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Background and Objective: In recent years, magnetic resonance imaging (MRI) has shown excellent 
results in the study of the prostate gland. MRI has indeed shown to be advantageous in the prostate cancer 
(PCa) detection, as in guiding targeting biopsy, improving its diagnostic yield. Although current acquisition 
protocols provide for multiparametric acquisition, recent evidence has shown that biparametric protocols 
can be non-inferior in PCa detection. Diffusion-weighted imaging (DWI) sequence, in particular, plays a 
key role, particularly in the peripheral zone which accounts for the larger part of the prostate. High b-values 
are generally recommended, although with the possibility of obtaining non-Gaussian diffusion effects, which 
requires a more sophisticated model for the analysis, namely through the diffusion kurtosis imaging (DKI). 
Purpose of this narrative review was to analyze the current applications and clinical evidence regarding the 
use of DKI with a main focus on PCa detection, also in comparison with DWI. 
Methods: This narrative review synthesized the findings of literature retrieved from main researches, 
narrative and systematic reviews, and meta-analyses obtained from PubMed.
Key Content and Findings: DKI analyses the non-Gaussian water diffusivity and describe the effect 
of signal intensity decay related to high b-value through two main metrics (Dapp and Kapp). Differently from 
DWI-apparent diffusion coefficient (DWI-ADC) which reflects only water restriction outside of cells, 
DKI metrics are supposed to represent also the direct interaction of water molecules with cell membranes 
and intracellular compounds. This review describes current evidence on ADC and DKI metrics in clinical 
imaging, and finally collect the results derived from the main articles focused on DWI and DKI models in 
detecting PCa.
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Introduction

Prostate cancer (PCa) is one of the most diagnosed cancers 
affecting men and represents one of the major causes of 
cancer-related death (1).

Current algorithms for PCa diagnosis and management 
provide different markers in the attempt to precociously 
diagnose PCa, since it could be asymptomatic in early phase 
or even associated with benign conditions (2-12). 

Biopsy remains the gold standard for a confident 
diagnosis of PCa, although progression of technologies 
has led to increasing interest for advanced imaging (13,14) 
(Figure 1). 

Notably, in latest years, magnetic resonance imaging 
(MRI) has assumed a primary role in the study of various 
districts and pathologies, becoming an integral component 
for diagnosis, risk stratification and staging of different 
cancers, and lately for targeting treatment (15-32). 

Good diagnostic validity of MRI for PCa diagnosis 
derives from a high capability in combining morphological 
and functional data (33-43). From the study of Dola et al., 
multiparametric MRI (mpMRI) reached a sensitivity and 
specificity of 82.6% and 91.3%, respectively, with a positive 
and negative predictive value near to 100% (44). 

MRI ability to adequately detect prostate lesions translate 
also in an improved diagnostic yield of biopsies, mostly 
through targeting the sample, and a good performance to 
detect local recurrency (45,46). 

Current recommendations for prostate MRI acquisition 
protocol and interpretation, Prostate Imaging-Reporting 
and Data System (PI-RADS v2 and v2.1), edited by the 
American College of Radiology and ESUR, advise the 
acquisition of T2-weighted (T2W), diffusion-weighted 
imaging (DWI) and dynamic contrast-enhanced (DCE) 
sequences.

However, it remains essential to codify appropriate 

decision algorithm capable of modeling the pre-test risk 
of patients in order to help the standardization of the MRI 
approach. 

Controversies in prostate MRI 

The improvement of imaging accuracy for PCa diagnosis 
through new MRI techniques and sequences remains 
today a primary target for the radiology community, e.g., 
in the latest years, several studies focused on the use of 
quantitative analysis and computer-assisted diagnosis 
(CAD) methods, including artificial intelligence (AI) tools, 
to mitigate the subjective nature of MRI interpretation 
(47-55). Besides, high attention is recently posed on deep 
learning and radiomics application in various district 
and pathologies, including PCa (16,17,56-66). However, 
radiomics has shown a translational gap in clinical practice, 
and many issues remain to be solved.

