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Abstract: The diagnosis of alcohol use disorder (AUD) remains a difficult challenge, and some
patients may not be adequately diagnosed. This study aims to identify an optimum combination of
laboratory markers to detect alcohol consumption, using data science. An analytical observational
study was conducted with 337 subjects (253 men and 83 women, with a mean age of 44 years (10.61
Standard Deviation (SD)). The first group included 204 participants being treated in the Addictive
Behaviors Unit (ABU) from Albacete (Spain). They met the diagnostic criteria for AUD specified in
the Diagnostic and Statistical Manual of mental disorders fifth edition (DSM-5). The second group
included 133 blood donors (people with no risk of AUD), recruited by cross-section. All participants
were also divided in two groups according to the WHO classification for risk of alcohol consumption
in Spain, that is, males drinking more than 28 standard drink units (SDUs) or women drinking more
than 17 SDUs. Medical history and laboratory markers were selected from our hospital’s database.
A correlation between alterations in laboratory markers and the amount of alcohol consumed was
established. We then created three predicted models (with logistic regression, classification tree, and
Bayesian network) to detect risk of alcohol consumption by using laboratory markers as predictive
features. For the execution of the selection of variables and the creation and validation of predictive
models, two tools were used: the scikit-learn library for Python, and the Weka application. The
logistic regression model provided a maximum AUD prediction accuracy of 85.07%. Secondly,
the classification tree provided a lower accuracy of 79.4%, but easier interpretation. Finally, the
Naive Bayes network had an accuracy of 87.46%. The combination of several common biochemical
markers and the use of data science can enhance detection of AUD, helping to prevent future medical
complications derived from AUD.
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1. Introduction

Alcohol dependence is a frequent medical problem in a wide variety of clinical settings
and requires attention to reduce medical complications, establish appropriate treatments,
and minimize the use of healthcare resources [1]. Alcohol abuse has harmful effects that
can cause or contribute to multiple diseases [2] and even increase the risk of cancer [3,4]
and deaths [5].

Alcohol has also increased traffic accidents, trauma [6], absenteeism [7] at the work-
place and school [8], job loss, violent behavior, and legal [9], family, economic, mental [10],
and social problems [5]. Despite the significant benefits of alcohol abuse treatments [11],
general practitioners only manage to diagnose a third of these patients [12]. Self-assessment
questionnaires (for example, AUDIT (Alcohol Use Disorders Identification Test), CAGE
(Cuttingdown, Annoyed, Guilt, Eyeopen), MAST (Michigan Alcohol Screening Test)) are
typically used [13] to detect alcohol use disorder [14], but these can be misleading if patients
are reluctant to reveal their patterns of alcohol use [15].

Laboratory markers can corroborate clinical suspicion of alcohol abuse and facilitate
patient monitoring and compliance with the recommendations. For instance, alcohol
biomarkers are physiological indicators of alcohol exposure and can help detect AUD [16].
These biomarkers are more useful when used together with other information such as
medical history. Biomarkers can be classified as direct and indirect [17]. Direct markers
include detection of alcohol or its metabolites such as ethyl glucuronide, derivatives of
acetaldehyde, phosphatidyl ethanol, and ethyl esters of fatty acids. These biomarkers
have high specificity but low sensitivity due to their short plasma half-life. However,
ethylglucuronide can be detected in urine up to 5 days and can inform us of chronic
consumption by measuring it in the hair [18]. Regarding acetaldehyde derivatives, studies
have described that they can be used as alcohol use markers in women [19]. Furthermore,
the quantification by anti-adduct autoantibodies has been shown to have clinical value,
differentiating abstinent users from alcohol users [20,21].

Indirect markers such as aspartate-aminotransferase (GOT/AST), alanine-aminotrans
ferase (GPT/ALT), gamma-glutamyltransferase (GGT), erythrocyte mean cell volume
(MCV), uric acid, HDL-cholesterol, triglycerides, cholesteryl ester transfer protein (CETP),
and total serum sialic acid (TSA) [22] help identify excessive alcohol use by detecting its
toxic effects. They are inexpensive and widely available, but they have the disadvantage
of low sensitivity and unspecificity [17]. In addition, the alcohol-induced thrombocy-
topenia can be the first signal of alcohol use disorder, also being a prognostic factor in
the development of alcohol withdrawal syndrome and bleeding [23]. New biomarkers,
more sensitive and specific, have been investigated in the last 30 years, with carbohydrate-
deficient transferrin (CDT) being the most widely adopted [9,10]. An emerging biomarker
is N-acetyl-Beta-Hexosaminidase (Beta-Hex), which could be used for acute alcohol intoxi-
cation, but has been used in preclinical research with rats, as well as some patients with
Tay–Sachs disease with a diagnostic test. Therefore, alcohol researchers need to investigate
more for using beta-Hex as a diagnostic tool [22].

