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Abstract

Many aspects of the laboratory environment are not tailored to the needs of rodents, which

may cause stress. Unpredictable stressors can cause ulcers, prolonged pituitary-adrenal

activation, and anhedonia. Similarly, pain has been demonstrated to slow wound healing,

and mice experiencing pain exhibit altered behavior. However it is unknown how husbandry,

which occurs when the mice are inactive, and lack of analgesia, specifically in a punch

biopsy procedure, effects animal physiology, behavior, and welfare, particularly as it relates

to sleep fragmentation. We hypothesized that sleep fragmentation, induced by unpredict-

able husbandry and lack of pain management will slow wound healing. Two main treatments

were tested in a factorial design in C57BL/6 mice of both sexes (64 mice total); 1) analgesia

(carprofen and saline) and 2) sleep disruptions (random and predictable). Mice were singly

housed in a non-invasive sleep monitoring apparatus on arrival (Day -4). Disruption treat-

ments were applied from Day -3 to 2. All mice received a punch biopsy surgery (Day 0) with

topical lidocaine gel and their analgesic treatment prior to recovery, and on Days 1 and 2.

Nesting behavior was assessed daily and a sugar cereal consumption test, as a measure of

anhedonia, was conducted on Days -1 to 2. On Day 3, mice were euthanized and wound tis-

sue and adrenal glands were collected. We found that the disruption predictability had no

effect on mouse sleep, wound healing, or adrenal cortex:medulla ratio. It’s possible that the

disruption period was not long enough to induce chronic stress. However, male mice who

received analgesia slept more than their female counterparts; this may be related to sex dif-

ferences in pain perception. Overall, it does not appear that the predictability of disturbance

effects sleep fragmentation or stress responses, indicating that husbandry activities do not

need to occur at set predictable times to improve welfare.
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Introduction

As reproducibility and successful translation of research findings become more difficult to

achieve, the scientific community has begun looking for explanations and solutions. One par-

ticular area of interest has been the effect of the laboratory environment, and the animals’

experience of it, on research models [1–6]. The laboratory environment has been tailored to

human preferences as much, if not more, than rodent needs. In turn, those unmet needs may

then induce physiological outcomes that disrupt research activities. Mice experience cold stress

at normal laboratory temperatures, depleting their energetic resources for reproduction[7–9].

Routinely provided corncob bedding is aversive and decreases sleep[10, 11], and typical han-

dling[12, 13] induces stress and alters performance in behavioral tests. Furthermore, labora-

tory mice are nocturnal, but live in a diurnal environment to accommodate human workers.

This raises a real risk that human activity during mouse rest periods is interfering with their

sleep quality, quantity, or both. That interference may then, in turn, be altering research find-

ings and complicating our ability to translate them to humans.

We have previously investigated the effect of timing (day or night) of husbandry distur-

bances (day vs night) [14]. We found that mice slept the same amount of time (both percentage

of time spent sleeping and mean bout length) whether they were disturbed at 10:00 AM or

10:00 PM. However, the timing of their sleep shifted in response to disturbance timing, though

in a very sex and strain or stock specific way. However, limiting entrance to the room to 1

time, in a specific 1 hour period of the day is impractical in a working vivarium setting. This

led us to wonder how we could apply these findings in a usable manner. We thought that the

unpredictability of human activity in the vivarium could affect mouse sleep in a way that a

brief, predictable disruption did not. Of particular concern was sleep fragmentation (the inter-

ruption of sleep either through waking or transitioning to a lighter sleep stage). It can induce

physiologic, metabolic, and (if experienced during gestation) epigenetic effects, including slo-

wed wound healing[15–19]. However, there is a major gap in the literature regarding the

impact of routine human activity on mouse sleep.

The ultimate function of sleep appears to be that of renewal. Anesthetized mice experience

increased interstitial cerebrospinal fluid flow, which refreshes ADP into ATP and removes

amyloid plaques [20]. Sleep is also a period of increased activity for pro-inflammatory cyto-

kines, which assist the healing process [21–23]. Sleep even improves the immune response to

vaccines [24]. So it should come as no surprise that sleep disruption could have serious impacts

on mouse welfare and research outcomes.

