitheli-
um). In all epithelia, the absence of matriptase uniformly was associated with
the rapid loss of epithelial tight junction function, compatible with the locali-
zation of matriptase on the lateral membrane of polarized epithelial
cells.161,169 In polarized monolayers of epithelial cells cultured ex vivo, down-
regulation of matriptase decreased transepithelial electrical resistance and
increased paracellular diffusion of macromolecules. Decreased matriptase was
associated with enhanced expression and incorporation of the permeability-
associated, ‘‘leaky’’ tight junction protein, claudin-2, at intercellular junctions,
suggesting that the reduced barrier integrity was caused, at least in part, by an
inability to regulate claudin-2 expression and incorporation into tight
junctions.169
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Matriptase is nearly ubiquitously coexpressed with the Kunitz-type trans-
membrane serine protease inhibitors, HAI-1 and HAI-2, in adult and embry-
onic tissues56,149,151,155,170–172, and both HAI-1 and HAI-2 display potent
matriptase inhibitory activity in purified systems.36,56,170,173,174 Knockout stud-
ies have revealed that HAI-1 and HAI-2 are both required for the completion
of embryonic development in mice.149,151,155,175 However, both HAI-1/matrip-
tase double-deficient and HAI-2/matriptase double-deficient mice complete
embryonic development, thereby revealing matriptase as a principal inhibitory
target for both protease inhibitors.149,155 Loss of HAI-1 inhibition of matriptase
in mice leads to failure of the chorionic epithelium to differentiate into the
placental labyrinth, which prevents embryonic development beyond mid-ges-
tation,149 whereas other developmental processes proceed normally. HAI-2 in-
hibition of matriptase, however, is essential at three distinct developmental
processes: (a) early (<E8.5) embryonic development, which proceeds normal-
ly in HAI-2 null embryos in the absence, but not in the presence of matriptase;
(b) placental development, where the failure of the placental labyrinth to
undergo branching morphogenesis in HAI-2 null embryos can be prevented
by loss of matriptase; and (c) neural tube closure, in which the development of
exencephaly and spina bifida is partially rescued by the matriptase deficien-
cy.155 The functional interactions between matriptase, HAI-1, and HAI-2 dur-
ing development appear to be uniquely complex for a protease–protease
inhibitor system. Thus, not only the complete loss of HAI-1 or HAI-2 but
also the combined haploinsufficiency for both inhibitors causes embryonic
lethality (nonallelic noncomplementation), which can be prevented by hap-
loinsufficiency for matriptase, suggesting that the two inhibitors functionally
cooperate in regulating the activity of matriptase.155

The requirement for matriptase regulation by HAI-1 is not restricted to
development. Thus, the loss of HAI-1 from adult tissues is associated with fatal
epithelial dysfunction in mice,176 but HAI-1-deficient mice in which the level
of matriptase is genetically reduced by 85–99% are fertile, healthy, have normal
long-term survival, and possess histologically unremarkable epithelia. Similar
findings were obtained from studies in zebrafish, where the combined loss of
function of the two HAI-1 encoding genes compromises the integrity of
embryonic epidermal keratinocytes and causes skin inflammation and embry-
onic death 18–26 h postfertilization. All of these defects can be fully rescued by
a simultaneous downregulation of matriptase.177

Matriptase has received significant attention in the field of cancer biology
due to its remarkably consistent expression in tumors of epithelial origin.
Following the first description of matriptase as a major gelatinolytic activity
in breast carcinoma,145,178 the protease was reported to be expressed in a wide
variety of other benign and malignant tumors of epithelial origin, including
prostate, ovarian, cervical, gastric, colon, renal cell, esophageal, oral squamous
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cell carcinoma (SCC), and malignant pleural mesothelioma (reviewed in Ref.
179). In most carcinomas, malignant progression is associated with a significant
increase in matriptase mRNA or protein expression. For example, in ductal
mammary carcinoma, elevated levels of matriptase correlate with both tumor
and nodal staging.180 A clinical study in node-negative breast cancer patients
showed a tight correlation between the expression of matriptase, cMet, and
HAI-1, and poor patient outcome.181 Likewise, more than fivefold overexpres-
sion of matriptase was detected in a study of ovarian cancer, compared to
normal ovarian tissues, and this increased expression of matriptase correlated
with tumor aggressiveness.182,183 Furthermore, although matriptase was more
frequently expressed in stage I/II tumors than in more advanced-stage III/IV
tumors, an increased matriptase/HAI-1 ratio was indicative of the poor clinical
outcome of advanced-stage tumors, suggesting that loss of protease inhibition
may play a role in the late stages of the disease.184 In prostate and cervical
carcinoma, a several-fold increase in matriptase expression was reported for
malignant versus nonmalignant tissues, and this correlated with Gleason score
and histopathological grade, respectively, of the tumors.185,186 Other common
human cancers with significantly elevatedmatriptase levels include carcinomas of
the pancreas, lung, kidney, and liver.179 In contrast, significant downregulation of
matriptase and HAI-1 has been detected in the samples of gastric and colorectal
carcinoma.172 However, an analysis of the clinicopathological parameters in
colorectal adenoma and carcinoma tumors showed an increased matriptase/
HAI-1 ratio in the tumors compared to the corresponding tissue from control
individuals.187 This findingmay suggest that in tissues of the gastrointestinal tract,
which exhibit high expression of matriptase and HAI-1,152,188,189 the tumorigenic
process does not involve further elevation in the expression of the two proteins,
but rather may be associated with altered levels of an HAI-1-free, uninhibited
form of matriptase. SCC of the skin represents a second example of matriptase
being dysregulated, not by overexpression, but rather by the translocation of the
expression of the protease from a differentiated postmitotic compartment in the
epidermis to a basal compartment with high tumorigenic potential.148