Some studies have used parallel testing, combining two or more laboratory tests to
identify alcohol abuse with increased diagnostic accuracy [24–26]. For example, CDT and
GGT combinations improve the diagnostic yield of any of these markers used alone [27,28].
Similarly, parallel tests with CDT, GGT, and MCV improve detection in women [29], while
CDT and the AUDIT help detect alcohol use disorders in a regular workplace [30].

An alternative strategy to specifically using alcohol biomarkers is the use of multiple
routine laboratory tests and statistical methods [25,26,31]. For instance, the Early Detection
of Alcohol Consumption (EDAC) method uses a linear discriminant function [32] that
analyzes 10 routine laboratory tests to generate a score for each subject. Each score and its
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associated probability value translate into the likelihood that the individual has a specific
consumption pattern [25]. Ten laboratory measurements are included in the final regression
equation: chloride, sodium, direct-to-total bilirubin ratio, blood urea nitrogen, high-density
lipoprotein, monocyte count, phosphorus, platelets, aspartate aminotransferase, and mean
corpuscular hemoglobin (HCM). In the validation data for this model, 98% of the 161 heavy
drinkers and 95% of the 42 mild drinkers were correctly identified. Widespread adoption of
these statistical methods is limited due to limited availability of the software and hardware
packages required.

In this study, we describe a laboratory model to predict patients’ risk group of alcohol
consumption using discriminant analysis. The laboratory parameters used are routinely
included in clinical consultations. Hence, our study can facilitate the early and inexpensive
diagnosis of alcohol use, as well as better treatment monitoring.

We hypothesize that a combination of routine biochemical markers can predict the
probability of alcohol consumption and improve the results obtained with standardized
alcohol use questionnaires in patients with unknown risk [33] of alcohol consumption.

2. Materials and Methods

This study is a retrospective observational study in which the relationship between
laboratory test results and patient alcohol consumption was analyzed. Participants were
recruited from two different groups: patient from Addictive Behaviors Unit (ABU) and
blood donors.

The ABU group (retrospectively recruited) included patients according to the following
criteria: (1) Patients who started treatment at ABU from Albacete in the detoxification
phase due to alcohol consumption during 2013–2015 (selected retrospectively, from June
2014), at any age. (2) Patients who meet the diagnostic criteria for alcohol use disorder
(AUD) specified in the Diagnostic and Statistical Manual of mental disorders fifth edition
(DSM-5); they were correctly diagnosed by a mental health expert doctor. (3) Patient’s
laboratory test results at the start of treatment in the ABU were available (up to 1 month
prior or 90 days after). This information was extracted by consulting the ABU medical
records and the laboratories database (in this case, for laboratory test results). Data were
pseudo-anonymized by the research team, and participants could only be identified by
their assigned code. The exclusion criteria were: (1) Serious mental illness incompatible
with participation in the study (with consent). (2) Not having laboratory test results when
they started in ABU treatment (up to 1 month before or 90 days after). (3) Patients who
followed treatment with any drug that could disturb the blood parameters, from which the
prediction was to be made.

The other group (recruited by cross-section) was obtained from a sample of blood
donors from Albacete. Serum samples from these donors were used to analyze the same
analytical parameters collected (biochemical, hematological, and coagulation) in the ABU
participants. The Spanish version of the 10-item AUDIT (Alcohol Use Disorder Identifi-
cation Test) was administered as a written questionnaire to assess alcohol consumption
in these participants, ruling out donors with risky alcohol consumption (AUDIT score > 8
in men or >6 in women) [34]. AUDIT assesses the frequency and quantity of drinking
(questions 1–3) and alcohol-related harm (questions 4–10). The study’s objectives were
explained to these participants and written informed consents collected.

All the blood parameters studied were: albumin, amylase, activated partial throm-
boplastin time, uric acid, basophils, basophils_percent, direct bilirubin, indirect bilirubin,
total bilirubin, calcium, mean corpuscular hemoglobin concentration, creatine kinase,
chlorine, coagulation, cholesterol, creatinine, eosinophils, eosinophils_percent, red blood
cells, alkaline phosphatase, ferritin, fibrinogen C, gamma glutamyl transferase, globu-
lins, glucose, aspartate aminotransferase, alanine aminotransferase, hemoglobin, mean
corpuscular hemoglobin, hematocrit, high-density lipoprotein cholesterol, red blood cells
distribution width, platelet distribution width, International Normalized Ratio, potassium,
lactate dehydrogenase, low-density lipoprotein cholesterol, white blood cells, lympho-
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cytes, lymphocytes_percent, large unstained cells percent, large unstained cells, monocytes,
monocytes_percent, myeloperoxidase index, neutrophils, neutrophils_percent, phosphorus,
C-reactive protein, platelets, total proteins, tryglicerides, transferrin, urea, mean corpuscu-
lar volume, mean platelet volume, and sodium.

A total of 337 participants were included in this study after exclusions (due to incom-
plete data), including 204 in the ABU group and 133 participants in the blood donor group.
You can see the flow chart of the study in Figure 1.