Meanwhile, main concern regards DCE, considering 
that PI-RADS v2.1 poses greater emphasis on T2W and 
DWI as primary sequences for PCa diagnosis, confining 
DCE as a dichotomic variable (67,68). A wide literature 
recently highlighted the overlapping diagnostic validity of 
biparametric and multiparametric protocol in detecting 
clinically significant PCa (43,69-75). 

Actually, mpMRI showed a relative superior sensitivity 
than biparametric protocol, returning the mpMRI a valuable 
complement in equivocal cases or smaller lesions, although 
with the risk for higher indolent cancer detection (69). 

On the other hand, biparametric approach needs high 
standard of image quality and level of expertise than 
multiparametric ones. In particular, DWI optimization 
remains crucial for a correct interpretation of prostate MRI. 

Current recommendations advise for high b-values 
acquisition to improve DWI accuracy, although higher 

Conclusions: DKI advantages, compared to conventional ADC analysis, still remain controversial. Wider 
application and greater technical knowledge of DKI, however, may help in proving its intrinsic validity in 
the field of oncology and therefore in the study of clinically significant PCa. Finally, a deep understanding 
of DKI is important for radiologists to better understand what Kapp and Dapp mean in the context of different 
cancer and how these metrics may vary specifically in PCa imaging.
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b-values pair with a reduced signal-to-noise ratio. 
Moreover, ultrahigh b-values often reveal the presence 
of non-Gaussian diffusion effects, which requires a more 
sophisticated model for the analysis (76,77). 

Purpose of this narrative review is to analyze the 
application of DWI and diffusion kurtosis imaging (DKI) 
for prostate analysis and discuss current evidence of 
DKI approach in prostate field. We present this article 
in accordance with the Narrative Review reporting 
checklist (available at https://gs.amegroups.com/article/
view/10.21037/gs-23-53/rc). 

Methods 

Information used to write this paper was collected from 
PubMed (keywords: DKI; DWI; prostate cancer; and 
combination of this words) and included narrative overview; 

clinical research; systematic review and meta-analysis. The 
sources are also listed in Table 1.

Discussion

DWI

Owing to its unique sensitivity to the evaluation of 
molecular self-diffusion of water, DWI is a powerful tool 
for the non-invasive study of micro-structural properties of 
biological tissue in vivo. 

Specifically, DWI analyzes the spontaneous mobility 
of water molecules (termed Brownian motion) reflecting 
their degree of motion (termed diffusion), thus potentially 
mirroring a cellular abnormality in a specific biologic tissue 
(78-82). 

As diffusion is mostly restricted by cell membranes, 

Figure 1 A 60-year-old male with increased PSA (last value 9.5 ng/mL). Patient referred nocturia, with a recent TRUS biopsy resulted 
negative. The patients underwent a mpMRI with a rounded lesion (white arrowheads in all images) of 8 mm localized in apex (left 
posterolateral peripheral zone). (A-D) Images show axial section. (E,F) Images show coronal and sagittal view, respectively. Low signal 
intensity in T2 sequences and high DWI and low ADC signal intensity allow to classify the lesion as PI-RADS v2.1: 4. After a fusion biopsy 
the lesion was classified as acinar adenocarcinoma of prostate, with a GS of 4+4=8 (Grade Grouping 3 according to the WHO 2016). PSA, 
prostate-specific antigen; TRUS, transrectal ultrasound; mpMRI, multiparametric magnetic resonance imaging; DWI, diffusion-weighted 
imaging; ADC, apparent diffusion coefficient; PI-RADS, Prostate Imaging-Reporting and Data System; GS, Gleason score; WHO, World 
Health Organization. 
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the extent of restriction of free motion could be indeed 
proportionate to the cellular density of a tissue (83-85). 

DWI currently results as one of the main sequences in 
detection and characterization of cancer lesion (86-93). 

In prostate gland, as example, reduction in the 
movements of free water can derived from the replacement 
of large interstitial spaces and glandular lumens by nests of 
tumor cells and fibrous stroma as in PCa (46,94-99).

DWI is recognized as a primary determining sequence to 
assign the PI-RADS score for lesions within the peripheral 
zone (which account for 70–75% of the glandular tissue, 
and where the 85% of PCa cases are localized), identifying 
5 scores based on the degree of restriction and the size of 
the restricted area (68,100). 