Matriptase is unique among pericellular proteases in that it possesses a
strong oncogenic potential when misexpressed in an epithelial tissue.173 Even
low-level matriptase expression in basal keratinocytes of transgenic mice suf-
fices to induce severe hyperproliferation of epidermal keratinocytes, which
gradually progresses to invasive SCC. Both the epidermal hyperproliferation
and the formation of matriptase-induced skin tumors are completely abolished
by coexpression of HAI-1, demonstrating that the proteolytic activity of matrip-
tase is critical to its oncogenic potential. The molecular mechanisms of matrip-
tase-induced epithelial carcinogenesis remain to be determined. In cell-free or
cell-based assays, matriptase can activate several proteins that have been
previously associated with malignant progression, including pro-hepatocyte
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growth factor/scatter factor (pro-HGF),29,190 pro-macrophage stimulating pro-
tein-1 (pro-MSP-1),191 pro-urokinase plasminogen activator (pro-uPA),29,190

protease activated receptor-2 (PAR2),
29,192 and the src-associated transmem-

brane protein SIMA135/CDCP1.193,194
2. MATRIPTASE-2
Matriptase-2, also called TMPRSS6, was independently cloned from liver
tissues by two groups in 2002 and 2003 and shown to express a membrane
serine protease with homology to matriptase that displayed proteolytic activity
toward various macromolecular substrates.37,195 Matriptase-2 is encoded by
the TMPRSS6 gene located on human chromosome 22q12.3. Matriptase-2 is
approximately 90-kDa cell surface glycoprotein with a modular structure
(Fig. 1) and is synthesized as an inactive, single-chain zymogen. Cell surface
matriptase-2 is efficiently shed into the conditioned medium of transfected
cells in an active two-chain form by proteolytic cleavage within the second
CUB domain of the noncatalytic stem region.196 Whereas matriptase is
expressed in a large number of embryonic and adult epithelia, matriptase-
2 expression is largely confined to adult and fetal liver in humans and mice,
with minor expression in the kidney, uterus, and nasal cavity.37,195

A breakthrough in the understanding of the physiological function of
matriptase-2 was enabled by the generation of matriptase-2 knockout mice
and by the identification of loss of function mutations in the TMPRSS6 gene as
a cause of the human autosomal recessive disorder, iron-refractory iron defi-
ciency anemia (IRIDA). Both mice and humans with matriptase-2 deficiency
suffer from very low iron levels and severe microcytic anemia.197–199 Matrip-
tase-2 expressed by liver cells functions as a suppressor of the hepatic hormone,
hepcidin, which in turn internalizes the iron export protein, ferroportin, on
enterocytes and macrophages to reduce iron uptake. Thus, matriptase-2 is a
key regulator of systemic iron hemostasis. Hepcidin suppression by matriptase-
2 appears to occur at the transcriptional level, as hepcidin mRNA levels are
elevated in both matriptase-2-deficient humans and mice.197–199 This suppres-
sion of hepcidin gene transcription has been linked to matriptase-2-mediated
degradation of hemojuvelin, a cofactor for bone morphogenetic protein, and a
key regulator of hepcidin gene activation.200,201
3. MATRIPTASE-3
Matriptase-3 was identified by bioinformatic analysis in 2005 as a protease
with high homology to matriptase.202 The TMPRSS7 gene encoding matrip-
tase-3 is located on human chromosome 3q13.2 and encodes an approximately
90-kDa glycosylated protein detected on the cell surface.202 Orthologs of the
matriptase-3 gene are present in all vertebrates analysed to date, including fish,
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birds, rodents, canines, and primates. The pattern of expression of matriptase-3
is conserved in mice and humans, with the highest levels of mRNA expression
in the brain, skin, eye, salivary gland, and the reproductive tissues, including
prostate, testis, epididymis, ovary, and uterus. The recombinant matriptase-3
catalytic domain can hydrolyse synthetic peptide substrates with a strong
preference for arginine in the P1 position, and shows proteolytic activity toward
several macromolecular substrates, including gelatin, casein, and albumin.202