What we know of sleep fragmentation in mice has typically come from studies using mice

as a proxy for humans with sleep apnea or periodic limb movements [25]. Mechanized disrup-

tions are generally used to induce frequent arousals from sleep (every 1–2 minutes) [15, 16,

26], rather than trying to mimic vivarium situations and experiences that mice are exposed to.

In other words, we know about mouse sleep disruption when treating them like humans, but

we don’t know much about it when treating them like mice.

Unpredictability is stressful for animals; rats who receive unpredictable shocks develop

ulcers[27] and anhedonia[28], and rats given a choice will choose a predictable shock over an

unpredictable shock[29, 30]. Typical vivariums involve multiple unpredictable disruptions.

Animals from several projects may be housed in the same room, meaning researcher activities

may not be coordinated. Running water, cleaning equipment, and even caretakers can vary on

a daily basis. Not only are mice experiencing unpredictability of disruption, but these disrup-

tions are also occurring during the light phase, when mice would ordinarily be sleeping. This

combination may be sufficient to induce sleep fragmentation and stress.

Unpredictable disruption and mouse sleep, healing, and affect
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One method of assessing the physiological effects of stress is through measuring wound

healing; increased stress leads to slow or imperfect healing[31–38]. One stressor known to

slow wound healing is pain [39–44]. Pain slows the healing process in humans [42–44] and

alters general behavior; similarly, after experiencing a painful procedure, mice burrow less and

build less complex nests[45–48], and are slower to incorporate new nesting material into an

existing nest[49]. Additionally, pain interferes with sleep [50, 51], and sleep deprivation can

induce hyperalgesia in rats[52]. This suggests that a vicious cycle may exist between these fac-

tors and requires that the interaction between pain, sleep, and healing be considered.

The effects of sleep disruption are not solely physiological. Work in both humans [53–56]

and rodents [57] has shown cognitive changes after sleep deprivation and disruption, and

sleep dysfunction is also associated with mood disorders in humans [58–60]. These findings

indicate that an investigation of the potential welfare implications of sleep disruption should

also include assessment of changes in mental well-being.

Our hypotheses were that unpredictable disruptions are more disruptive to mouse sleep

than predictable disruptions. We also hypothesized that pain, following from lack of post-

operative analgesia would negatively affect nesting behavior and sleep patterning. We pre-

dicted that mice who experienced frequent, unpredictable disruptions during their normal rest

period would sleep less and/or have more fragmented sleep during the day and have stronger

indicators of stress (decreased sleep, wound healing, and sucrose consumption) than those

whose disruptions occurred at predictable times. We also predicted that mice who received

analgesia (rather than a control injection) would sleep more during their normal rest period

and have weaker indicators of stress.

Materials and methods

Ethical statement

This study was approved by the Purdue Animal Care and Use Committee (Protocol

1512001333), and conformed to all guidelines put forward by both the committee and the

Guide for the Care and Use of Laboratory Animals [61]. At the start of study, animals were

free of a list of common mouse infectious agents; further details may be found at http://www.

criver.com/files/pdfs/rms/hmsummary.aspx. All mice were monitored daily by trained mem-

bers of the research team for food and water consumption and overall health status, with no

adverse conditions or health outcomes noted.

Experimental design, animals, and housing

Two main treatments, in a factorial design, were assessed in naive C57BL/6NCrl mice of both

sexes (6 weeks of age; Charles River, Kingston, NY); 1) sleep disruption (unpredictable or pre-

dictable) and 2) analgesia administration (analgesia and saline). Each factorial combination

had four replicates for a total of 32 mice (Table 1). Mice were tested from May to June of 2016.

Table 1. Experimental factorial design.

