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ABSTRACT
Mendelian randomization (MR) is an increasingly popular component of an epidemiologist’s toolkit, used to provide evidence of a
causal effect of one trait (an exposure, eg, bodymass index [BMI]) on an outcome trait or disease (eg, osteoarthritis). Identifying these
effects is important for understanding disease etiology and potentially identifying targets for therapeutic intervention. MR uses
genetic variants as instrumental variables for the exposure, which should not be influenced by the outcome or confounding variables,
overcoming key limitations of traditional epidemiological analyses. For MR to generate a valid estimate of effect, key assumptions
must be met. In recent years, there has been a rapid rise in MR methods that aim to test, or are robust to violations of, these assump-
tions. In this review, we provide an overview of MR for a non-expert audience, including an explanation of these key assumptions and
how they are often tested, to aid a better reading and understanding of the MR literature. We highlight some of these new methods
and how they can be useful for specific methodological challenges in the musculoskeletal field, including for conditions or traits that
share underlying biological pathways, such as bone and joint disease. © 2022 The Authors. JBMR Plus published by Wiley Periodicals
LLC on behalf of American Society for Bone and Mineral Research.
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Introduction

I dentifying causal risk factors for common conditions in the
musculoskeletal field is key to developing interventions aimed

at treating or managing these. Two frequent types of bias limit
causal inference using conventional epidemiological methods.
These are confounding(1) and reverse causation.(2) For example,
in a study identifying a positive relationship between bone min-
eral density (BMD) and osteoarthritis (OA) by logistic regression,
the association could be explained by another factor confound-
ing this relationship, such as body mass index (BMI), which can
cause both higher BMD and OA.(1–4) Although we are able to
adjust for known and measured confounders in a multivariable
regression analysis, it is possible that there are unknown and/or
unmeasured confounders, or measurement error of known con-
founders, still biasing this relationship.(5) We are therefore unable
to conclude that there is an effect of BMD on risk of OA. Similarly,
if we were interested in the effect of physical activity on OA risk
and observed a relationship using traditional regression-based
methods, we could not be sure whether the relationship reflects
an effect of physical activity on OA risk or whether physical activ-
ity is influenced by the symptoms of OA (ie, the disease process).

Randomized controlled trials (RCTs) are considered the gold-
standard level of evidence in causal inference. However, RCTs

are expensive and time-consuming and therefore often short in
duration. Hence, it is not always possible to alter an exposure suf-
ficiently to affect the outcome. For example, in a trial to deter-
mine if lower BMI reduces OA risk, short-term changes in BMI
are likely to be minimal and unlikely to alter disease risk. Ethical
considerations can also inhibit RCT implementation; for example,
it would be unethical to perform a clinical trial to determine if
take-up of smoking or alcohol drinking impact risk of rheumatoid
arthritis.Mendelian randomization (MR; Box 1) uses the proper-
ties of germline genetic variants, which proxy an exposure, to
overcome these two limitations present in standard epidemio-
logical analyses and strengthen causal inference.(6–9) As genetic
variants are randomly assigned at conception, they should be
independent of confounding factors and should not be influ-
enced by the outcome later in life.(6–8,10) MR is often implemen-
ted using instrumental variable (IV; Box 2) methods, where
the genetic variant proxying the exposure is the instrument.
Therefore, MR is analogous to an RCT, with individuals random-
ized to a particular genotype, rather than an intervention. An
obvious difference between an RCT and MR is the length of time
of the intervention, with genetic variants exerting their effect
across the lifecourse, whereas an intervention in a trial, as dis-
cussed above, is often short term. Therefore, canalization, which
is the weakening of an adverse effect on an outcome due to
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developmental compensation, needs to be considered when
interpreting results of an MR study.(8)

MR has been widely used in musculoskeletal research to iden-
tify causal risk factors for bone and joint disease. These uses have
been extensively reviewed elsewhere.(11–13) In this article, we aim
to provide a guide to reading and interpreting MR studies in the
musculoskeletal field, highlighting important methodological
considerations and the main results that should be presented
in an MR study. We then go on to review key considerations for
musculoskeletal traits, including conditions or traits that share
underlying biological pathways, such as BMD and OA. We hope
this review makes MR studies more accessible to non-geneticists
who have an interest in determining causal risk factors for mus-
culoskeletal conditions.