The activated matriptase-3 catalytic domain forms stable inhibitor complexes
with an array of serpins, including PAI-1, PCI, a1-proteinase inhibitor, a2-
antiplasmin, and antithrombin III in vitro. Matriptase-3 loss of function studies
in animals or humans with matriptase-3 deficiency has not been reported, and
the physiological function of the protease remains to be determined.4
4. POLYSERASE-1/SERASE1B
Polyserase was cloned from a human liver cDNA as a unique type II
transmembrane serine protease with three serine protease domains, two of
which display catalytic activity.203 mRNA capable of encoding full-length
human polyserase-1 is detected predominantly in the skeletal muscle, heart,
kidney, liver, placenta, and the brain. In addition, a shorter splice variant,
termed serase-1B, which contains only the first of the three serine protease
domains of polyserase-1, has been described in mice and humans, with its
highest expression detected in the liver, small intestine, pancreas, testes, and
the peripheral blood CD14þ and CD8þ cells.35,203 Recombinant serase-1B
shows proteolytic activity toward synthetic peptide substrates, converted
pro-uPA into active uPA, and could be inhibited by the serpins, aprotinin,
a2-antiplasmin, and PAI-1.35

The human polyserase gene, called TMPRSS9, is located on human chro-
mosome 19p13.3. The 50 promoter region of the mouse polyserase-1 gene has
been characterized and contains a GATA motif, a glucocorticoid responsible
element, and an E-box sequence required for maximal promoter activity.204

The physiological function of polyserase has not been elucidated.
C. Corin Subfamily

Corin, the single member of the corin subfamily, is characterized by a

complex stem region composed of two frizzled domains, eight LDLRA
domains, and one Group A SR domain (Fig. 1).
1. CORIN
Human corin cDNA was originally cloned from the heart. In a search for
novel serine proteases in the cardiovascular system, Yan et al. identified a
partially expressed sequence in a genomic database and subsequently cloned
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the full-length cDNA encoding corin.205 The protease was named corin for its
abundant cardiac expression. Independently, Hooper et al. isolated human
corin cDNA from HeLa-derived cells that were resistant to tumor necrosis
factor-a-induced apoptosis.206 Corin was also cloned from a mouse heart
library as a novel protein containing LDL receptor-like repeats, and was
named LRP4 (LDL receptor-related protein 4).207

The humanCORIN gene is present on chromosome 4p12-13, consists of 22
exons, and spans approximately 200 kb.208 Corin is highly expressed in fetal and
adult cardiomyocytes. Low levels of corin mRNA are detected in the kidney,
bone, brain, skin, and pregnant uterus.109 In both human and mouse corin
genes, there is a 50-flanking region that contains conserved binding sites for
TBX5, GATA, NKX2.5, NF-AT, and Kruppel-like transcription factors.208

Among them, a conserved GATA-binding site is critical for interacting with
GATA-4 transcription factor that is important for heart-specific gene expres-
sion. GATA-4 protein is known to act downstream of the calcineurin/NF-ATc3
signaling pathway in cardiomyocytes. Most likely, this signaling pathway is
involved in regulating corin expression in the heart.

The full-length human corin cDNA encodes a polypeptide of 1042 amino
acids with a calculated molecular mass of approximately 116 kDa and a domain
structure shown in Fig. 1. The presence of two frizzled-like cysteine-rich
domains in the corin extracellular region is unique among the TTSPs.4 Native
and recombinant human, rat, and mouse corin proteins appear as bands of
approximately 150–200 kDa on immunoblots, largely due to N-glycosylation
which has been confirmed by glycosidase digestion.99 Human corin has 19
predicted N-linked glycosylation sites in its extracellular region, whereas rat
and mouse corin has 17 N-glycosylation sites. Corin does not contain detect-
able amounts of O-glycans or sialic acids.209,210

Corin is synthesized as a zymogen with no detectable activity in functional
assays, indicating that cleavage at Arg801 within the conserved activation site,
R#ILGG is necessary for its activity.211 A small fraction of activated corin is
detected in transfected HEK 293 cells and cardiomyocytes210; however, the
enzyme(s) responsible for corin activation in these cells have not been deter-
mined. Recombinant corin with an engineered activation site has a trypsin-like
catalytic activity, favoring peptide substrates with Arg/Lys residues at P1, Pro/
Phe/Gly at P2, and small neutral amino acids at the P3 position.