DW-MRI most commonly relies on single-shot echo-
planar-imaging spin-echo sequences with an application 
of two rectangular gradient pulses of an equal strength, 
applied before and after a 180° refocusing pulse (101). 
“Restricted” water molecules are dephased by the first pulse 
and completely rephrased by the second pulse (which gives 
back high signal) (102). 

The strength and duration of the gradient pulses is 
expressed by the b-value. 

High b-value are helpful for the visualization of clinically 
significant PCa by preserving the signal intensity only in 
the highly restricted area, especially in sub-capsular lesions 
(103-116).

Usually three b-values are obtained in clinical practice 

(with low values of about 50 s/mm2, and the higher one 
of at least 1,000 s/mm2), with current recommendation 
suggesting also high b-value for an adequate acquisition, 
although there is no widely accepted “high b-value” 
available in literature. Maximum b-value ranges from 2,000 
to 3,000 seconds/mm2 (29), while higher b-values are not 
recommended. 

From the study of Metens et al., highest tumor visibility 
was reached using b-values ranging from 1,500 to  
2,000 seconds/mm2, with the best contrast-to-noise ratio 
(CNR) for b 1,500 seconds/mm2 using a 3-T magnetic 
resonance (MR) scanner (117). These results were 
confirmed by Katahira et al., who found the highest 
sensitivity (73.2%), specificity (89.7%) and accuracy (84.2%) 
for PCa detection using a b-value of 2,000 seconds/mm2 in 
addition to T2W imaging (T2WI) (106). 

However, sensitivity in detecting clinically significant 
PCa tend  to  decrease  wi th  b-va lue  h igher  than  
3,200 seconds/mm2 (0.871 to 0.800), considering that signal-
to-noise ratio (SNR) decreases as the b-value increases (118).

Historically, one of the main limits of MRI lies in fact, 
in the low ability to obtain good images quality at b-values 
greater than 1,000 seconds/mm2 due to insufficient SNR. 
Improvements in hardware and software however has 
recently enable the acquisition of ultrahigh b-value (119). 

Moreover, acquiring DWI at ultrahigh b-values often 
reveals the presence of non-Gaussian diffusion effects, thus 
requiring a more sophisticated model for analysis (e.g., 

Table 1 The search strategy summary

Items Specification

Date of search Start of research: June 2021; last editing: July 2023

Databases and other sources searched PubMed

Search terms used DKI, DWI, prostate, prostate cancer

Timeframe 2000–May 2023

Inclusion and exclusion criteria Inclusion criteria: research article, narrative review, systematic review, meta-analysis (only 
English article)

Selection process The research of literature was performed independently by four different authors (one senior 
researcher and three junior researchers) who then compared searches to avoid overlap. The 
resulting articles was then analyzed by the senior researcher who cataloged the evidence of 
each paper dividing them by category as follows: paper concerning the state of the art of MRI 
and prostate cancer; paper concerning the basic principles of DWI-ADC and DKI sequences; 
paper concerning evidence of DWI-ADC and DKI performance in PCa diagnosis. The final 
manuscript was compiled following the evidence and cataloging method

DKI, diffusion kurtosis imaging; DWI, diffusion-weighted imaging; MRI, magnetic resonance imaging; ADC, apparent diffusion coefficient; 
PCa, prostate cancer.
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DKI) (120). 
Other significant advantages derive from apparent 

diffusion coefficient (ADC) (121) maps. ADC refers to the 
measure of the magnitude of diffusion, resulting as the 
expression of the signal decay with increased b-value.

Water molecules restriction derived from areas with 
densely packed tumor cells, shows bright signal on DW-
MRI and darker on the ADC map during visual qualitative 
assessment. 

At least two b-values allows the calculation of ADC.
According to the ESUR guidelines, lower recommended 

values is  50–100 seconds/mm2 while high b-value 
is  recommended in the range from 800–1,000 to  
2,000 seconds/mm2.

However, besides the qualitative analysis, ADC allows 
also a quantitative assessment, proving to be a useful marker 
of tumor aggressiveness (122).

In fact, ADC values showed high correlation with 
cellularity in different study. 

Different options are available for quantitative analysis, 
with ADC-ratio showing the higher accuracy (123), thus 
improving MRI accuracy in detection and localization of 
PCa.