Disruptions Predictable Unpredictable

Sex Male Female Male Female

Analgesia Y N Y N Y N Y N

Replicates 4 4 4 4 4 4 4 4

Factorial design with number of replicates (mice) per combination of treatments. Mead’s rule was used to determine

the number of mice needed based on our experimental design.

https://doi.org/10.1371/journal.pone.0210620.t001
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Mice were housed in one of the two sleep monitoring apparatuses (Fig 1). Each apparatus

houses 4 mice, each in a separate chamber; this allowed us to test 8 mice simultaneously. The

apparatus uses a piezoelectric mat underneath each cage to detect vibrational movement of the

mouse and therefore mice must be housed singly. Customized software (MouseRec Data Tool-

box, Signal Solutions, Lexington KY) uses an algorithm to process the signal and discern sleep-

ing respiratory patterns from waking respiratory patterns; this algorithm has been validated

using EEG, EMG, and visual evaluation [62]. A different algorithm also permits quantification

of activity level, where higher numbers indicate greater intensity of activity; we used this mea-

sure in an effort to discern whether awake mice changed their activity levels.

Visual barriers were in place between cages, but audible and olfactory contact was still pos-

sible. Each cage included a built in food hopper and water bottle opening. Each cage (6.0 in x

6.1 in x 6.1 in) was bedded with 32g of laboratory grade aspen shavings (Harlan, Indianapolis

IN) and 8g of nesting material (Enviro Dri, Shepherd Specialty Papers, Watertown, TN). Mice

were provided with an 18% protein laboratory diet (Harlan 2018, Indianapolis IN) and reverse

osmosis filtered water ad libitum. Lights were kept on a 12:12 light/dark cycle, with lights on at

05:00 and off at 17:00 hours. The room was maintained at 72± 2 F, and 36–64% humidity.

Upon arrival (Day -4 –see Fig 2), mice were randomly assigned to an analgesia treatment

using a random number generator (www.random.org). The experimenter was not blinded as

to their assignment, because the experimenter also prepared and administered the medica-

tions. Mice were weighed and placed in their cage within the sleep apparatus no longer than 1

hour before lights out.

Disruption treatments. Sleep disruptions began immediately after arrival. Because all

testing was conducted in a single room, all 8 mice in a test group were exposed to the same dis-

ruption treatment (unpredictable or predictable) simultaneously. Both treatments consisted of

the same 8 disruptions—presence of a stranger, a recorded conversation playing in the room, a

radio playing pop music, cage changing noises, presence of a t-shirt that was worn by a man,

running water, a running cage changing station with ventilation hood, and floor disinfection

(Table 2). These disruptions were chosen based upon activities that occur in a typical vivarium

and factors that are known to alter mouse behavior (such as the presence of a male investiga-

tor, or a shirt worn by one [63]). The order and duration of the disruptions were initially

Fig 1. Sleep apparatus viewed from above (A) and a close up side view of an individual mouse cage (B). Sugary cereal used for the sucrose

preference test can be seen in B.

https://doi.org/10.1371/journal.pone.0210620.g001
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scheduled in a random fashion, but the schedule itself was consistent across disruption repli-

cates. For instance, all mice experienced the same disruptions on the same day during the

experiment, for the same durations. The only difference was whether they were spread ran-

domly throughout the day (unpredictable) or consolidated at the beginning and end of the day

(predictable). No disruption was repeated in the same day, and there were a total of 4 disrup-

tions per day. Potential durations of disruption were 15, 30, 45, or 60 minutes; floor disinfec-

tion and running water only lasted 15 minutes due to practical and environmental

considerations. In the unpredictable disruption group, the interval between disruptions was

also randomized, with intervals between them of either 45, 60, 90, or 120 minutes. For the pre-

dictable disruption group, disruptions occurred between 2.5–3.5 hours after lights on (7:30–

8:30) or within an hour of lights off (16:00–17:00), with two disruptions scheduled for the

morning period, and two for the evening period. The exception to this schedule was on the

morning of the punch biopsy procedure; no disruptions were scheduled that morning.

Analgesia treatment. Mice assigned to the analgesia treatment group received 10mg/kg

carprofen subcutaneously on Day 0 (after wounding), Day 1, and Day 2. Mice in the analgesia

control group received an equal volume of saline subcutaneously on the same days as the anal-

gesia mice. On Day 1 and 2, a dorsal access mouse restrainer (Braintree Scientific, Braintree

MA) was used to hold the mice while an investigator administered a subcutaneous injections

in the caudal region, avoiding manipulation of the surgical area and the potential risk of medi-

cation leaking from the surgical site.