MR: The Basics

Instruments

MR uses genetic variants as IVs and is therefore applicable to any
exposure that is heritable. IVs in an MR analysis are typically sin-
gle-nucleotide polymorphisms (SNPs), which are variations of a
single nucleotide that occur commonly on every chromosome
and at a frequency of greater than 1% in a population. The vari-
able will be the genotype of the SNP, which is the number of cop-
ies (0, 1, or 2) of a particular allele (often known as the effect
allele) an individual has. SNPs are normally selected as instru-
ments when they are robustly associated with the exposure of
interest, as identified by genome wide association studies
(GWAS). A GWAS includes millions of statistical tests across the
genome, and therefore a stringent p value is required to account
for multiple testing and reduce the risk of false positives. As such,
genomewide significance is often defined as a p value
≤5 � 10�8. As alleles for SNPs located close together on a chro-
mosome tend to be inherited together in a process called link-
age disequilibrium (LD), there are often many correlated SNPs
identified at a locus at genomewide significance. A process
called LD-based clumping is employed to identify the most likely
causal SNP at a particular locus to ensure independence of
instruments. LD-based clumping essentially scans a chromo-
somal region to identify the SNP with the smallest p value out
of all the SNPs in that locus that are in LD (based on a predefined
correlation threshold, eg, r2 ≤ 0.001).

Box 1. Key Terminology
(highlighted in bold throughout the text)
Mendelian randomization (MR): A genetic instrumental
variable approach aiming to overcome the limitations of
confounding and reverse causality present in standard
epidemiological analyses.

Instrumental variable (IV): A variable strongly related to
the exposure of interest but only related to the outcome via
its association with the exposure.

Heritable: A trait where variation is at least partially
explained by inherited genetic variants.

Genotype: The alleles an individual possesses at a partic-
ular locus, for example, SNP genotype = AA or GA.

Single-nucleotide polymorphism (SNP): A change in
nucleotide at a single position, which is found in at least 1%
of a population.

Alleles: The different variants present at a particular genetic
locus.

Effect allele: The allele for which the effect size (beta)
refers to.

Genomewide association study (GWAS): A hypothesis-
free scan of all SNPs across the genome (normally several mil-
lion) to determine if the frequency of one of the alleles is
more common in those with disease compared with those
without (or vice versa) or to determine if an allele is related
to a continuous outcome.

Linkage disequilibrium (LD): Correlation between geno-
types at two SNPs due to lack of recombination due to their
close proximity.

Assortative mating: When individuals tend to pick part-
ners who aremore similar in terms ofmore than one socioeco-
nomic or anthropometric trait (eg, education and height). This
can result in spurious associations between effect alleles of
variants related to these traits. This could lead to spurious
causal effect estimates for, eg, educational attainment on oste-
oarthritis, through the correlation of educational attainment-
increasing alleles with height-increasing alleles.

Population stratification: When disease and allele fre-
quencies both vary between populations of different ances-
tries, leading to the disease and allele appearing related in
a combined population.

Dynastic effects:Whereagenetically predictedparental phe-
notype influences offspring phenotype, eg, parents with a geno-
type associated with higher educational attainment will be more
highly educated and may be more supportive of their children’s
education. Therefore, parental genotype is a common cause of
both offspring genotype through inheritance and offspring out-
come via parent’s education rather than the offspring’s education.

Horizontal pleiotropy: When a genetic variant affects
two different traits (eg, exposure and outcome) via two sep-
arate pathways.