Figure 1. Flow chart of the study.

Our sample had 253 male participants (75.3%) and 83 female participants (24.7%).
The age of the participants ranged from 15 to 78. The mean age in the ABU participants
was 45.5 years (Standard Deviation: SD = 10.06), and the mean age in the blood donor
participants was 42.5 (SD = 10.89).

We obtained some medical history in the ABU group: age, sex, address (if city or
village), study level, marital status, age that alcohol consumption started, and consumption
of other drugs (nicotine, cocaine . . . ). The same variables were obtained from the blood
donor group, except the last two ones.

For the predictive analysis, participants were classified as alcohol consumption accord-
ing to their average weekly consumption and gender, as per the WHO classification. More
specifically, a value of >28 SDUs (Standard Drink Unit) was used for men and >17 SDUs for
women [35]. Alcohol consumption was measured in Standard Drink Units (SDUs), using
the equivalence of 10 grams of pure alcohol = 1 SDU [36]. Then, we conducted a bivariate
statistical analysis, correlating the lab test parameters analyzed with the number of SDUs
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consumed. Subsequently, three predictive models were created, using different approaches:
logistic regression, classification tree, and Bayesian network.

Complete participant data and variables’ definitions can be found in the supple-
mentary information material. Supplementary Table S1: Variables’ definition used in the
predictive model.

We depurated the database, and the statistical analysis was carried out with SPSS
program 25.0.0. Values were expressed as mean (SD), and results were considered to be
statistically significant with a p value < 0.05. For the execution of the selection of variables
and the creation and validation of predictive models, 2 tools were used: the scikit-learn
library for Python and the Weka application.

Scikit-learn with the Python [37] programming language is the most widely used data
science tool today to perform predictive model building and processing tasks. Normally,
it is only usable by people with programming knowledge such as computer engineers
or mathematicians. In cases such as this article, the medical doctors contacted an expert
in data science to explain and guide them in the process of discovering useful predictive
models, with said data science expert taking charge of the programming part, always with
the guidance and supervision of the clinician. Supplementary Information Figure S1 shows
an extract from the notebook generated with the predictive analysis with Scikit-learn, used
for the logistic regression model as well as for the classification tree model.

It should be noted that both the database used and the code generated for this part of
the predictive analysis were shared from an institutional repository of the University of
Castilla La Mancha (UCLM), specifically in the section corresponding to the SIMD research
group (Intelligent Systems and Data Mining), belonging to the contacted machine learning
expert. The repository link is: https://github.com/UCLM-SIMD/alcohol_risk_prediction
(last access and update 25 October 2021).

Weka [38] is an application developed by the University of Waikato, in New Zealand.
This tool allows any trained user to perform various tasks of data science, such as variable
selection, normalization, imputation of missing values, and predictive modeling. This is
performed relatively easily thanks to its intuitive interface, as can be seen in Figure S2, in
the Supplementary Information.

The logistic regression model used automatic variables selection by Incremental Wrap-
per Subset Selection with replacement (IWSSr) [24]. In IWSSr, even if a variable has been
selected, it may cease to be important in the presence of a new candidate variable. When
performing a common forward search, the algorithm selects features according to their
relevance for the prediction. However, it is possible that a previous relevant feature is
discarded if other, more relevant features are included. For instance, if a patient shows
symptoms of sinusitis or they feel cold, these might be good variables to predict the proba-
bility of having the flu. However, if we also learn that they have high fever, sinusitis is no
longer an important feature to predict flu. This property of IWSSr becomes particularly
relevant when the cost associated with each feature is considered. That is, if the discarded
feature is more expensive than the new one (e.g., in our case, ferritin is more expensive
than creatinine), our IWSSr method can lead to improvements both in terms of economic
cost and algorithmic complexity.

The classification tree (the second model created) creates easily interpretable models,
creating a path from its root node through the value of the case to be classified in the
selected variables until it reaches a leaf node, with an associated classification result. The
third model-building process captures variables dependencies and builds the simplest and
efficient model: a Naive Bayes network. Previously, the variables were discretized following
Fayyad and Irani’s method based on entropy (uncertainty) concerning the class (risk).

All the predictive models created were validated with the LOO (leave-one-out valida-
tion) method. LOO is a good validation scheme when the number of samples is not large.
Give a database with N samples, LOO trains the predictive classifier with N-1 samples and
then tests its prediction on the Nth sample, and this is repeated N times, each time with a
different test sample. Then, metrics are computed based on the total positives (TP), total

https://github.com/UCLM-SIMD/alcohol_risk_prediction
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negatives (TN), false positives (FP), and false negatives (FN) performed by the classifier
during the N train-test steps.

As missing values in the variables were input, the mean of the corresponding analytical
variable was applied. This was applied in the logistic regression and classification tree
models. Data were normalized to mean 0 and variance 1 for the logistic regression models.
The preprocessed imputation of missing values and normalization were always applied to
the corresponding training set for each split in the LOO validation.