Punch biopsy procedure. After 4 days of disruptions (Day 0), all mice were anesthetized

with isoflurane in an induction chamber and maintained on isoflurane administered via nose

cone. We clipped and sterilized the cervical area of each mouse, placed them in lateral recum-

bency, and pulled the dorsal skin away from the animal, as if scruffing them. We then utilized

a 3mm biopsy punch (Sklar Surgical Instruments, West Chester, PA) to push through both lay-

ers of skin, creating 2 symmetrical 3mm full-thickness wounds. The wounds were not sutured,

stapled, or glued. Surgical order was balanced to account for order effects. During this proce-

dure, we used a chemical hand-warmer (HotHands, Kobayashi Americas, Dalton GA) to

Fig 2. Experimental timeline. Lists all measurements made on each day of experiment. Day -1 is considered baseline. Mice arrive on Day -4.

Abbreviations: BWT—bodyweight; Sleep—sleep monitoring; TINT—Time to Integrate Nesting Material Test; Food—food consumption; Sucrose—

sucrose consumption; Analgesia—analgesia treatment.

https://doi.org/10.1371/journal.pone.0210620.g002
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provide thermal support to the mice. All mice, regardless of analgesia group, received 0.05 mL

of 2% lidocaine gel topically applied to each wound for short-term local analgesia. Mice then

received their assigned analgesic treatment. Mice were then moved to heated recovery cages

until they were ambulating normally. Once recovered, they were returned to their home cage

in the sleep apparatus. Two post-operative health checks were performed two hours apart.

Sleep disruptions resumed as scheduled that afternoon.

Behavioral testing. Sleep and activity data were collected continuously via the sleep appa-

ratus. We began data collection once the final mouse was housed on Day -4 (prior to 17:00)

and ended by 9:00 the morning of Day 3, prior to euthanasia.

Mice were TINT tested[49] to assess pain and general welfare. In brief, in the TINT we

provide a small amount of new nesting material to mice 2–3 hours after lights on and gave

them 10 minutes to integrate this new material into their existing nest. A positive TINT

score means the material has been incorporated, and suggests positive welfare. A negative

TINT score suggests that the mice in that cage may be experiencing poor welfare, and per-

sonnel should investigate further. For this project, an investigator would enter the room, cut

a Nestlet (Ancare, Bellmore, NY) into 4 equal squares, deliver one piece to each cage, and

leave the room for 10 minutes. Upon returning to the room, the investigator assessed

whether or not the material had been integrated into the nest. In this case, ‘integrated’ means

‘had been transported to the main body of the nest’. TINT testing occurred daily at 8:00 AM.

This time corresponds with peak nest-building behavior [48]. The scores on Days -3 to -1

were considered ‘practice’, as mice have been shown to shorten their latency to incorporate

material with repeated exposures [49, 64], so data presented from Day -1 is used as their

baseline TINT.

Sucrose preference testing was used to assess anhedonia[65]. We did this by providing mice

with 5g of sugary cereal (Froot Loops, Kelloggs, Battle Creek MI; a fruit-flavored breakfast

cereal with approximately 12 g of sugar per 29 g of cereal) between 16:00 and 17:00 (prior to

Table 2. Sleep disruptions and durations.

Disruption Description Duration Number of

Occurrences

Cage change Investigator removes mice from cage, supplies fresh bedding and nesting material, replaces mouse 30 min 1

Cage change

noise

Investigator rattles cages containing corncob bedding and lids 45 min, 60 min 3 (45 min x1, 60 min

x2)

Conversation Smartphone used to play back each of two specific stand up comedy tracks (65–72 dB at cage level) 45 min 2

Exhaust fan Exhaust fan of cage changing station turned on (62 dB at cage level) 30 min, 60 min 3 (30 min x1, 60 min

x2)

Floor cleaning Investigator uses power washer to distribute cleaning solution, scrubs floors with scrub brush,

rinses with bucketed water, then squeegees floor dry

15 min 1

Male t-shirt Investigator places t-shirt that was worn the night before in the room near the cages 30 min, 60 min 3 (30 min x1, 60 min

x2)

Music Antenna radio tuned to local rock music station 15 min, 30 min, 45

min, 60 min

4

Running water Water left running in stainless steel sink (58–62 dB at cage level) 15 min 3