Vertical pleiotropy: When a genetic variant affects one
trait (eg, the outcome) via a biological pathway involving
another trait (eg, the exposure). Can also be referred to as
mediated pleiotropy.

Polygenic or genetic risk score (PRS/GRS): A continuous
measure representing the summed number of disease- or
trait-associated alleles an individual has. Can be weighted
by the effect of each SNP on the trait/disease in question.

Winner’s curse bias: An SNP has an overinflated beta esti-
mate due to chance, which automatically leads to a lower

Continued

Box 1. Key Terminology
(highlighted in bold throughout the text)—cont’d
p value, and variants that are selected by p value threshold in
a GWAS will overrepresent those where such sample varia-
tion push the p value downward.

Palindromic SNP: An SNP where the two alleles represent
the complementary base pairs of DNA (ie, A and T or C and G).
It can therefore be difficult to determine if the effect allele dif-
fers between data sets or whether the DNA has been
sequenced from the alternate strand and therefore the com-
plement has been sequenced in that population.

Cis SNP: An SNP located within a certain distance from a
gene (usually 1 million nucleotides from the start or end of
the gene).

Trans SNP: An SNP located outside the region required to
be defined as a cis SNP.
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Assumptions

For MR to accurately determine if there is an effect of an expo-
sure on an outcome, the IV(s) need to satisfy three core assump-
tions.(7,8) The three core assumptions, illustrated in Fig. 1, are:

• IV1: The instrument strongly predicts the exposure, also
known as the relevance assumption. With multiple instru-
ments, the assumption is that the instruments will collectively
predict the exposure. This is normally satisfied by selecting
instruments that are associated with the exposure at genome-
wide significance (as discussed in the Instruments section). It is
important to note that the instrument does not necessarily
need to cause the exposure; although the SNP with the lowest
p value at a particular locus is usually selected as the instru-
ment, this SNP could actually be in LD with the causal SNP.

• IV2: There is no confounding of the instrument-outcome rela-
tionship, also referred to as the independence assumption.
This can be violated due to assortative mating, population
stratification, or dynastic effects.(9,14)

• IV3: The instrument is not associated with the outcome inde-
pendent of the exposure, also known as the exclusion-
restriction assumption. This can be violated when the instru-
ment influences the outcome via a biological pathway not
involving the exposure, which is known as horizontal pleiot-
ropy. This should not be confused with vertical pleiotropy,
whereby the genetic variant is associated with the outcome
via a pathway involving the exposure (Fig. 2).

The majority of MR estimation methods assume a linear effect
of the exposure on the outcome. An additional assumption is
required to ensure accurate assessment of the magnitude of
effect.(7) One version of this assumption, known as the homoge-
neity assumption, assumes that the effect does not vary across
strata of the population, for example, by age or sex,(8) or that
the effect of the exposure on the outcome does not change
across levels of the instrument.(9) If this assumption is met, the

effect estimate can be interpreted as the average causal effect
of the exposure on the outcome across the population.(9,15) An
alternative, more relaxed and plausible version of this assump-
tion is the monotonicity assumption, which assumes the direc-
tion of the effect of the instrument on the exposure is the
same for everyone in the population, which means that the
effect estimate can be interpreted as the average effect of differ-
ences in the exposure on the outcome for those whose exposure
is associated with the instrument.(15)

Furthermore, for any MR study to estimate the effect that
intervening on the exposure will have on the outcome, the
assumption of gene–environment equivalence must hold.(16)

This means that the effect of a change in exposure due to a
change in allele for the genetic instrument has the same effect
on the outcome as an environmental or pharmaceutical inter-
vention used to alter the exposure.(16) This may be more likely
to hold for directly measured traits such as biomarkers rather
than complex social traits with a stronger environmental compo-
nent, such as education status.(9)