3. Results

The distribution by sex and age is similar in both groups. In the ABU group, the
sample was represented by 78.4% men and 21.6% women. The blood donor group, and
therefore participants without risk of exposure to alcohol, was made up of 133 participants,
distributed as 70.7% men and 29.3% women.

The mean ages in both groups were comparable, 45 years old for participants in the
ABU group, with a standard deviation of 10.05, and a mean of 41 years old for participants
in the blood donor group, with a standard deviation of 10.89. They had age ranges of
(15–78) and (18–66), respectively, with the variances being homogeneous and reaching
statistical significance (p < 0.000).

Regarding the address, 72.7% lived in a town and 27.3% lived in a city.
The marital status of both groups can be seen in Figure 2.

Figure 2. Comparison of marital status for both groups, ABU and blood donors.

The marital status of the ABU participants was: 52 single (25.5%), 97 married or in
a stable union (47.5%), 51 separated or divorced (25%), 3 widowed (1.5%). Within other
marital statuses, 5 lived with a partner, 1 had a stable partner but did not live with them,
and 5 lived with a common-law partner.

The marital status of the blood donor participants was: 37 single (27.8%), 91 married
or in a stable union (68.4%), 3 separated or divorced (2.3%), 2 participants had other marital
status (1.5%) (one lived as a couple and the other as a de facto couple).

We also considered it important to observe the study level comparing both groups,
which is represented in Figure 3.
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Figure 3. Comparison of the study level for both groups (ABU and blood donors).

The study level that predominated in users of the ABU was primary studies with
104 participants (51%), 39 participants read and wrote but had no studies (19.1%),
29 participants had secondary studies (14.2%), 15 participants had completed high school
or professional training courses (7.4%), 9 had completed university studies (4.4%), and
3 participants did not read or write (1.5%).

The predominant study level of the blood donors in our sample was high school
and/or professional training (50 blood donors, 37.6%), followed by 32 blood donors with
secondary education (24.1%), 31 blood donors with primary education (23.3%), 19 blood
donors with university studies (14.3%), and only 1 blood donor (0.8%) read and write but
did not have studies.

In our sample, the age of onset of alcohol consumption had a mean of 17 years old,
with a standard deviation of 7.18 and a standard error of 0.507.

Regarding the consumption of other drugs, the ABU’s participants had the following
data recorded: tobacco, 135 participants (66.18); cannabis, 38 participants (18.62%), cocaine,
30 participants (14.7%); heroin, 5 participants (2.45%), benzodiazepines, 2 participants;
crystal meth, 2 participants; tripis or LSD, 2 participants (1% each one); and Popper and
amphetamine, 1 participant each (0.5%).

However, all heroin users reported quitting at the time of the interview, and reported
previous use but not current use.

The next section summarizes the main results obtained for the three predictive models
created (with logistic regression, classification tree, and Naïve Bayes). Complete data can
be found in Supplementary Information.

Supplementary Information (online resource) Table S2 shows the correlation of differ-
ent lab parameters with the binomial variable alcohol consumption of risk/no risk. S 2.1 all
participants, S 2.2 men, and S 2.3 women.

Supplementary Information (online resource) Figure S3 shows the correlation of
lab parameters with consumption (S 3.1 all participants, S 3.2 men, and S 3.3 women).
Supplementary Information (online resource) Figure S4 shows the rate of participants with
risk of alcohol consumption.

3.1. Logistic Regression

We tested three logistic regression models using different subsets of variables, and an ex-
ample of manual use of these models can be found in Supplementary Material (Example S1).
These models were created according to the results of our bivariable analysis.

Table 1 shows the coefficients calculated for all the variables used, together with their
confidence interval and their p values.
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Table 1. Coefficients calculated in logistic regression, for all the variables used, together with the
confidence interval and its p-value. Statistically significant ones are marked with *.