Stranger Unfamiliar person sits or stands quietly in room without interacting with mice 15 min, 45 min 2

Unfamiliar

smell

Investigator sits quietly in room while wearing strongly scented lotion 30 min 1

Disruption descriptions, durations, and number of occurrences. When disruptions occurred more than once, different durations were possible; if that was the case, all

duration times are listed. All mice experienced all disruptions.

https://doi.org/10.1371/journal.pone.0210620.t002
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lights out), and then weighing the remainder between 7:30 and 8:00 the next morning. This

allowed us to calculate the amount of cereal consumed each night; a decrease in consumption

is indicative of anhedonia. We conducted these tests on Day -1, Day 1, and Day 2.

Sample collection. On Day 3, mice were euthanized via carbon dioxide. Immediately

after euthanasia, mice were weighed and the punch biopsy area was excised, as well as sur-

rounding tissues. Adrenal glands were also collected, in order to assess HPA axis activation[66,

67]. All tissues were fixed in 10% neutral buffered formalin and embedded in paraffin. Sections

5 μm thick were stained with haematoxylin and eosin according to standard methods. Micro-

scopic examination was performed by a board-certified veterinary pathologist and the inter-

pretation was based on standard histopathological morphology. The pathologist (AD) was

blinded to the treatment groups. Wound width and re-epithelialization were quantified for all

mice. Wound width was defined as the distance between wound margins in which the original

epidermis was intact. Re-epithelialization was calculated as amount of newly formed epidermis

as a percentage of the wound margin. Newly formed epidermis was defined as less than 3 cell

layers thick of squamous epithelium devoid of stratum corneum.

Adrenal glands were sectioned en toto and representative sections were cut 50 micrometers

deep. One adrenal gland per mouse was used to calculate an average cortex to medulla length

ratio. Three cortical lengths and 3 cross-sectional medulla lengths were averaged and a ratio

was calculated for each mouse.

Data analysis

The experimental unit in all analyses was the individual mouse, and main treatments were dis-

ruption and analgesia. All data, with the exception of TINT success/failure, were analyzed

using up to 3rd degree factorial General Linear Model (GLM) in JMP (version 11, SAS Institute

Inc) of the following factors: sex, disruption treatment, analgesia treatment, experiment day

and (for sleep and activity data) lights on or off. To calculate food consumption, regular diet

and sucrose cereal consumption were combined to calculate the total intake, where applicable.

Individual mouse was the experimental unit and was used as a random factor, with sex, disrup-

tion treatment, and analgesia treatment nested within it. Cage location and sleep apparatus

were used as blocking factors. Bodyweight was included as a covariate with food consumption,

sucrose consumption, and adrenal cortex:medulla ratio. We used square root transformation

for sleep bout length and activity level data, and log transformation for adrenal cortex:medulla

ratio, in order to meet the assumptions of GLM. The assumptions of GLM (normality of error,

homogeneity of variance, and linearity) were confirmed post-hoc[68]. Significant effects were

then analyzed using post-hoc Tukey tests. All values are given as least squares

means ± standard error (LSM ± SE).

TINT success/failure was analyzed using up to 3rd degree factorial Generalized Linear

Model (GLIM) for binomial logistic regression, with Firth-adjusted bias, for the following fac-

tors: sex, disruption treatment, analgesia treatment, and day of experiment. Cage was used as a

fixed factor, with sex, disruption treatment, and analgesia treatment nested within it. Cage

location and apparatus number were used as blocking factors. Non-significant 3rd degree

interactions were removed from the model, which produced a lower AICc number, denoting

an improved model fit[69]. The full model had an AICc number of 220.972, while the reduced

model’s number was 215.399. Pairwise planned contrasts were subsequently conducted on lev-

els of significant factors to assess where differences arose, and were Bonferroni corrected for

multiple comparisons.

For sleep measures, we excluded data from Day 0 because mice underwent surgery that day

and that would alter sleep in a manner unrelated to our main treatments.