Individual-level versus summary-level approaches

MR analyses are commonly categorized into two forms in the lit-
erature: one-sample (or single-sample or individual-level) and
two-sample (or summary-level). Initial MR analyses, mainly pub-
lished before 2014, used individual-level data, where genotype,
exposure, and outcome data were all available in the same pop-
ulation. However, this limited sample size and therefore statisti-
cal power, leading to the implementation of summary-level
approaches. Summary-level approaches only require summary
statistics from a GWAS of the exposure and outcome (Table 1),
which are not performed on the same sample but under the
assumption that the GWAS populations are drawn from the
same underlying population. This allows researchers to use the
largest available GWAS for each trait, maximizing sample size
and thus statistical power. For example, there are few

Box 2. Instrumental Variables
MR is often performed using instrumental variable (IV) methods developed for econometrics. An IV is a variable robustly associated
with the exposure in an analysis but with no direct effect on the outcome, except via the exposure, and which will not be influenced
by confounders of the exposure-outcome relationship. For example, in an RCT, randomization to treatment or placebo is the IV, as
only those randomized to receive treatment will receive the treatment. Randomization will therefore strongly predict who is treated
and will only influence the outcome (eg, disease prognosis) through taking the treatment. If randomization has been performed
correctly, confounders will be equally distributed across the treated and control groups. In an MR, a genetic variant robustly
associated with the exposure should not be influenced by confounders or the outcome as genetic variants are allocated indepen-
dently of environment and other genetic factors (Mendel’s laws of segregation and independent assortment). The figure below
highlights the analogy between an RCT and MR with the example of determining if vitamin D affects bone mineral density (BMD).
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populations with both dual-energy X-ray absorptiometry (DXA)
scans and radiographs for a sufficient sample size for anMR anal-
ysis of the effect of DXA-assessed femoral neck BMD on OA. By

using summary-level MR, we are not limited to populations
where both DXA scans and X-rays have been performed and
can utilize data available from large-scale GWAS consortia.

Fig. 1. The three core assumptions of Mendelian randomization. Red dashed arrows represent pathways that should not exist if the instrument is valid.
Blue arrows represent conditions that need to be true for an instrument to be considered valid. The black dotted arrow represents the fact that the con-
founder does not need to influence the exposure to violate instrumental variable 2 (IV2): the assumption is no confounding of the genetic instrument and
the outcome.

Fig. 2. Directed acyclic graph highlighting vertical versus horizontal pleiotropy. (A) Vertical pleiotropy is where the instrument is only associated with the
outcome (fracture) via the exposure (type 2 diabetes). This is a key requirement of Mendelian randomization (MR) and does not lead to biased effect esti-
mates (except in the case of misspecifying the primary phenotype outlined below). (B) Horizontal pleiotropy is where the instrument is associated with the
outcome via a pathway independent of the exposure. This will lead to bias in the effect estimate for type 2 diabetes on fracture. (C) Where the instrument
is in close proximity to a single-nucleotide polymorphism (SNP) strongly associated with the outcome, the genotypes at these two loci can be correlated
due to linkage disequilibrium (LD). This will cause the same bias as horizontal pleiotropy in an MR study. It is important to note that although SNPs are
often selected based on the lowest p value in a region, they are not necessarily causal for the exposure but are in LD with a disease-causing variant.
(D) Misspecification of the primary phenotype can cause bias in an MR analysis. This occurs when genetic variants associated with a phenotype upstream
of the exposure are identified in the genomewide association study (GWAS) of the exposure due to a large sample size and thus well-powered GWAS. For
example, in an MR of type 2 diabetes on fracture, a positive effect of type 2 diabetes may be observed due to the inclusion of body mass index (BMI) SNPs
as instruments for type 2 diabetes.
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The statistical analysis performed differs between the two
approaches (Table 1), although given sufficient sample size and
strong independent instruments, the two methods should esti-
mate the same effect.(8)