Uncertainty regarding the reproducibility of the ADC 
hampers the use of quantitative DWI in PCa-MRI. From 
the study of Boss et al., test-retest repeatability and multi-day 
reproducibility were largely equivalent, with an inter-reader 
reliability for focal lesion ADC high across time points. 
However, controversial results derive from literature, and a 
quantitative ADC analysis results still limited (124-126).

Noteworthy, in latest years radiomics and machine 
learning (ML) have emerged as novel techniques for MRI 
analysis, through a quantitative assessment of intra- and 
intertumoral heterogeneities in the effort to extract latent 
information from standard acquisition (the so-called 
“radiomics hypothesis”). 

In particular, texture analysis, as part of radiomics, 
allows grey-level intensity and pixels’ position, arrangement 
evaluation, and voxel intensities interrelation (127). 

Several researchers have reported the usefulness of ML 
models using texture features extracted from DWI and 
T2WI for detecting and grading PCa. From the study of 
Fehr et al., PCa diagnosis can be improved by combining 
data-augmented classification together with ML model, 
compared with using ADC mean or T2 signal intensities 
alone [e.g., combined data reached an accuracy of 93% in 
differentiating Gleason Score (GS) of 6 and ≥7 for cancers 
occurring in both peripheral and transition zones vs. 58% 

using ADC mean only] (128).
Literature however is still lacking extensive studies 

including texture analysis for PCa, and validation studies in 
large cohorts are needed. 

DKI

DKI analyses the non-Gaussian water diffusivity. 
Specifically, DKI model describe the effect of signal 

intensity (SI) decay related to high b-value. Logarithmic 
SI decay plot for high b-value exhibits a non-linear shape, 
with a positive deviation from the plot of the mono-
exponential model [mono-exponential model, valuable for 
low b-values up to 600–1,000 seconds/mm2, applies a linear 
fit to the natural logarithm of the signal intensity (SI)]. This 
deviation indicates the presence of water diffusion behaviors 
different from Gaussian predictions. Accordingly, both 
models should be applied (129).

DKI model uses two main metrics, defined as Dapp and 
Kapp.

Kapp refers to the apparent diffusional kurtosis (unitless) 
and reflects the more peaked distribution of tissue 
diffusivities occurring within the setting of non-Gaussian 
diffusion behavior. 

Dapp is the diffusion coefficient (unit: ×10−3 mm2/s, μm2/
millisecond, or ×103 μm2/s) corrected to account for the 
observed non-Gaussian behavior (130). Dapp is determined 
by the slope of the SI decay plot as b approaches to 0 (131).

Differently from other mathematical model including the 
bi-exponential one, DKI model potentially better describes 
water diffusivity in tissues at ultrahigh b-values, providing 
also an additional parameter (i.e., Kapp) that contains specific 
information on the non-Gaussian diffusion behavior. 
However, up to date, all models for high b-value diffusion-
weighted images in PCa, including the biexponential, 
kurtosis, stretched exponential, and gamma distribution 
models achieve similar areas under the curve (AUCs) 
for discrimination of normal and cancer tissue, although 
biexponential and gamma distribution models produce 
statistically preferred fits (132).

Kapp is a phenomenological parameter with no biophysical 
correlate, similar to ADC. 

ADC, as mentioned, reflects only water restriction 
outside of cells, which is influenced by tissue architectural 
properties. Therefore, besides the increasing cellular 
density, greater concentration of macromolecules and 
increased viscosity also can affect ADC. 

Kapp is supposed to represent the direct interaction of 
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water molecules with cell membranes and intracellular 
compounds, although other factors could influence these 
interactions. From the studies of Le Bihan (129), complex 
interaction of water molecules, interfaces and protein, with 
a polar nature of micromolecular components, may result 
in a significant restriction to water motion and contribution 
to non-Gaussian diffusion observations. Increased 
kurtosis could occur in the setting of more irregular and 
heterogeneous environments with many or large interfaces, 
including the increased nuclear-cytoplasmic ratio of tumor 
cells (133-135). 

However, some technical aspect should be considered for 
DKI analysis.