Variable Coefficient Confidence Interval (95%) p Value

Constant 0.826 0.084 1.569 0.029

Study level −0.424 −0.973 0.125 0.130

Age −0.191 −0.746 0.364 0.499

Albumin 0.497 −1.215 2.209 0.570

Uric acid −0.057 −0.635 0.521 0.846

Basophils −1.907 −4.863 1.050 0.206

Basophils % 1.898 −0.766 4.562 0.163

Total bilirubin 0.283 −0.921 1.487 0.645

Calcium 0.284 −0.493 1.061 0.474

MCHC 1 −8.259 −15.893 −0.625 0.034 *

Chlorine 1.029 0.320 1.737 0.004 *

Cholesterol 0.826 −0.614 2.267 0.261

Creatinine −0.608 −1.322 0.106 0.095

Eosinophils −12.068 −23.030 −1.106 0.031 *

Eosinophils % 11.639 −3.425 26.702 0.130

Red blood cells −2.775 −10.355 4.804 0.473

Alkaline phosphatase 1.125 0.244 2.006 0.012 *

Ferritin 1.872 0.268 3.477 0.022 *

Gamma glutamyl transferase −0.044 −2.222 2.134 0.968

Globulins 0.533 −1.112 2.177 0.526

Glucose −0.483 −1.082 0.115 0.114

Aspartate aminotransferase 0.423 −1.778 2.624 0.706

Alanine aminotransferase 0.503 −0.554 1.559 0.351

Haemoglobin −8.424 −21.414 4.566 0.204

Mean corpuscular haemoglobin 23.651 7.540 39.762 0.004 *

Hematocrit 11.208 −2.673 25.089 0.114

HDL- cholesterol −1.033 −2.066 0.001 0.050

Red blood cells distribution width 0.818 0.158 1.477 0.015 *

Platelet distribution width 0.491 −0.176 1.158 0.149

Potassium 0.636 0.014 1.259 0.045 *

Lactate dehydrogenase 0.412 −0.193 1.016 0.182

LDL-cholesterol 0.310 −0.869 1.489 0.607

White blood cells 205.737 15.672 395.801 0.034 *

Lymphocytes −59.007 −113.951 −4.063 0.035 *

% Lymphocytes 50.220 −20.111 120.550 0.162

% Large Unstained Cells 17.875 −9.300 45.049 0.197

Large Unstained Cells −20.052 −42.138 2.034 0.075

Monocytes −14.328 −26.135 −2.521 0.017 *

% Monocytes 12.3017 −2.676 27.280 0.107
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Table 1. Cont.

Variable Coefficient Confidence Interval (95%) p Value

Myeloperoxidase index −0.180 −0.757 0.397 0.541

Neutrophils −185.847 −358.363 −13.331 0.035 *

% Neutrophils 60.0477 −22.608 142.704 0.154

Phosphorus −0.422 −1.032 0.188 0.175

Platelets −0.114 −0.790 0.563 0.742

Total Proteins −1.113 −2.745 0.519 0.181

Triglycerides −0.603 −1.554 0.348 0.214

Transferrin 0.143 −0.582 0.869 0.698

Urea −1.238 −2.050 −0.426 0.003 *

Mean Corpuscular Volume −22.442 −36.694 −8.190 0.002 *

Mean Platelet Volume −0.463 −1.174 0.249 0.202

Sodium −1.553 −2.430 −0.677 0.001 *

SEX_woman −0.278 −1.021 0.464 0.462
1 red cell mean corpuscular hemoglobin concentration. *: Statistically significant ones.

The first logistic regression model resulted in an accuracy of 83.9%, a sensitivity of
84.4%, and a specificity of 83.3%. Its positive predictive value was 84.4%, and the negative
predictive value was 83.3%.

Our statistical analysis revealed fifteen statistically significant variables within the
model: mean corpuscular hemoglobin concentration, chlorine, eosinophils, alkaline phos-
phatase, ferritin, mean corpuscular hemoglobin, red blood cells distribution width, potas-
sium, white blood cells, lymphocytes, monocytes, neutrophils, urea, mean corpuscular
volume, and sodium. Therefore, we created a model using only these significant variables.
The second simplified model resulted in an accuracy of 85.1%, a sensitivity of 86.7%, and a
specificity of 85.4%. Its positive predictive value was 84.8%, and the negative predictive
value was 85.4%.

Finally, an automatic variable selection process using IWSSr was tested, which can be
seen in Table 2.

Table 2. Coefficients calculated for logistic regression model for ‘risk’ with automatic selection
(IWSSr), for the variables used, together with the confidence interval and its p value.

Variable Coefficient Confidence Interval (95%) p Value

Constant 0.7079 0.263 1.153 0.002

Mean corpuscular haemoglobin 1.3679 0.944 1.791 0

Gamma glutamyl transferase 2.78 1.112 4.448 0.001

Red blood cells distribution width 1.0657 0.663 1.469 0

Creatinine −0.7371 −1.089 −0.385 0

Total bilirubin 0.4942 −0.173 1.161 0.146

Mean Platelet Volume −0.1804 −0.479 0.118 0.236

Large Unstained Cells 0.4084 −0.938 1.755 0.552

HDL-cholesterol −0.676 −1.093 −0.259 0.002

This resulted in some variables being discarded (one of them was ferritin (more
expensive)), resulting in a model with only 8 variables: mean corpuscular hemoglobin,
gamma-glutamyl transferase, red blood cells distribution width, creatinine, total bilirubin,
mean platelet volume, large unstained cells, and high-density lipoprotein cholesterol. This
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model provided very similar performance to the prior models, with an accuracy of 84.8%, a
sensitivity of 83.8%, and a specificity of 83.2%. Its positive predictive value was 86.3%, and
the negative predictive value was 83.2%.

It is remarkable that there were 14 participants followed in the ABU and that they
were classified as no risk for the predicted model, due to the number of SDUs declared in
their consumption. With the result they obtained, they were considered positive by the
model, and when calculating the sensitivity and specificity, they were by both considered
as false positives among the 23 total false positives.

