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Thyroid cancer (TC) is prone to recurrence, and biomarkers for predicting progression-free interval (PFI) are poorly explored.
The study investigates the predictive value and underlying biological mechanisms of IncRNA CDKN2B-AS1 in TC. Combining
RNA-seq and survival data, we identified that CDKN2B-AS1 was upregulated in TC samples and could be an excellent
prognostic indicator. To exclude confounding factors, we divided patients into different subgroups using median CDKN2B-
AS1 expression, and the effects of CDKN2B-AS1 on PFI and clinical features were explored in different clinical subgroups.
Meanwhile, ssGSEA and ESTIMATE algorithms revealed that CDKN2B-AS1 overexpression may suggest the active state of the
immune microenvironment. On the other hand, enrichment analysis also proved the potential influence of CDKN2B-AS1 on
immune regulation in TC. Finally, we created a CDKN2B-AS1, microRNAs, and TFs network and discovered a new biomarker

(CDKN2B-AS1) that might be employed as a therapeutic target in TC patients.

1. Introduction

The incidence of thyroid cancer (TC) is increasing [1].
Although treatment in TC has been developed rapidly in
recent years, specific pathogenesis is still unclear [2]. The
occurrence of TC is a complex process involving multiple
pathways, and molecular mechanism in TC has been a hot
topic for researchers. IncRNAs were initially thought to be
transcriptional noise of the genome without biological func-
tion [3], but recent studies have confirmed that IncRNAs
play an essential role in the development of tumors [4].
Meanwhile, tumor-infiltrating immune cells (TIIC), as part
of the tumor microenvironment (TME), demonstrated that
IncRNA mediates communication between it and tumor
cells [5]. However, only a few IncRNA effects on microenvi-
ronment and prognosis in TC have been adequately
explained.

CDKN2B-AS1 has been implicated in several cancers as
an oncogene. CDKN2B-ASI1 is located in the CDKN2B-

CDKN2A gene cluster on chromosome 9p21. CDKN2B-
AS1 induces renal clear cell carcinoma by recruiting
CREB-binding proteins and three epigenetically modified
complexes comprising SET and MYND structural domains
to the NUF2 promoter region [6]. In addition, CDKN2B-
AS1 works as a sponge in lung cancer, adsorbing miR-
378b and regulating miR-378b/NR2C2 [7]. However, so
far, few studies have investigated how CDKN2B-ASI plays
arole in TC.

Through bioinformatics algorithms, the purpose of our
study was to deduce the critical function of CDKN2B-AS1
in TC. The TCGA database was utilized to validate
CDKN2B-AS1 differential expression and clinical signifi-
cance in TC and pancancers. The impact of various
CDKN2B-AS1 expression levels on immune cell content
was assessed using the ssGSEA algorithm. Meanwhile, three
types of enrichment analysis approaches were conducted to
determine the precise pathways affecting the immune micro-
environment in TC tissues when CDKN2B-AS1 was
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FIGURE 1: Screening of CDKN2B-AS1 in TC. (a) The overlap of DEGs and PFI genes was followed by the elimination of redundant IncRNAs
using LASSO algorithm. (b) CDKN2B-ASI expression in TCGA-TC cohort. (c) A survival curve of progression-free interval for TC patients.

***p <0.001.

overexpressed. Finally, regulatory networks based on
CDKN2B-AS1 were built for future in vitro studies.

2. Materials and Methods

2.1. Datasets and Preliminary Screening. A total of 502 TC
samples and 58 normal samples were included in this study.
RNA-seq (FPKM) and clinical data were obtained from