Unpredictable disruption and mouse sleep, healing, and affect
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Results

Sleep measures

Proportion of time spent sleeping. We found multiple effects on proportion of time

spent sleeping. A sex by analgesia treatment interaction (GLM, F(1, 21) = 6.38, P = 0.0196) indi-

cated that males who received analgesia slept more than females with analgesia. However, no

other differences between control animals or within the sex were observed. An interaction of

sex and whether the lights were on or off was also significant (GLM, F(1, 184) = 5.34,

P = 0.0219), with males sleeping more during lights off than females. Further a light phase by

day in experiment interaction (GLM, F(3, 184) = 26.99, P< 0.0001; Fig 3) showed that animals

slept less when the lights were on during Day 1 than Day -1, 2, or 3. Additionally, animals slept

less during lights off during Day -1 than they did on Days 2 and 3. And mice slept more during

lights on than lights off during Days 1, 2, and 3. Finally, a 3 way interaction between distur-

bance treatment, analgesia treatment, and light phase was significant (GLM, F(1, 184) = 14.32,

P = 0.0002). However, this effect was solely due to light phase, with mice sleeping more when

lights were on.

Sleep bout length. Mean sleep bout length had multiple significant interactions. Light

phase by the day of experiment (GLM, F(3, 184) = 18.42, P< 0.0001; Fig 4) showed that, during

lights on, mice had the shortest bout lengths on Day 1; during lights out, their bout lengths

were shortest on Day 2. There was also a significant interaction between sex, analgesia treat-

ment, and lights on/off (GLM, F(1, 184) = 4.48, P = 0.0356). However, post-hoc Tukey analysis

showed no differences between groups. Sex by analgesia treatment (GLM, F(1,78.49) = 5.59,

P = 0.0205) showed that female mice who received analgesia had shorter sleep bouts than

those in the control group; there was no difference in the male mice, or within treatments.

Activity levels

Mean activity level analysis showed several significant factors. Light phase by day of experi-

ment (GLM, F(3, 184) = 8.41, P < 0.0001; Fig 5) indicated a decrease in activity during lights off

for Days 1 and 3. During lights on, mice were more active on Day 1 than on Days 2 or 3. Addi-

tionally, sex by analgesia treatment by day of experiment (GLM, F(3,184) = 3.64, P = 0.0139; Fig

6) demonstrated that female mice in the analgesia control group were less active on Day 1 than

they were at baseline, and males in the analgesia treatment group were less active on Day 3

than at baseline. Finally, disruption treatment by analgesia treatment by light phase (GLM, F(1,

184) = 5.85, P = 0.0166) showed only one difference—that mice in the unpredictable disruption

plus analgesia control group were more active during lights off than lights on; there were no

other differences between lights on/off or treatment groups.

Sucrose consumption

Sucrose consumption, used as a measure of anhedonia or decreased affect, was affected by the

main effect of sex (GLM, F(1,24) = 5.49, P = 0.0277). Females were found to consume more sug-

ared cereal than males. The day of the experiment was also significant (GLM, F(2,50) = 10.78,

P = 0.0001). Mice consumed more sucrose on Days 1 and 2 than at baseline. Bodyweight was

included as a covariate, but was not significant.

TINT

TINT success (a measure of general welfare) analysis had multiple significant effects. Mice at

baseline were more likely to pass the TINT than on Days 1, 2, or 3 (GLIM, Χ2
(3) = 25.17,

P< 0.0001). The interaction of sex by disruption treatment was significant (GLIM, Χ2
(1) =
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6.82, P = 0.0090) but Bonferroni-corrected contrasts did not reveal any significant post-hoc

comparisons. Sex by analgesia treatment interaction was also significant (GLIM, Χ2
(1) = 11.98,

P = 0.0005). Males given analgesia were more likely to succeed than controls. Additionally,

females in the control group were more likely to succeed than their male counterparts. Finally,

Fig 3. Average percentage of time spent sleeping by light phase and day of experiment. Different letters indicate significant (Tukey, P< 0.05)

differences within categories. Data presented are LSM and SE.

https://doi.org/10.1371/journal.pone.0210620.g003

Fig 4. Average sleep bout length by lights on/off and day of experiment. Different letters indicate significant (Tukey, P< 0.05) differences within

categories, bars indicate differences between categories. Data presented are LSM and SE.

https://doi.org/10.1371/journal.pone.0210620.g004
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Fig 5. Mean activity level by light phase and day of experiment. Different letters indicate significant differences within categories, bars with asterisks

indicate differences between categories (Tukey, P< 0.05). Data were square root transformed for analysis; y-axis is back-transformed. Activity level is a

linear measurement from 0 to 3; higher values indicate higher levels of activity. Data presented are LSM and SE.

https://doi.org/10.1371/journal.pone.0210620.g005

Fig 6. Activity level by day of experiment, sex, and analgesia treatment. Bars with asterisks indicate differences between categories (Tukey<0.05).