3.2. Classification Tree

Figure 4 shows the final classification tree produced. Although this presented a
somewhat lower predictive accuracy than the logistic regression, classification trees are
easier to interpret, as well as capable of explaining their inference process. Our classification
tree resulted in an accuracy of 79.4%, a sensitivity of 78%, and a specificity of 77.5%. Its
positive predictive value was 81.3%, and the negative predictive value was 77.5%.

It is worth noting that there were 20 participants followed in the ABU and that they
were classified as nonrisk due to the number of SDUs declared in their consumption, they
were considered as positive by the classification tree, and when calculating the sensitivity
and specificity, they were therefore considered as false positives. Furthermore, among the
31 participants classified as false positives in the classification tree and 23 in the logistic
regression (IWSSr), there were 14 coincidences.

3.3. Bayesian Network

This network, evaluated with all the variables or the subset resulting from an automatic
variable selection process, gave its best results when using the 10 variables selected through
the IWSS algorithm, starting with a subset without ferritin, as was the case with the
logistic regression. The selected variables were: study level, basophils, creatinine, alkaline
phosphatase, gamma-glutamyl transferase, mean corpuscular haemoglobin, hematocrit,
red blood cells distribution width, lactate dehydrogenase, and urea. The accuracy was
87.5%, sensitivity was 88.3%, specificity was 86.6%, positive predictive value was 88.3%,
and negative predictive value was 86.6%. The network created is shown in Figure 5, whose
nodes contain the probability tables for risk and the discretized variables shown in Table 3.
An interpretation example for this table is: given a patient at “risk” (according to the cut-off
pattern used in this study), their probability of having a GGT value > 46.5 is 42.8%. If
you are a “no risk” patient, only 7%. The Supplementary Material (Example S2) shows an
example of prediction by using the Bayesian network.
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Figure 4. Classification tree. In that figure, the square brackets are not bibliographic references. It shows the generated tree, whose initial root node is with the
variable ferritin, and depending on whether its value is greater or less than 136.5, it continues with total proteins (TP), or gamma-glutamyl transferase (GGT),
and later, depending on the value of these, it continues toward different variables, to finally reach the different sheets, in the lower part, that predict whether the
participant is at risk or not at risk, with respect to risky alcohol consumption.
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Figure 5. Prediction of alcohol use by 9 biomarkers and the study level using machine learning,
obtained by a Bayesian network. BAS = Basophils, CREA = Creatinine, ALP = Alkaline phosphatase,
GGT = Gamma glutamyl transferase, MCH = Mean corpuscular haemoglobin, HCT = Hematocrit,
RDW = Red blood cells distribution width, LDH = Lactate Dehydrogenase.

Table 3. Probability table for risk and the discretized variables in the Bayesian network.

Variable Value Risk No risk

Gamma glutamyl transferase
≤46.5 0.572 0.929

>46.5 0.428 0.071

Mean corpuscular haemoglobin
<31.3 0.25 0.8

≥31.3 0.75 0.2

Educational level

1 0.020 0.003

2 0.202 0.033

3 0.526 0.282

4 0.122 0.245

5 0.082 0.312

6 0.048 0.124

Basophils

≤0.01 0.009 0.107

(0.01–0.015] 0.077 0.027

(0.015–0.02] 0.003 0.216

>0.02 0.911 0.649

Creatinine
≤1.025 0.871 0.598

>1.025 0.129 0.402

Alkaline phosphatase

≤34 0.003 0.131

(34–84.5] 0.771 0.810

>54.5 0.226 0.058

Hematocrit
≤47.09 0.618 0.850

>47.09 0.382 0.150

Red blood cells distribution width
≤13.05 0.141 0.469

>13.05 0.859 0.531

Lactate Dehydrogenase
≤256.5 0.836 0.985

>256.5 0.164 0.015

Urea

≤23.5 0.415 0.070

(23.5–40.5] 0.519 0.566

>40.5 0.066 0.364
Please note ‘(‘ stands for ‘open range value’ and ‘]’ stands for ‘closed range value’. For instance, (0.01 means any
value greater than 0.1 but not equal; and 0.015] means exactly 0.015.

As in the other methods used, the Bayesian network classifies as positive (risk drinkers)
some participants followed in the ABU who would belong to the group of no risk by the
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declared SDUs. Specifically, of the 20 false positives in the sample classified by this method,
14 were participants followed up at the ABU and initially classified as not at risk.

Figure 6 shows the predictive strength of each selected parameter, as measured indi-
vidually with the Bayesian network classifier.

Figure 6. Predictive strength of each parameter selected in the Bayesian network.

In terms of accuracy, we can see that none of them present such a good value as all the
factors together. That is, while selected factors were not capable of providing predictive
power individually (ranging from 55% to 75%), when their interaction was used to feed the
classifiers, the accuracy improved greatly up to 87.5%.