In the case where only one SNP has reached genomewide sig-
nificance and is appropriate to instrument the exposure, pres-
ence of a causal effect can be determined by the effect of the
SNP on the outcome, either by regressing SNP genotype on

the outcome using individual-level data or by extracting the
summary statistics (beta, standard error and p value) from a pub-
lished GWAS.(17) This method determines if a causal effect is pre-
sent but does not provide an estimate for the magnitude of this
effect. The point estimate for the effect can be estimated by a
Wald ratio, which is simply the beta for the SNP effect on the out-
come divided by the beta for the SNP effect on the exposure.(7)

This can be calculated using both individual-level and

Table 1. Summary of the Two Approaches to Mendelian Randomization

Individual-level data MR Summary-level data MR

Requirements Measured exposure, outcome in the same
population.

Genotype dosage for all instruments in the same
population (or a polygenic risk score)

SNP-exposure association results and SNP-
outcome association results from separate

populations, including:
• Effect allele
• Other allele

• Effect allele frequency
• Beta for the per allele effect on the exposure or

outcome (unit increase or log odds)
• Standard error for the beta

Possible analysis methods To test for causal effect:
linear/logistic regression of SNP genotype or

polygenic risk score on the outcome
To quantify causal effect:

Single SNP: Wald ratio estimate
βoutcome/βexposure

Single/multiple SNPs/polygenic risk score:
Two-stage least-squares regression

To test for causal effect:
determine SNP-outcome effect using summary

statistics from a published GWAS
To quantify causal effect:

Single SNP: Wald ratio estimate
Multiple SNPs: an inverse-variance weighted meta-

analysis of the Wald ratio estimate for each SNP

Testing the relevance
assumption

First-stage F-statistic Mean F-statistic for SNP-exposure association

Testing the independence
assumption

Associations between the instrument(s) and
potential confounders can be directly tested

for all known/measured confounders

N/A

Testing the exclusion-
restriction assumption

Sargan test for heterogeneity in individual SNP
results

Cochran’s Q statistic as a measure of heterogeneity
in Wald ratio estimates

MR-Egger intercept as a measure of the average
effect of the SNP on the outcome when there is

no effect of the SNP on the exposure
Pleiotropy-robust methods MVMR

MR-GENIUS controls for some directional
pleiotropy(106)

sisVIVE and adaptive LASSO for outlier
removal(107,108)

Several methods, including MR-Egger, weighted
median, weighted mode, MR-CAUSE, MR-

PRESSO, MVMR, reviewed in Sanderson et al.(9)
Can be broadly categorized as outlier adjustment,
outlier removal, or estimate adjustment methods

Benefits More flexibility in models (eg, can test for non-
linear effects) and covariates

Ability to perform subgroup analyses (eg, sex-
stratified)

Larger sample sizes increase power
Greater range of sensitivity analyses to determine

pleiotropy-robust estimates of causal effect

Limitations Sample limited to those with measured
exposure, outcome, and genotype, often

restricting sample size
Fewer methods to interrogate pleiotropy

Weak instrument bias is toward the
observational (confounded) estimate,
potentially resulting in type 1 error

Assumes the two study populations are drawn from
the same underlying population in terms of

ethnicity, sex distribution, etc.
Weak instrument bias toward the null, resulting in

type 2 error
Overlap in individuals between samples can result
in bias toward the observational estimate in the
presence of weak instruments (type 1 error)

Unable to control which covariates are adjusted for
Unable to perform subgroup analyses unless
summary statistics are available for specific
subgroups for both exposure and outcome
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summary-level data. Alternatively, for individual-level data, it is
also possible to estimate the effect using two-stage least-squares
regression: the exposure is first regressed on the instrument,
then the outcome is regressed on genetically predicted values
of the exposure.(18) The conventional standard error in the sec-
ond model does not account for the additional uncertainty that
arises from the exposure being predicted, rather than observed.
Therefore, a correction needs to be applied to the standard error
obtained from the second regression to correctly account for the
uncertainty.(9) This correction is performed as standard in MR
and IV software packages (discussed in the section Software
and data sources).