211 The activity
is inhibited by leupeptin, aprotinin, and soybean trypsin inhibitor and, unlike
many serine proteases, corin activity is not inhibited in the presence of human
plasma.211

The topology of corin on the cell membrane has been confirmed by cell
surface protein labeling and protease digestion.99,209 In addition to the trans-
membrane domain, N-glycans on corin also play a role in its cell surface
targeting and activation.210,212 Inhibition of N-glycosylation or removal of
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certain N-glycosylation sites by site-directed mutagenesis impaired corin cell
surface expression and zymogen activation. The transmembrane domain is not
necessary for corin enzyme activity, since soluble corin without the transmem-
brane domain exhibited similar activities toward small peptide and biological
substrates when compared to that of wild-type corin.211

Wu et al. identified corin as the physiological pro-atrial natriuretic peptide
(pro-ANP) convertase.213 ANP, also called atrial natriuretic factor (ANF), is a
cardiac hormone that regulates blood pressure and cardiac function by pro-
moting natriuresis, diuresis, and vasodilation. The function of ANP is mediated
by its receptor, NPR-A, which promotes intracellular cGMP production. In
mice, deficiency in ANP or its receptor causes spontaneous hypertension,
demonstrating the importance of the ANP pathway in regulating blood pres-
sure.213 In humans, SNPs and mutations in the NPPA gene encoding ANP have
been reported in patients with hypertension and heart disease.214

In cardiomyocytes, ANP is made as a precursor molecule, pro-ANP. Upon
secretion under high blood volume or pressure, pro-ANP is converted to
active ANP by proteolytic cleavage. This activation mechanism was recog-
nized for many years, but the responsible enzyme remained unidentified. In
cell-based studies, corin activated pro-ANP in a sequence-specific manner.215

This activity was confirmed in cardiomyocytes and with purified recombinant
corin. Chan et al. made corin null mice, which were viable and fertile.216 In
these mice, lack of corin prevents pro-ANP processing in the heart and causes
salt-sensitive hypertension. Corin null mice develop cardiac hypertrophy and
exhibit impaired cardiac function. This hypertrophic heart phenotype has
been confirmed in a naturally occurring mutant mouse strain, KitW-sh, in
which the corin gene is disrupted by genetic inversion.217 These data show
that corin-mediated pro-ANP processing is critical for regulating blood pres-
sure and cardiac function (Fig. 3). Curiously, corin null mice appear to have a
lighter coat color, and this phenotype depends on the agouti gene.218 As corin
mRNA and protein are expressed in the dermal papilla in mice, corin may act
in the skin to regulate hair color formation by an agouti pathway-dependent
mechanism.

In addition to ANP, BNP (B-type natriuretic peptide) and CNP (C-type
natriuretic peptide) are additional members of the human natriuretic peptide
family, which share similar protein sequences and structures. The function of
BNP is to promote natriuresis and diuresis, whereas CNP is involved in
endothelial cell growth and chondrocyte differentiation. In cell-based studies,
corin also cleaved pro-BNP, although the reaction was less efficient than that
for pro-ANP.215 Recent studies indicate that both furin and corin convert pro-
BNP to BNP.219 In contrast, pro-CNP is processed by furin but not corin.220