TCGA databases [8]. To identify potential protooncogenes
in TC, we performed a preliminary screen among the
14077 IncRNAs annotated. Limma package was used to
screen out the differential expression IncRNAs list (adj. P
value < 0.05, |log FC|>1). The univariate Cox regression
analysis was performed on all IncRNAs with disease progres-
sion as the dependent variable to identify potential risk fac-
tors (P value < 0.05, HR > 1) [9]. The IncRNAs identified by
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FiGure 2: Clinical characteristic analysis. (a) Unpaired differential expression analysis of CDKN2B-AS1 in the TCGA database. (b) Paired
differential expression analysis of CDKN2B-AS1 in the TCGA database. Correlation analysis of (c) T stage, (d) N stage, (e) M stage, (f)
clinical stage, (g) lymphovascular invasion, and (h) age with CDKN2B-AS1 expression. *p < 0.05.

the above two methods were overlapped to obtain candidate
IncRNAs. Finally, redundant IncRNAs were removed using
LASSO regression analysis to obtain CDKN2B-AS1 [10].

2.2. Clinical Correlation Analysis. We obtained the
CDKN2B-AS1 expression of each patient for determining
the median value, which is used to select high-CDKN2B-
AS1 and low-CDKN2B-AS1 groups. The Kaplan-Meier
analysis was performed to compare differences in PFI
between different clinical subgroups [11]. The Wilcoxon
rank sum test was used to explore difference of clinical fea-
tures and CDKN2B-AS1 expression. T stage, N stage, M
stage, clinical stage, lymphovascular invasion, age, and gen-
der are among the clinical characteristics examined in this
study. We also created a nomogram based on CDKN2B-
ASI expression using the rms and survival programs.

2.3. Enrichment Analysis. Kyoto Encyclopedia of Genes and
Genomes [12] and Gene Ontology analysis was used to

explore the possible biological processes (clusterProfiler
package for performing enrichment and (

http://org.hs.eg.)db package for transferring symbol ID).
In addition, we conducted gene set enrichment analysis
(GSEA) based on hallmarks geneset from MSigDB Collec-
tions (false discovery rate (FDR) < 0.25 and p adjust < 0.05)
[13].

2.4. Immune-Infiltration Analysis. The content of 24
immune cells in TC was determined using the ssGSEA algo-
rithm. In addition, the stromal score, immune score, and
estimate score were analyzed using the ESTIMATE algo-
rithm, and the purpose of the above scores was to quantify
TME in TC. T test was used to compare the difference of
immune cell content and TME score in different
CDKN2B-AS1 expression groups [14].

2.5. Targeting Network. We used comprehensive gene
expression profiling and network visual analytics
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FiGure 3: Continued.
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FIGURE 3: Subgroup survival analysis. Survival analysis of clinical subgroups, including (a) stage I subgroup, (b) stage II subgroup, (c) stage
III subgroup, (d) stage IV subgroup, (e) young subgroup, (f) old subgroup, (g) female subgroup, and (h) male subgroup.

(NetworkAnalyst) to visualize the targeting network [15].
The literature-curated regulatory interaction information
was collected from the RegNetwork repository.

2.6. Statistical Analysis. All statistical analyses were per-
formed using the R software (v.3.6.3). Detailed statistical
methods about transcriptome data processing are covered
in the above section.

3. Result

3.1. Identification of CDKN2B-AS1 in TC Samples. Firstly,
Limma package was used to screen out the differential
expression IncRNAs (DELs), and 930 overexpression
IncRNAs were obtained. Subsequently, 106 PFI IncRNAs
were screened using P value < 0.05 and HR > 1 as threshold
in the Cox regression analysis. Finally, redundant IncRNAs
were removed using LASSO regression analysis
(Figure 1(a)). From the four IncRNAs (CYP4A22-ASl,
FOXD2-AS1, CDKN2B-ASI, and AC012213.1), we selected
CDKN2B-AS1 for subsequent analysis. The subsequent Wil-
coxon rank sum test and log-rank test again demonstrated
the upregulation of CDKN2B-ASl in tumor tissues
(Figure 1(b)) and its prognostic value (Figure 1(c)).

Taken together, our data show that CDKN2B-AS1 had
an abnormal expression in TC tissues.