4. Discussion

This study used three methods to predict alcohol use disorder with a combination of
biomarkers and medical information using machine learning and data science. As far as we
know, this is one of the few studies to compare the discrimination accuracy of 48 combined
biomarkers at the same time. In total, 52 variables were tested (48 numerical variables and
4 categorical variables) in the predictive model for detecting alcohol use.

There is also evidence of the usefulness of some biomarkers individually, for example,
the relationship between the lower platelet counts (<119 k/mL) and higher risk for com-
plicated alcohol withdrawal syndrome [39]; however, our best predicted model using the
Bayesian network did not select the platelet count with the best variables for combining.
Regardless, this parameter was selected in the classification tree, just as the mean platelet
volume was necessary for the prediction by logistic regression with IWSSr.
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Another study [40], similar to ours, used machine learning and combined psycho-
logical variables, substance use history, demographics variables, family history, and
three laboratory biomarkers (thyroid stimulating hormone, hematocrit, and hemoglobin
A1C percentage).

Some authors used machine learning in the prediction of AUD, with other features,
such as electrophysiological (electroencephalogram coherence), psycho-social genetic infor-
mation [41], and multimodal biomarkers; another study tested if risk factors for alcohol use
disorders (family history, male sex, impulsivity, low level of response to alcohol) predicted
the rate of binging throughout the alcohol self-intravenous administration session [42].
In the study of [43], they tested 38 features (sex and age), history of smoking, and some
biomarkers (chemistry, liver function, hematology, and lipids).

A systematic literature review by Ebrahimi et al. described the more important studies
for AUD prediction using machine learning in the last 10 years. It concluded that several
features were used for prediction, such as demographics, drinking behavior, family history,
and electronic health records, but the lack of deep learning techniques for predicting AUD
is evident and they suggested, as future research, challenges for the prediction of AUD [44].

Choosing a combination of variables can improve the predictive value of the variables
separately. As can be seen in Figure 6, this clearly proves that predictive features should
not be selected by evaluating them in a univariate manner, but multivariate evaluation is
most advisable. The parameter predictive power individually is not so high (ranging from
55 to 75%), but when the parameters interact, the accuracy improves greatly up to 87.5%.

Our study selected the optimum combination of biomarkers as objective data by
three different types of predicted models to overcome the weakness of self-assessment
questionnaires, where people can deny or minimize the quantity or frequency of their
patterns of alcohol use [45]. Our tool had a sensitivity from 78% with the classification tree
to 88.3% with the Bayesian network, and a specificity from 77.5% with the classification
tree to 86.6% with Bayesian network. Although the logistic regression’s accuracy was
good, it did not fit the data used excessively well (R2 = 67%). The classification tree,
despite its low accuracy (79.4%), had the advantage of interpretability. Our three predicted
models (Logistic Regression (IWSSr), Classification Tree, Bayesian network) had positive
predicted values of 86.3%, 81.3%, and 88.3% and negative predicted values of 83.2%, 77.5%,
and 86.6%, respectively. If we pay attention to the false positives (FP) with the three
predictive models, there were some coincidences, regardless of the predictive model used.
In the logistic regression model, 14 false positives in ABU participants were present in
the 23 participants classified as no risk with our cut point of SDUs at the beginning of
the prediction. In the classification tree model, of the 31 FPs, 20 were ABU participants
labeled as “No Risk,” and of those 31 FPs of the tree, 13 of the 23 FPs of the logistic
regression matched. Of those 13, two different classifiers failed, indicating that perhaps
the number of weekly SDUs consumption was not real. Finally, paying attention to the
FP with the Bayesian network, of the 20 FP, 14 belonged to ABU participants relabeled
as “no risk,” again implying that something was happening with the SDUs recognized
for these participants. One of the possible reasons for these numerous coincidences may
be that people with alcohol use disorders sometimes minimized their consumption and
frequency. Therefore, although according to our cut point, they were labeled as “no risk,”
their blood test parameters applied to the regression model predicted that they consume
alcohol. We checked the medical histories of these participants, and most of them had
alcohol-related medical problems in their personal medical history (trauma, heart attack,
transient ischemic accident, cerebral vasculopathy, pancreatitis, legal problems . . . ), so we
have the hypothesis that they could have minimized the consumption of alcohol.

Only a few studies have attempted the combined use of biomarkers and data science.
Some articles combined screening questionaries with some biomarkers, presenting a sensi-
tive tool for detecting alcohol use. The study of [46] combined CAGE with GGT, and they
guessed a good tool for detecting alcohol dependence. Another one of [47] combined two
different markers (CDT and GGT) to increase diagnostic accuracy for alcohol use disorder.
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Other studies combined biological markers with a questionnaire and clinical param-
eters for improving the recognition of heavy drinkers [48]. It is similar to our Bayesian
network in that one of the selected variables for the best prediction is “educational level,”
clinical information that is easy to obtain in a patient’s interview.