It is interesting that these natriuretic peptides have evolved from an ancestor
gene, but their activation processing requires different enzymes.
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FIG. 3. Corin-mediated pro-ANP processing in the heart. In cardiomyocytes, ANP is made
as a precursor, pro-ANP. Upon secretion, pro-ANP is cleaved by corin, generating an inactive
N-terminal (NT) peptide and an active ANP. ANP promotes natriuresis, diuresis, and vasodilation,
thereby reducing blood volume/pressure and improving cardiac function.
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Corin variants exist in hypertensive patients. Dries et al. have identified two
SNPs (T555I/Q568P) in the human CORIN gene.221 These SNPs are located
on a minor corin gene allele that is present primarily in African-Americans with
hypertension. It is known that African-Americans have a high prevalence of
cardiovascular disease, but the underlying mechanisms remain unclear. Rame
et al. have shown that individuals with these corin SNPs have an enhanced
cardiac response to high blood pressure, which leads to severe left ventricular
hypertrophy.222 Under pathological conditions, cardiac hypertrophy impairs
heart functions. In patients with heart failure, the presence of this corin variant
allele is associated with worse clinical outcomes such as hospitalization and
death.223 Changes in the amino acids, T555I/Q568P, encoded by the SNPs
occur within the second frizzled-like domain, an extracellular region demon-
strated to be functionally important.46 Examination of the effect of these amino
acid substitutions on corin function in cell-based studies showed that the corin
variant, T555I/Q568P, exhibited markedly reduced activity in processing pro-
ANP and pro-BNP.224 Apparently, the reduced activity was caused by impaired
corin zymogen activation but not cell surface expression.224 The data indicate
that these polymorphisms alter corin structure and function, which may con-
tribute to elevated blood pressure and cardiac hypertrophy in patients. Thus,
corin defects may present an important mechanism underlying cardiovascular
disease.
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Soluble corin has been detected in human plasma, suggesting that corin is
shed from the cell surface and subsequently circulates in the blood.225 Inter-
estingly, plasma corin levels were significantly lower in patients with heart
failure and the reduction correlated with the disease severity.226 In contrast,
patients with acute myocardial infarction had similar levels of plasma corin
compared to that of normal controls, suggesting that low plasma corin levels
are associated more closely with pathological changes in heart failure than that
in acute ischemic cardiac injury. The protease(s) responsible for corin shedding
have not been determined. Low levels of plasma soluble corin in patients with
heart failure may reflect reduced corin production, accelerated clearance of
plasma corin, and/or downregulation of corin shedding in failing hearts. Addi-
tional studies will be required to elucidate corin shedding mechanisms under
physiological and pathological conditions, and whether decreased plasma corin
could be used as a biomarker for the diagnosis of heart failure.
D. HAT/DESC Subfamily

The HAT/DESC (human airway trypsin-like protease/differentially

expressed in squamous cell carcinoma) subfamily comprises five members in
humans, HAT, DESC1, TMPRSS11A, HAT-like 4/TMPRSS11F, andHAT-like 5,
and two additional members in rodents, HAT-like 2/DESC4 and HAT-like 3.3,4

All genes encoding members of this subfamily are located within a single gene
cluster on chromosome 4q in humans (5 E1 in mice), suggesting that they
originated by gene duplication from a common ancestor.227 Of all TTSPs,
members of the HAT/DESC subfamily exhibit the simplest modular structure
of the stem region, which consists of a single SEA domain located adjacent to
the cell surface. SEA domains are structurally homologous protein modules
that have been identified in many mucin-like proteins. These domains undergo
spontaneous posttranslational confirmation-driven hydrolysis of the glycine–
serine peptide bond within a conserved GSVVV sequence, although the two
peptides remain tightly associated.228 Little is known about most of the mem-
bers of the HAT/DESC subfamily, with HAT, DESC1, and TMPRSS11A being
the best characterized.
1. HAT
HAT was originally characterized as a novel 28-kDa protease from the
sputum of patients with chronic airway diseases.229 The cDNA was subse-
quently cloned and the protease was named HAT for human airway trypsin-
like protease.230 HAT cDNA encodes an integral membrane protein of 418
amino acids, with a predicted molecular mass of approximately 46-kDa, which
is released in a soluble form from the cell surface.230 Hence, significant HAT-
related activity can be detected in the extracellular airway fluids of patients with
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chronic airway inflammatory diseases, particularly in patients with asth-
ma.229,231,232 Within human tissues, the airways and the skin have been
shown to express HAT.233,234 In the airways, HAT is expressed in the apical
cilia layer of tracheobronchial epithelial cells.234,235

There is little information regarding the physiological functions and candi-
date proteolytic targets of HAT; however, HAT upregulation is found to
be associated with inflammatory environments.233 The available evidence,
obtained from the study of in vitro cleavage reactions and cell-based assays,
supports a potential role for HAT in respiratory homeostasis during inflamma-
tory responses through a capacity to increase mucin gene expression, control
fibrin deposition, and stimulate bronchial fibroblast proliferation in airway
epithelial cells in vitro.231,235,236 HAT has been demonstrated to have the
capacity to degrade fibrinogen, to activate pro-uPA,232,235 to activate mem-
brane receptors such as PAR-2,232,235,236, and to cleave the D1–D2 linker
sequence of human uPAR (h-uPAR), which prevents interaction with the
extracellular matrix component, vitronectin.237 The physiological relevance of
these cleavages, if any, remains untested.