3.2. Correlation between CDKN2B-AS1 Expression and
Clinical Characteristics. In a pancancer project of TCGA
database, it was found that in unpaired and paired difference
analysis, most tumors were CDKN2B-AS1 overexpressed
except for COAD and READ paracancerous normal tissues
where CDKN2B-AS1 was upregulated (Figures 2(a) and
2(b)). In addition, the expression of CDKN2B-AS1 was
upregulated in different subgroups, including T3 and T4
subgroup (Figure 2(c)), N1 and N2 and N3 subgroup

(Figure 2(d)), stage III and IV subgroup (Figure 2(f)), and
lymphatic invasion subgroup (Figure 2(g)). However, there
was no statistical difference in the expression of CDKN2B-
AS1 in M stage (Figure 2(e)) and age (Figure 2(h)).

Taken together, our data show that CDKN2B-AS1 could
stratify patients with different clinical characteristics.

3.3. Survival Analysis in Different Subgroups. To further clar-
ify the effectiveness of CDKN2B-AS1 in indicating disease
recurrence in different subgroups, the Kaplan-Meier survival
analysis was performed for each clinical subgroup. In stage
subgroups, we found that higher expression of CDKN2B-
AS1 was associated with shorter PFI time in stage I subgroup
(Figure 2(a)), younger subgroup (Figure 2(e)), and female
subgroup (Figure 2(g)). In addition, stage II-IV subgroups
(Figures 2(b)-2(d)), older subgroup (Figure 2(f)), and male
subgroup (Figure 2(h)) also should be noted although
CDKN2B-AS1 expression in the above subgroups was not
statistically significant.

Taken together, our data show that CDKN2B-AS1 could
guide prognosis in TC patients.

3.4. CDKN2B-AS1 Regulates Immune-Infiltration in TC
Tissues. Interestingly, we found that most of the immune
cells were upregulated in the CDKN2B-AS1 high expression
group, except for Th1l7 cells, Tgd, pDC, and NK cells
(Figure 3(a)). In addition, we used ESTIMATE algorithm
to quantify TME in TC. Not surprisingly, the CDKN2B-
AS1 high expression group had higher stromal score
(Figure 3(b)), immune score (Figure 3(c)), and ESTIMATE
score (Figure 3(d)) in TC tissues.

3.5. Construction of Nomogram. To facilitate clinical applica-
tion, we combined CDKN2B-ASI expression and patholog-
ical stage to construct a nomogram that can predict disease
recurrence (Figure 4(a)). The calibration curve in the
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FIGURE 5: A nomogram based on CDKN2B-AS1 expression and clinical stage. (a) Construction of a nomogram for predicting PFL

Calibration curve of (b) 1 year, (c) 3 years, and (d) 5 years.

TCGA-TC cohort illustrated that the nomogram has good
predictive significance and our prediction curve was close
to the standard curve (Figures 4(b)-4(d)).

3.6. Potential Mechanisms of CDKN2B-AS1. To investigate
the specific mechanisms by which CDKN2B-AS1 affects
the immune microenvironment and tumor progression, we
first analyzed the differential expression analysis between
the high- and low-CDKN2B-AS1 expressions in the TC
cohort (Figures 5(b)-5(d)). Subsequently, the obtained
DEGs were analyzed for gene enrichment by three types of
algorithms. In KEGG analysis, cytokine-cytokine receptor
interaction, hematopoietic cell lineage, and viral protein
interaction with cytokine and cytokine receptor were signif-
icantly enriched (Figure 5(b)). In GO analysis, cytokine
receptor binding, cytokine activity, and receptor ligand
activity were mainly enriched (Figure 5(c)). In GSEA analy-
sis based on hallmarks geneset, CDKN2B-AS1 may be
involved in the activation or shutdown of many cancer clas-
sic pathways, such as epithelial mesenchymal transition,
allograft rejection, interferon gamma response, and inflam-
matory response (Figure 5(d)).