Given the availability of large-scale biobanks such as UK Bio-
bank and worldwide collaborative efforts, GWAS power has
increased in recent years and often more than one SNP is an
appropriate instrumental variable. In the individual-level data
setting, two-stage least-squares regression can still be used to
estimate the effect with multiple SNPs, although it is often pref-
erable to combine the SNPs into a polygenic or genetic risk
score (PRS or GRS).(19) This often increases the variance in the
exposure explained and therefore the instrument strength. How-
ever, if any of the SNPs in the score violate either the IV2 or IV3
MR assumptions, described in Assumptions, the whole score will
be an invalid instrument.

For a summary-level analysis, two-stage least-squares regression
is not possible, and instead the effect is estimated by meta-
analyzing the individual-SNP Wald ratios. The most common
method used for this meta-analysis is the inverse-variance
weighted (IVW) meta-analysis, which can be implemented as a
regression of the SNP-outcome effect estimate on the
SNP-exposure effect estimate, weighted by the inverse of the
standard error of the SNP-outcome estimate(20) (Fig. 3). Other
methods are available for this meta-analysis; these are commonly
used as sensitivity analyses to test for horizontal pleiotropy andwill
be discussed in Sensitivity analyses relaxing the core assumptions.

An important consideration in a summary-level MR analysis is
trying to ensure that the two study populations are drawn from
the same underlying population, or more specifically that the
instrument-exposure association is the same in the two samples,
while reducing the overlap between the two samples. Overlap in
samples can lead to correlation between SNP-exposure and SNP-
outcome estimates, due to chance associations between the
instrument and confounders of the exposure-outcome relation-
ship.(21) This can result in bias of the causal effect estimate
toward the observational estimate, which can lead to a false-
positive result.(21,22) Bias is greater when using weak
instruments(23) as the effect estimate from this GWASmay reflect
Winner’s curse bias.(22) Similarly, in an individual-level MR, if the
instruments were identified in the same study population, there
is a greater chance of Winner’s curse and therefore bias toward
the observational effect estimate. Methods such as block jack-
knife resampling, described in the section Novel Methods for
Overlapping Samples, can overcome this problem.(24)

Weak instruments can also occur if the instruments are not
genomewide significant in the data used for analysis. This could
occur when using individual-level data with instruments
selected from a separate GWAS, or with summary-level data if
the GWAS used to obtain the SNP-exposure associations is not
the same as the one used to select the SNPs. Weak instrument
bias will bias estimates toward the observational estimate in
individual-level MR or in summary-level MR where the same
samples are used for the exposure and the outcome. In a
summary-level MR analysis where the samples do not overlap,

using weak instruments (eg, those selected from an unreplicated
GWAS and therefore had a chance association with the exposure,
or those associated with the exposure above genomewide
significance) will lead to bias toward the null rather than the
observational estimate as there will be no covariance between
SNP-exposure and SNP-outcome estimates.(25)

Ancestry should be considered to ensure the two samples for
a summary-level analysis are drawn from the same underlying
population. The instrument used may not be the causal variant
and may have been identified in GWAS because it is in LD with
the causal variant. Therefore, in populations of different ancestry
where allele frequencies and LD structure differ,(8) the SNP may
not be associated with the exposure to the same extent in the
exposure and outcome populations. Most large-scale GWAS are
currently performed on European samples, and there are fewer
large collaborative efforts for non-European populations.(26)

Although these large-scale pan-European collaborative efforts
are useful to increase sample size and power for GWAS and
reduce the risk of population stratification, generalizability of
findings to other populations is limited.