A recent study found an association of the elevation of 2-hydroxy-3-methylbutyric
with self-reported alcohol intake, and its higher level was associated with the risk of
hepatocarcinoma (OR = 2.54; 95%CI = 1.51–4.27) and pancreatic cancer (OR = 1.43; 95% CI
1.03–1.99) [4]. This other study [49] combined two indirect biomarkers (mean corpuscular
volume and CDT) with one direct biomarker (Peth) for detection of alcohol ingestion, and
they compared the results with a measure of blood alcohol concentration.

This study [50] validated a new method for the simultaneous determination of four
alcohol biomarkers, namely, ethyl glucuronide (EtG), ethyl sulfate, N-acetyltaurine, and
16:0/18:1-phosphatidylethanol (Peth). It was developed and validated using human whole
blood. Although the N-acetyltaurine needs further studies for global use, and an adequate
cut-off concentration has to be defined, the parallel detection of EtG and Peth in one
chromatographic method contributes to a more precise result than detection separately.

This study serves as a focus point to search for efficient combinations of direct markers,
and thus in the future, studying their pharmacokinetics and pharmacodynamics could
help to better understand the different patterns of alcohol consumption, as well as being
able to prevent the complicated alcohol withdrawal syndrome. Nowadays, these blood
determinations are not universalized and are not accessible to most hospitals, so for now,
we can use the combinations of indirect markers to improve diagnosis.

The present study had some strengths, including a sufficient sample size (n = 334) and
a clinically strict diagnosis for AUD by experts in the field, from addictive unit care. We
checked all drugs [51] people took as chronic treatment and the presence of active viral
hepatitis that could affect the biomarkers values (transaminases). We excluded people from
blood donors with AUDIT score > 8 for men and >6 for women to ensure that almost every
patient from that group was not exposed or minimally exposed to alcohol. Furthermore,
we divided the two groups for the predicting model to avoid that bias, depending on the
cut point of SDUs. For that reason, in the predicted model, some people from the ABU
group received the label “no risk,” but none of the blood donors received the label “risk.”

However, this study had several limitations. First, the retrospective part was based
on the clinical history of ABU participants; thus, we consider that the predicted model´s
sensitivity and specificity would have been better if we had an objective measure of SDUs,
and not only the patient’s version. In the future, we plan to conduct a prospective study,
with an alcohol test (breathalyze) of participants, to not need the SDU cut-point.

Secondly, we did not use the CDT, which is one of the most specific biomarkers [52],
but this was because our laboratory does not use this biomarker routinely, and we wanted
a tool that could be used in any consultation at primary care or hospitalized participants
with the standard basic blood test.

Thus far, as there is no ideal validated biomarker, which is essential to explore new
combinations of biomarkers [10] and discover new ways to detect alcohol use with in-
expensive and accessible tools, using data science combined with medical knowledge.
We are currently working on a project, creating an app for smartphones or computers,
where you can fill in the biomarker value in each box to obtain the result of the predicted
model (Bayesian network), so it will be easy to use and you will be able to do it at the
patient’s bedside.

A future study will be to validate the predictive model by a computer or smartphone
app, where it will be possible to write the biomarker value and receive from the application
the predicted label. Secondly, another project will be to create a system for detecting when
a patient underestimates the alcohol quantity; for example, 14 participants were labeled as
no risk, and the predicted model classified them as at risk. Is the predictive model making
mistakes, or did the patient not say the correct alcohol quantity consumed? In addition,
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10 of them were labelled as at risk for the three predicted models, so something about it has
to be resolved in the future.

5. Conclusions

By combining several biochemical markers, clinical history (study level), and machine
learning, we can enhance the detection of AUD, helping to prevent future complications
from alcohol use. Our best predictive model to predict risky alcohol consumption, with
an accuracy of 87.5%, using a Bayesian network, selected the best combination of nine
biomarkers (basophils, creatinine, alkaline phosphatase, gamma-glutamyl transferase,
mean corpuscular haemoglobin, hematocrit, red blood cells distribution width, lactate
dehydrogenase, and urea) and the study’s level, being able to predict if the biomarkers
alterations of our patients could be secondary to alcohol consumption. It had a sensitivity
of 88.3% and a specificity of 86.6%. The selected variables were easy to obtain, even in
emergency services, so if the model was validated, it could be an accessible tool for several
doctors in many departments (emergencies, traumatology, psychiatry, internal medicine,
general practice doctor), advocating for an early diagnosis of AUD and anticipating the
possible problems derived from its consumption.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm11072061/s1. Table S1. Variables´s definition used in the
predictive model. Figure S1. Excerpt from the notebook generated with the predictive analysis
with Scikit-learn. Figure S2. Use of the Weka application for the creation of predictive models.
Table S2. Correlation of different laboratory parameters with the binomial variable risk/no risk
(alcohol consume). Figure S3. Correlation of lab parameters with alcohol consumption (in Standard
Drink Units (SDU). Figure S4. Rate of participants with alcohol consumption risk. Example S1.
Example of manual use of the logistic regression model to make a prediction. Example S2. Example
of manual use for bayesian network for prediction.
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