Data were square root transformed for analysis; y-axis is back-transformed. Activity level is a linear measurement from 0 to 3; higher values indicate

higher levels of activity. Data presented are LSM and SE.

https://doi.org/10.1371/journal.pone.0210620.g006
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disruption treatment by analgesia treatment (GLIM, Χ2
(1) = 7.84, P = 0.0051) was significant,

but Bonferroni-corrected contrasts did not provide any significant comparisons.

Food consumption

Total food consumption had two significant main effects, sex (GLM, F(1, 20.91) = 4.99,

P = 0.0366) and day of experiment (GLM, F(3, 77.35) = 40.90, P < 0.0001). Female mice con-

sumed more than males, and mice at baseline and Day 1 consumed more than those on Day 2

and Day 3. Bodyweight was a significant covariate (GLM, F(1, 21.76) = 8.86, P = 0.007); as body-

weight increased, so did food consumption.

Bodyweight

Bodyweight was affected by 3 main effects. Sex (GLM, F(1, 27.71) = 53.26, P< 0.0001) showed

that males were heavier than females. Day of experiment (GLM, F(3,75) = 32.21, P< 0.0001)

indicated that mice weighed more at baseline than Day 1, but less than on Days 2 and 3.

Finally, disruption treatment (GLM, F(1, 27.71) = 7.81, P = 0.0093) was significant, with mice in

the unpredictable disruption group weighing more than those in the predictable group.

Histopathology

There were no significant factors in either percent re-epithelialization or adrenal cortex:

medulla ratio.

Discussion

Few of our hypotheses (decreased proportion of time spent sleeping, shorter sleep bouts,

decreased wound healing, decreased sucrose consumption, and increased adrenal cortex:

medulla ratio) were supported by our results (Table 3). Proportion of time spent sleeping and

sleep bout length were unaffected by predictability in disruption treatments, which was where

we had expected to see the strongest results. This may be an example of anthropomorphism,

where we as humans assumed that what we find unpleasant would also be aversive to the mice.

While the investigator (ARJ) found stopping work constantly to conduct disruptions very frus-

trating and distracting, the mice did not seem to have been affected in the same way. However,

it’s not clear whether the difference in perception by the mice was a matter of intensity of dis-

ruption, valence of disruption, or both. In fact, when compared to the percentage of time spent

sleeping for C57BL/6 mice in our previous study with this sleep apparatus [14], it would appear

that neither sleep disruption case had a strong effect.

Punch biopsies are used for wound healing studies[31, 34, 35, 70–74], and also for identifi-

cation[61]. However, there is no consensus on analgesia protocols for mice who have had this

procedure[31, 75, 76]. This seems to be a concern, since male mice who received analgesia

spent more time sleeping than their female counterparts. This may be related to sex differences

in pain perception. Females, in both humans and rodents, have been reported to perceive pain

more intensely than males [77–80]. So while male mice might have experienced sufficient pain

relief from the carprofen dosage, the females may not. This doesn’t explain why female mice

were more likely to succeed in the TINT, which is an indicator of pain. It’s possible that female

mice were, due to their lower bodyweight and increased heat loss to the environment, more

motivated to nest build for thermoregulation in spite of their discomfort. In the future, either

higher doses of analgesia or perhaps a combination of non-steroidal and opioid medication

could achieve effective relief, particularly for female mice, without altering behavior.
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Additionally, females who got analgesia had shorter sleep bout lengths than controls. This

implies fragmentation of sleep for treated mice, which is unexpected, as decreased pain percep-

tion would be expected to improve sleep quality rather than decrease it. However, some early

research into NSAIDs indicated that their administration may affect sleep quality, through

moderation of prostaglandin production, inhibition of melatonin synthesis, and increased

body temperature during sleep phases [81, 82]. This work has not been done in rodents, but

perhaps a similar phenomenon occurred with our female mice.