First, DKI analysis needs separate post-processing 
software since current MR systems do not offer in-line DKI 
post-processing options. 

DKI assessment should offer two maps (Dapp and Kapp).
Dapp map is similar to ADC map. Therefore, ADC and 

mean diffusivity values in PCa resulted lower than the 
regular parenchyma, while mean kurtosis value resulted 
higher (136-138) (Figures 2,3). Nevertheless, quantitative 
analysis of both Dapp and Kapp values is recommended since a 
reduced of Dapp not necessarily pairs with elevated kapp, such 
as for viscous or turbid fluid.

Second, to increase DKI metrics accuracy, sufficient 
SNR is critical. In fact, low SI leads to biased estimation of 
Kapp (139,140). Therefore, excessively high b-values (i.e., 
over 3,000 s/mm2) are therefore discouraged (141). Also, the 
use of a 3-T system, when available, could be a successful 
strategy to improves SNR (142).

In this regard, obtaining adequate SNR using high 
b-value is often difficult in body imaging. In fact, the use of 
sequences with faster acquisitions to avoid typical artifacts 
(e.g., breathing artifact) is associated with a faster decay of 
the signal. Moreover, DKI requires a minimum of three 
b-values, although with the risk of increasing the overall 
scan time and the likelihood of motion artifacts (142). 

On the other hand, b-values including both high 
(500–1,000 s/mm2) and ultrahigh (1,500–2,000 s/mm2) 
ranges, may be useful for successfully capturing the mono-
exponential and non-Gaussian components of the SI decay 
curve, respectively. 

Therefore, the optimal number of b-values to obtain 
cannot be strictly prescribed and will depend on the clinical 
application, given the pronounced risk of longer acquisition 
and subsequent artifact (143,144). 

DKI and PCa

DKI was first described in 2004 (145) and 2005 (131), 
and initially applied exclusively for brain imaging. Among 
multiple extra-cranial sites, DKI was recently explored also 
in PCa. However, the relatively young age of this analysis 
pairs with contrasting results especially about its added 
value compared to standard DWI protocol. 

First interesting results came from the study of 
Rosenkrantz et al. (146), including a comparative analysis 
between diffusion imaging metrics and 121 cancerous 
sextants from 47 prostate patients (70 with a GS of 6, and the 
remaining 51 cancerous sextants with a GS greater than 6). 

From a mixed-model analysis of variance and ROC 
analysis, DKI metrics resulted significantly altered both in 
tumor compared to normal parenchyma as well as in tumor, 
with respect of the GS grading. Notably, Kapp showed a 
higher sensitivity than ADC and Dapp for tumor vs. regular 
parenchyma differentiation (93.3% vs. 78.5% of ADC, 
P<0.001; and vs. 83.5% of Dapp, P<0.001), as a higher AUC 
for GS differentiation (146). 

The obvious clinical impact of a correct differentiation 
of the degree of cancer aggressiveness is also shown by the 
recent evidences regarding the post-operative upgrading 
of the GS, widely recognized as an unfavorable prognostic 
factor both for a worse patient prognosis and for the risk of 
retreatment (147-149). 

Therefore, imaging metrics capable in correcting staging 
a higher tumor aggressiveness and potential post-operative 
GS upgrading should be considered of primary importance 
in regular analysis. 

In this regard, some interesting evidences are suggested 
by the study of Hectors et al., in which DKI shows a 
good correlation with the histopathological parameters 
of PCa (150); and the study of Wu et al. showed that a 
comprehensive consideration of DKI and prostate-specific 
antigen (PSA) may be a promising approach to predicting 
GS upgrade, with an AUC of the model Kapp-PSA reaching 
0.868 vs. 0.819 shown by the single Kapp parameters (151). 

A better estimation of tumor aggressiveness should 
be mandatory also in active surveillance patients, with 
preliminary results of a different study of Rosenkrantz  
et al., suggesting that diffusional kurtosis imaging findings 
may have more value than standard DWI as a marker of 
adverse final pathologic outcome among active surveillance 
candidates (152).
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Of note, two other study corroborate an advantageous 
DKI impact. 