HAT is one of the several TTSPs found to cleave the surface glycoprotein
hemaglutinin (HA) of the influenza virus.118,238 HA is responsible for initiating
influenza virus replication by mediating binding to sialic acid-containing cell
surface receptors and fusion of the viral envelope with the endosomal mem-
brane. HA precursor proteins require cleavage at a single arginine amino acid
to trigger membrane fusion. Membrane-bound HATwas shown to cleave newly
synthesized HA before or during the release of progeny virions as well as HA of
incoming viruses prior to endocytosis at the cell surface, supporting its contri-
bution to the facilitation of virus activation and spread.
2. DESC1
Differentially expressed in squamous cell carcinoma (DESC1) was origi-
nally identified by representational difference comparative analysis of RNA
from SCC of the head and neck compared with matched normal tissue.239

DESC1 is expressed in normal epithelial cells of prostate, skin, testes, head,
and neck, whereas it is downregulated in 11/12 SCCs,239 suggesting that it may
serve as a tumor marker. The human DESC1 gene encodes a polypeptide of
442 amino acids. The mouse ortholog of DESC1 shares 72% identity with
humanDESC1.227 Both proteases are expressed in similar anatomical locations
and are predicted to have common functions in the development and mainte-
nance of oral epidermal tissues and the male reproductive tract.227

The physiological functions of DESC1 are not known. DESC1 is upregu-
lated during the induction of terminal keratinocyte differentiation.240 Madin-
Darby canine kidney (MDCK) cells expressing exogenous human DESC1
display enhanced motility and an increase of tubular forms in a
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three-dimensional collagen lattice following HGF treatment.241 Kinetic studies
using internally quenched peptides227,242 and structural analyses of the DESC1
catalytic domain23 reveal DESC1 substrate preference for large hydrophobic
residues in P4/P3, for small residues in P2, Arg or Lys in P1, and hydrophobic
residues in P10 and P3

0. Mouse DESC1 forms stable inhibitory complexes with
PAI-1 and PCI, suggesting that these serpins might be regulators of DESC1
proteolytic activities in DESC1 expressing tissues.227
3. TMPRSS11A
Most of the remaining members of the HAT/DESC family have not yet
been well characterized. HATL1, also known as TMPRSS11A, is expressed in
the upper respiratory tract (pharynx and trachea) and has been shown to have
the capability to cleave recombinant, native, full-length S-protein trimer (triS-
pike) of the severe acute respiratory syndrome, coronavirus (SARS-CoV)
in vitro.243
VI. The GPI-Anchored Serine Proteases
A. Prostasin

Prostasin, also known as PRSS8 and channel-activating protease (CAP)-1,

was originally identified and characterized from human seminal fluid.11

Subsequent studies using a Xenopus oocyte expression system and mammalian
epithelial cell cultures independently showed that prostasin expression
increased amiloride-sensitive ENaC current.134,244–246 As a result, prostasin
became the first membrane-anchored serine protease to be implicated in the
modulation of fluid and electrolyte regulation via proteolysis of ENaCs.

The PRSS8 gene encoding prostasin belongs to the family of genes located
on the syntenic regions of human chromosome 16p13.3 and mouse chromo-
some 1714,247–249, and this family includes genes encoding both testisin and
tryptase g1.9 The mouse frizzy (fr) and rat ‘‘hairless’’ (fr(CR)) mutations are
natural variants of the murine prostasin gene (Prss8). The deduced amino acid
sequence of PRSS8 predicts a preproenzyme consisting of 343 amino acids,
which shows 34–42% identity to human acrosin, plasma kallikrein, and hepsin.
Prostasin is posttranscriptionally modified with GPI-anchor11–13 and associates
with lipid rafts.13 In polarized epithelia, prostasin localizes to apical mem-
branes.12,250,251 Soluble forms of prostasin are found in human urine252,253

and are elevated in hypertensive patients.254 Prostasin has been found to be
released from the cell surface by an endogenous GPI-specific phospholipase
D113 or, alternatively, may be shed via a tryptic-like proteolytic cleavage in its
hydrophobic C-terminal domain.11,255
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Tertiary structures of prostasin24–26 and analyses for substrate preference
using positional scanning combinatorial substrate libraries32 have revealed
insights into prostasin’s unique catalytic activity. Prostasin was found to have
a substrate preference for polybasic substrates: in position P4, preference was
for arginine or lysine; in P3, for histidine, lysine, or arginine; in P2, for basic or
large hydrophobic amino acids; and in P1, for arginine and lysine.32 Prostasin
showed no activity with substrates containing isoleucine in position P10,
providing an explanation for the inability of prostasin to autoactivate. Prostasin
activity was also highly influenced by mono- and divalent metal ions, which
were potent inhibitors and substrate specific modulators of enzymatic activity.
Interestingly, structural analyses showed that the S1 subsite loop of prostasin
exhibits a large degree of conformational variation and directly binds the
divalent cation, Ca2þ, being able to move to block or to expose the S1 subsite.