3.7. Construction of a Regulatory Network. We predicted the
target regulators of CDKN2B-AS1 and found that some
microRNAs (hsa-let-7d-5p, hsa-miR-4262, hsa-let-7a-5p,
hsa-let-7f-5p, hsa-let-7b-5p, hsa-miR-181c-5p, hsa-miR-
181d-5p, hsa-let-7i-5p, hsa-miR-98-5p, hsa-miR-181d-5p,
and hsa-miR-122-5p, etc.) and two TFs (E2F1 and MYC)
may have an effect on the expression of CDKN2B-AS1, as
shown in Figure 6.

4. Discussion

There is mounting evidence that aberrantly expressed
IncRNAs may play a critical role in cancer and developed
as oncogenes [16]. Although a growing number of new tran-
scripts have been found, the function of the majority of
IncRNAs remains unknown in TC. In this study, the predic-
tive value and wunderlying biological mechanisms of
CDKN2B-AS1 were investigated. We identified that
CDKN2B-AS1 was upregulated in TC samples and could
be an excellent prognostic indicator. Meanwhile, ssGSEA
and ESTIMATE algorithms revealed that CDKN2B-AS1
overexpression may suggest the active state of the immune
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microenvironment. On the other hand, CDKN2B-AS1 may
be involved in the activation or shutdown of many cancer
classic pathways, such as epithelial mesenchymal transition,
allograft rejection, interferon gamma response, and inflam-
matory response. Finally, we developed a regulatory
network-based CDKN2B-ASI, and two TFs may have an
effect on the expression of CDKN2B-ASI.

The long noncoding RNA CDKN2B-AS1 has been
linked to a variety of diseases, including cardiovascular ill-
ness [17], Alzheimer’s disease [18], and type 2 diabetes
[19]. The IncRNA CDKN2B-AS1 has been shown in a num-

ber of studies to be an independent diagnostic biomarker in
breast cancer due to its abnormal expression pattern [20].
Similar findings were found in our investigation, which also
indicated CDKN2B-possible AS1’s carcinogenic impact in
TC. Furthermore, tumor cells, immune cells, and stromal
cells may all produce chemokines, which activate various
signaling pathways via cell surface receptors to attract
immune cell subpopulations to TME, regulating tumor
immune responses spatiotemporally [21]. Chemokine net-
works have the potential to promote or inhibit tumor cell
growth, invasion, and metastasis through their effects on
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tumor cells or tumor-associated immune cells. As a result,
targeting chemokines and their receptors is a successful
technique for treating cancer. As a consequence, the findings
from our DEGs investigation will aid in the development of
novel strategies for targeting multichemokine-based
therapeutics.

We found that most of the immune cells were upregu-
lated in the CDKN2B-ASI high expression group, except
for Th17 cells, Tgd, pDC, and NK cells. Numerous studies
indicate that CD8+ T cell subsets are critical for tumor man-
agement, as shown by the link between the quantity of CD8+
T cells in tumors prior to treatment and the response to PD-
1 therapy [22]. Circulating CD8+ T cells are stimulated and
transformed into effector CD8+ T cells after penetrating
tumor tissue [23]. Additionally, CD4+ T helper cells assist
DCs in the preparation and activation of CD8+ T cells
[24]. Meanwhile, antitumor immunosuppression mediated
by CD4+ Treg cells is the primary mechanism of tumor
immune evasion and immunotherapy resistance. Due to
persistent tumor antigen stimulation, immunosuppressive
cells, and physicochemical imbalance, effector CD8+ T cells
gradually degenerate, resulting in decreased proliferation
and secretion of effector cytokines, a phenomenon referred
to as T cell depletion [25]. As a result, the main restriction
of tumor immunotherapy is the restoration of CD8+ T cells’
anticancer immunological function. Given the effect of
CDKN2B-AS on a large number of cells in TME, we may
ameliorate this situation by upregulating the expression of
CDKN2B-ASI.

However, this study only used the data from the public
database TCGA, and there was no condition to detect
in vitro, which was a limitation of our study.

5. Conclusions

In summary, this study identified CDKN2B-ASI as a prog-
nostic indicator of TC associated with immune cell
infiltration.
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