From the study of Park et al., comparing the diagnostic 
performance of DKI metrics and ADC for determination 
of clinically significant prostate cancer (csPCa) (i.e., GS >7) 

in 92 patients, a major sensitivity of DKI was highlighted 
compared to mono-exponential ADC (153). 

And similarly, robust results derived also from a recent 
meta-analysis of Shen et al., including 14 studies involving 
1,847 lesions in 1,107 patients. 

Figure 2 Prostate of considerably increased volume. Evidence of multiple nodular lesions scattered in the glandular parenchyma, the largest 
in the central and left lateral area with a diameter of 40 mm (thick white arrow). DWI sequences confirm diffusion restriction of water 
molecules at this level, classified as PI-RADS 4. ADC, apparent diffusion coefficient; DT, tissue pure diffusion; FP, perfusion fraction; DP, 
pseudo-diffusion; MD, mean diffusivity; MK, mean kurtosis; DWI, diffusion-weighted imaging; PI-RADS, Prostate Imaging-Reporting and 
Data System.
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Pooled analysis showed an overall AUC of 0.89 for Kapp 

and 0.92 for Dapp vs. 0.89 of DWI, with the superiority of 
Dapp to Kapp and ADC in separating malignant cancers from 
benign lesions, also confirmed by their subgroup analysis of 
PCa (154).

These finding could suggest an added value of DKI to 
the routine imaging protocol for screening cancer.

However,  the  body of  l i terature  resul ted s t i l l 
controversial on DKI superiority considering that different 
works showed also a failed superiority of DKI metrics than 

Figure 3 Prostate of normal volume, with a nodular lesion (thick white arrow) at level of the left anterior median-paramedian portion 
(diameter of 20 mm). DWI sequences confirm diffusion restriction of water molecules at this level. The lesion was classified as PI-RADS 
5. ADC, apparent diffusion coefficient; DT, tissue pure diffusion; FP, perfusion fraction; DP, pseudo-diffusion; MD, mean diffusivity; MK, 
mean kurtosis; DWI, diffusion-weighted imaging; PI-RADS, Prostate Imaging-Reporting and Data System.
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mono-exponential ADC. 
Firstly, from the study of Quentin et al., including 14 

PCa patients and 10 healthy volunteers, although the mean 
kurtosis value was significantly higher in PCa than in the 
normal peripheral and central zones, DKI metrics weakly 
correlated with GS (155).

Secondly, from the study of Roethke et al., prostate 
DKI yields no significant added value for cancer detection 
compared with a standard DWI-derived mono-exponential 
ADC measurement (156). 

Similar result was shown also from the study of Tamada 
et al. which included a larger population sample (255 
patients), with the purpose to compare the value of DW-
MRI and DKI for detection and characterization of PCa 
(157,158).

ADC and Kapp, in fact, were highly correlated, had 

similar diagnostic performance, and were concordant for 
the various outcomes in the large majority of cases, with 
non-different AUC for csPCa differentiation (P=0.15). 

Finally, from a recent meta-analysis of Si et al., DKI does 
not provide significant added value for tumor detection in 
the peripheral zone. Because of the significant overlap in 
quantitative values between different tissue types, neither 
DKI nor ADC alone seems promising for a patient-based 
assessment of tumor aggressiveness. Therefore, for routine 
clinical application, ADC derived from single-exponential 
DWI remains the standard (156,159,160). A summary of the 
mentioned studies published focusing on DKI in prostate 
analysis is shown in Table 2. 

Given these premises, DKI did not show a clear added 
value compared with standard DWI for clinical PCa, 
therefore remaining debatable whether it should be 

Table 2 Overview of main studies included in the review 

Study Journal Country
No. of 

patients

Type of 

paper

Validation of 

results
Results

Rosenkrantz  

et al. (146)

Radiology USA 47 Original Systematic  

sextant needle 

biopsy

K higher in cancerous sextants than in benign PZ

K higher in cancerous sextants with higher rather than lower GS

K showed greater SE than ADC or D (93.3% vs. 78.5% and 83.5%, 

respectively), with equal SP

K had significantly greater AUC for differentiating sextants with low- and 

high-grade cancer than ADC 

Hectors et al. 