24

The prostasin zymogen is proteolytically cleaved to an active enzyme by
matriptase in vitro and in vivo in skin150 and when coexpressed with hepsin in
cultured cells.96 Low levels of plasmin found in urine frompatients with nephritic
syndrome may also activate prostasin in the context of ENaC activation.256

Intriguingly, the zymogen form of matriptase was also able to be converted to
an active protease by the addition of active prostasin, suggesting that, in certain
cellular contexts, prostasin might function both upstream and downstream
of matriptase.192 Comparison of the skin phenotypes of conditional prostasin-
deficient mice with matriptase-deficient mice supports the participation of both
serine proteases in the same protease-signaling cascade in the skin.162 Antithrom-
bin III and protease nexin I are inhibitors of cell surface-associated activities of
prostasin257, and protease nexin I is an effective inhibitor of prostasin-mediated
activation of ENaC.257 Prostasin is also inhibited by the Kunitz-type inhibitors,
HAI-1/SPINT131,48,57,58 and HAI-2/SPINT2,32,258 similar to matriptase.

The data suggest that the ‘‘open probability’’ of ENaCs is increased by
prostasin, resulting in an increased cellular uptake of sodium (Naþ) which can,
in turn, regulate the homeostasis of extracellular fluid volume, blood pressure,
and Naþ reabsorption.259 Prostasin cleaves the ENaCg subunit in the extracel-
lular loop at a site (K186) distal to a furin cleavage site, and releases a 43-amino
acid inhibitory peptide that results in increased open probability of the channel
and full activation.260,261 Recent studies have localized this inhibitory peptide
to a key 11-mer tract, R158-F168 (RFLNLIPLLVF), which is capable of
inhibiting wild-type ENaC expressed in Xenopus oocytes and endogenous
channels in airway epithelial cells.262 The channel-activating activity of prosta-
sin is likely to be of pathophysiological significance. In the lung, adequate levels
of ENaC activity are essential for controlling airway surface liquid volumes.
Mice with targeted disruption of the prostasin gene in lung epithelium show
impaired ENaC-mediated alveolar fluid clearance.263 In addition, increased
ENaC activation in the airway of cystic fibrosis patients has been linked to
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excessive prostasin activity on the surface of lung epithelium.264,265 Prostasin
has been identified as a candidate gene for the development of hypertension in
youths,266 which may also be associated with increased ENaC activation.267

Increased levels of urinary prostasin are found in hypertensive patients,252 and
inhibition of prostasin in a rat model of hypertension significantly reduced
blood pressure.268 Inhibition of prostasin-dependent activation of ENaCs
is considered a potential therapeutic strategy for modulating surface liquid
volume in cystic fibrosis and salt-sensitive hypertension.

Prostasin also exhibits pleiotropic activities associated with the activation of
growth factors, G protein-coupled receptors, and the activation of proteolytic
cascades.269–271 Less well-characterized potential targets of prostasin include
PAR2 and the epidermal growth factor receptor.269 Soluble recombinant pros-
tasin has also been reported to activate PAR2 indirectly, through a matriptase-
dependent mechanism.192 Prostasin activity is further implicated in the regu-
lation of epithelial barrier function,13 which is believed to be unrelated to
ENaC processing activity, suggesting that prostasin may also target as yet
unidentified substrates involved in the regulation of epithelial barrier integrity
and permeability. Downregulation of prostasin is associated with tumor pro-
gression269,272,273 through as yet unknown mechanisms.
B. Testisin

Testisin was originally cloned from human eosinophils and from HeLa

cervical carcinoma cells.15,274 Human testisin has been known as eosinophil
serine protease 1 (esp-1)274 and murine testisin247 has been called tryptase 4248

and TESP5.14 The testisin gene (PRSS21) belongs to the family of genes on the
syntenic regions of human chromosome 16p13.3 and mouse chromosome
17.9,14,247–249 Several isoforms of human testisin have been identified, which
are believed to be generated by alternate intron–exon junctional sliding.249,275

Testisin is abundantly expressed by male germ cells and sperm15,247,276, and is
also present in capillary endothelial cells277 and in eosinophils.248,274