Histopathology measures were unaffected by any of our treatments. The sleep disruptions,

and subsequent stress that these treatments were meant to induce, may not have been suffi-

ciently intense and/or prolonged enough to induce adrenal morphology changes, and were

more acute than chronic. In studies where adrenal changes have been noted, durations of

stressors have been at least 2 weeks[83–86], and when a stressor only lasted for one week,

changes were not observed[87]. As far as the wound re-epithelialization, in rodents, wounds

contract quickly due to their panniculus carnosus[35]. This is a layer of muscle that permits

their skin to contract for healing. A wound splint process may have been helpful to prolong

the healing process and more accurately assess re-epithelialization (more similarly to humans)

[35]. However, it’s also possible that we didn’t sufficiently disrupt sleep in the mice, and there-

fore wound healing was not impaired.

Sucrose consumption results were also unexpected. We predicted that mice would have

higher baseline consumption than any post-operative time point, regardless of treatments.

Instead, we found exactly the opposite. Perhaps these mice required repeated exposures to

overcome any food neophobia[88], needing time to learn that the cereal was highly palatable.

Alternatively, this sucrose consumption pattern may be a reflection of how long mice actually

need to acclimate to a new environment after transport. Baseline sucrose testing began for our

mice approximately 3 days after arrival, with disruptions already occurring. These mice may

not have been disturbed enough to change their sleeping patterns, but a decrease in general

affect may have caused them to consume less sucrose.

Similarly our results for TINT success rate were lower than expected. The validation work

on TINT demonstrated that mice at baseline were consistently successful after a few training

tests [49, 64]; this was not the case for our mice. However, the mice in the referenced work had

been present at the study facility for much longer than ours had (personal communication

from BNG) and were almost certainly more acclimated to their environment.

Table 3. Measures, indication, hypotheses, and observations.

Measure What it indicates Hypothesized change Observed change

Percentage of time sleeping Level of sleep disruption # percentage for unpredictable disruptions No change, except for decrease on Day 1

post-op

Sleep bout length Level of sleep fragmentation # for unpredictable disruptions, # for analgesia controls # for female mice with analgesia

Activity level Behavioral patterning changes # post-op # in unpredictable disruption x analgesia

control group

TINT Presence of pain or # general

welfare

# for controls and unpredictable disruptions post-op # for analgesia controls

Sucrose preference Anhedonia—negative effective

state

# consumption for unpredictable disruptions and post-

op

" consumption post-op

Re-epithelialization of

wounds

Wound healing quality # re-epithelialization for unpredictable disruptions and

no analgesia

No difference

Adrenal cortex:medulla

ratio

Chronic HPA axis activation " ratio for unpredictable disruptions No difference

Measures, what they indicate, our hypothesized changes, and observed changes.

https://doi.org/10.1371/journal.pone.0210620.t003
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One thing that was not surprising was the decrease in activity levels on Days 2 and 3. While

perhaps counterintuitive, because presumably the mice were healing and should have been

experiencing less pain, those days corresponded with the first restraint and injections the mice

received. Mice responded negatively to these events, urinating, defecating, and vocalizing. This

was the only time vocalizations were observed during the project. This suggests that the mice

found the restraint extremely aversive, and their subsequent activity levels may be a reflection

of that. We know that mice react differently to different types of handling[89], and that nest

scores can be reduced after being handled by a novel individual[12]; this drop in activity may

be a manifestation of their apparent aversion to unconditioned handling.

While our results didn’t support our hypotheses, they do raise some interesting questions

regarding acclimation periods, sex differences in pain response, and just how disruptive

human activity actually is to mice (particularly in regards to sleep). This project would suggest

that direct interaction and restraint with the mice is more stressful than mere investigator pres-

ence or noise. However, this was only conducted with one strain of mice, over a relatively

short time period. It is possible that mice in longer term projects may experience those events

differently. At this time, we can’t make many recommendations, other than considering longer

acclimation periods prior to commencing research, and investigating the longer term effects of

carprofen use at higher doses for effective analgesia, particularly for female mice.
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