(150)

Radiology USA 24 Original Prostatectomy DWI parameters (including DKI) were significantly different between 

prostate cancer and PZ

Kurtosis showed significant correlations with histopathologic parameters 

(P<0.04)

Wu et al. (151) AJR Am J 

Roentgenol

China 52 Original Prostatectomy K max had the highest ROC AUC value (0.819, P<0.05)

PSA-K max had the highest AUC (0.868, P<0.05) and Youden index (0.652)

Rosenkrantz  

et al. (152)

AJR Am J 

Roentgenol

USA 58 Original Biopsy cores Only D was significantly lower in patients with adverse final pathologic 

findings

Park et al. (153) Abdom Radiol 

(NY) 

Korea 92 Original Pathologic 

topographic maps 

or systemic biopsy 

results

Similar ROC-AUC of K, ADC and D for discriminating CSC from non-CSC

Shen et al. (154) Clin Imaging China NA Meta-

analysis

NA Pooled analysis showed a superiority of D analysis to K and ADC:

K = SE: 0.83; SP: 0.83; +LR: 4.61; −LR: 0.22; AUC: 0.89

D = SE: 0.85; SP: 0.85; +LR: 6.39; −LR: 0.19; AUC: 0.92

ADC = SE: 0.82; SP: 0.85; +LR: 4.75; −LR: 0.24; AUC: 0.89

Quentin et al. 

(155)

Magn Reson 

Imaging

Germany 24 Original Biopsy proven 

PCa

Monoexponential ADC is sufficient to discriminate prostate cancer from 

normal tissue (b-values ranging from 0 to 800 s/mm)

Table 2 (continued)



Gland Surgery, Vol 12, No 12 December 2023 1815

© Gland Surgery. All rights reserved.   Gland Surg 2023;12(12):1806-1822 | https://dx.doi.org/10.21037/gs-23-53

incorporated into routine clinical imaging, also considering 
the longer scan time given the need to acquire at least three 
b-values.

However, the need to optimize MRI protocols for cancer 
screening is continuously growing, with high attention on 
non-conventional analysis, as radiomics. And therefore, 
this evidence may represent the starting point for the 
development of protocols including the use of DKI, thanks 
to its promising diagnostic application and interesting 
preliminary results in PCa detection and staging (161).

Conclusions

DWI and its associated ADC map remain, at present, 
the most reliable imaging approach to the PCa. Recently, 
different studies have examined the value of DKI compared 
with standard DWI in detecting PCa and assessing 
its aggressiveness. However, the results still remain 
controversial, probably limited also from the study samples 
investigated. Wider application and greater technical 
knowledge of DKI, however, may help prove its intrinsic 
validity in the field of oncology and therefore in the study 
of csPCa.
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No. of 
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Type of 

paper

Validation of 
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Roethke et al. 

(156)

Invest Radiol Germany 55 Original Image-guided 

targeted biopsy

D was significantly lower in tumor compared with control regions

K was significantly higher in tumor

D was significantly higher than standard ADC both in tumor regions and in 

controls

ROC analyses showed similar capability between DKI and ADC for 

detection of PCa

ROC analyses showed significant capability between DKI and ADC for 

discrimination between high- and low-grade findings

Tamada et al. 

(157)

Radiology USA 285 Original Prostatectomy ADC and K showed significant differences for benign vs. tumor tissues

ROC AUC-ADC (0.921) > ROC AUC-K (0.902) for benign vs. malignant 

tissue but was similar for high GS discrimination

Si et al. (159) AJR Am J 

Roentgenol

China NA Meta-

analysis

NA ADC = pooled SE: 0.89; pooled SP: 0.86; ROC AUC: 0.93

D = pooled SE: 0.91; pooled SP: 0.78; ROC AUC: 0.89

K = pooled SE: 0.87; pooled SP: 0.85; ROC AUC: 0.93

K, kurtosis; PZ, peripheral zone; GS, Gleason Score; SE, sensitivity; ADC, apparent diffusion coefficient; D, diffusion; SP, specificity; AUC, area under the 

curve; DWI, diffusion-weighted imaging; DKI, diffusion kurtosis imaging; max, maximum; ROC, receiver operating characteristic; PSA, prostate-specific 

antigen; CSC, cancer stem cells; NA, not available; LR, likelihood ratio.
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aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved.
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