Analyses of the promoter sequences of the human and mouse genes
encoding testisin have revealed that the region surrounding the transcription
initiation site lacks a TATA consensus sequence, but contains a CCAAT
sequence and includes a 385-bp 50-CpG island.247,249 There is a strong corre-
lation with DNA hypermethylation of the 50-CpG rich island and silencing of
testisin gene expression.278 Furthermore, the 50-flanking region of the testisin
gene contains several consensus response elements, including Sp1, AP1, and
several testis-specific elements.247,249,275

Testisin is posttranscriptionally modified by the addition of a carboxy-
terminal GPI-membrane anchor and has been demonstrated to be compart-
mentalized at plasma membranes within the dynamic microenvironment of
cholesterol-rich membrane microdomains or lipid rafts.14 Naturally occurring
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and recombinant testisin proteins are cell-associated,14,15,248 but may be re-
leased from cell membranes by exposure to exogenous bacterial phosphatidy-
linositol-specific phospholipase C (PI-PLC).14

Developmental evidence links testisin to the maturation and function of
mammalian sperm. Testisin is detected on spermatogenic cells throughout
spermatogenesis and on mature sperm in humans,276 mice,14,247,276 and
rats,279 which suggests a similar function among these mammalian species.
Mice deficient in testisin display several functional abnormalities associated
with epididymal sperm maturation and fertilizing ability.276,280 Epididymal
sperm lacking testisin show an increased tendency toward decapitation, het-
erogeneity in sperm form and angulated flagella, decreased numbers of motile
sperm, and abnormal sperm volume regulation. Although testisin-deficient
mice exhibit normal fertility when bred by continuous mating, these functional
sperm defects result in a decreased ability to fertilize oocytes in short-term
mating studies.276 The data suggest an essential requirement for testisin during
sperm cell maturation processes which occur during epididymal transit and are
required for normal fertilizing ability. Functional overlap between testisin and
the related fertilization serine protease, acrosin, may compensate for respective
functional fertilizing abilities, since acrosin-deficient mice exhibit normal fer-
tility, but acrosin/testisin double knockout mice are subfertile.281 It has been
proposed that aberrant regulation of testisin may contribute to certain second-
ary male infertility syndromes such as ‘‘easily decapitated’’ spermatozoa in
humans.276

Absence of testisin expression is associated with testicular tumor formation
and progression15, and overexpression of testisin promotes advanced-stage
disease in ovarian carcinomas.282 Epigenetic gene silencing may contribute to
the downregulation of both prostasin and testisin expression in can-
cers.272,278,282–284
VII. Perspectives

Over the past few decades, membrane-anchored serine proteases have
emerged to play key roles in many diverse aspects of mammalian physiology,
including food digestion, fluid balance, blood pressure regulation, hearing and
inner ear development, epithelial barrier function, sperm maturation, and
regulation of iron homeostasis (Table I). The associations of mutant alleles of
the membrane-anchored serine proteases with disease, the misregulation of
these enzymes in malignant growth, and the hijacking of their activities by
viruses to facilitate infection and propagation, all highlight the pathological
impact of misregulation of their activities. Despite remarkable progress in the
past few years, many questions remain unanswered. How these proteases



TABLE I
MEMBRANE-ANCHORED SERINE PROTEASE PHYSIOLOGICAL FUNCTIONS IN MAMMALIAN DEVELOPMENT

AND TISSUE HOMEOSTASIS

Enteropeptidase Proteolytic activation cascade in intestine
Hepsin Cochlear development and hearing (mice)
TMPRSS3 Hearing
TMPRSS5 Hearing
Matriptase Epidermal and hair follicle development and epithelial barrier functions
Matriptase-2 Regulates iron hemostasis; deficiency or mutation increases hepcidin levels,

leading to iron-refractory iron deficiency anemia (IRIDA)
Corin Processes critical cardiac pronatriatic peptides involved in the regulation of

blood pressure
Prostasin Epidermal and hair follicle development and epithelial barrier functions;

regulation of ENaC-mediated alveolar sodium and water transport (mice)
Testisin Subfertility and aberrant sperm morphology (mice)
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intersect and modulate the protease cascades in the pericellular microenviron-
ment, the signals that trigger their activation, the repertoire of endogenous
substrates, and the inhibitors that modulate their activities, are important
issues to address. As suitable molecular tools, such as antibodies, activity-
based probes, animal models, and human mutational analyses, are refined
and developed, we will look forward to gaining a better understanding of the
critical roles of these enzymes both in mammalian physiology and in disease.
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