Pre-analysis quality control

An essential step before summary-level analysis is harmonizing
the data set to ensure effect alleles match across the exposure
and outcome GWAS. For example, the exposure data set may
provide the beta for the effect of each additional copy of an A
allele on the exposure, whereas the outcome data set may be
based on the alternate C allele. This would lead to an incorrect
direction of effect estimated by the Wald ratio for that SNP, over-
all biasing the IVW estimate. Where the effect alleles do not
match between data sets, the alleles are flipped in one of the
data sets by subtracting the beta from zero. This process is more
difficult for palindromic SNPs: either A-T as allele 1 and 2,
respectively, or C-G as allele 1 and 2. This is because it is unclear
whether the alleles have been coded differently or whether the
allele has been sequenced from the other DNA strand. The allele
frequency of the coded allele can be useful here: if, for example, a
C effect allele has an allele frequency of 0.3 in one data set and a
G effect allele has frequency of 0.7 in the other data set, the two
data sets used different effect alleles. Therefore, the beta needs
to be converted in one data set so the effect alleles match. How-
ever, if the frequency of the C effect allele was the same as the G
effect allele in the other data set, the two data sets have clearly
used different DNA strands for sequencing and no change to
the beta is required. If the allele frequency is close to 0.5, it is
impossible to determine if the effect allele differs or if the refer-
ence DNA strand differs; therefore, these SNPs should be
removed from analyses.

Sensitivity analyses relaxing the core assumptions

Several methods are available and commonly used to test the
core MR assumptions described above. Only IV1 can be explicitly
tested, using the F-statistic as a measure of instrument strength,
which reflects the sample size and the variance in the exposure
explained by the instrument (ie, the r2).(27,28) A higher F-statistic
indicates a stronger instrument, with a mean cut-off of ≥10 often
used to determine sufficient instrument strength.(27) Methods
are also available that are robust to the inclusion of weaker
instruments in a summary-level setting. These methods include
MR-Robust Adjusted Profile Score (MR-RAPS)(29) and Genome-
wide MR Analysis under Pervasive Pleiotropy (GRAPPLE).(30) IV2
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Fig. 3. Results commonly presented inMendelian randomization (MR) studies. (A) A scatterplot is oftenpresented comparing results of the different summary-
levelmeta-analyses.Hereweare looking for consistency in theslope (ie, causal effect estimate)between thedifferentapproaches,whichwedoobserve. TheMR-
Egger slope is slightlyweakerdueto the interceptnotbeingfixedat0, althoughthe intercept isclose to0andtheslope is similar indirectionandmagnitudetothe
other methods, meaningwe can bemore confident in the inverse-variance weighted (IVW) causal effect estimate. (B) A single-nucleotide polymorphism (SNP)
analysis can be performed todetect heterogeneity, with each point on the forestplot representing theWald ratio for an individual SNP.Herewedo observe het-
erogeneity in effect estimates, which means we should be cautious of horizontal pleiotropy, but themajority of SNPs do provide causal effect estimates in the
positivedirection. (C) The funnel, or volcano,plot showstheWald ratio foreachSNPonthe xaxis and theweighton theyaxis (ie, the inverseof the standarderror).
Asymmetry in this plot would indicate that an SNP has a large effect on the outcome, relative to its precision, indicating pleiotropy. As this plot is relatively sym-
metrical,wecanbemoreconfident in the IVWestimate. (D) A leave-one-out analysis can identify outlier SNPswitha largeeffect on theoverall IVWestimate. If the
effectestimate (indicatedby thepoints,withhorizontalbars indicating95%confidence intervals) changes inmagnitudeand/ordirectionwhenan individual SNP
isexcluded, this isevidence that theSNP isan invalid instrument. In thiscase, there isnoevidence tosuggestanyof theSNPsareoutliers. (E)A radialplotof theSNP
weight versus thebeta times its weight can showoutlier SNPs (in green), plotted alongside the IVW estimate. All plots have been generated using the TwoSam-
pleMR(42) and RadialMR(109) packages and publicly available summary statistics(110,111) available through the IEU OpenGWAS project.(43)
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can be tested for all known and measured confounders in the
individual-level data setting but cannot be tested for unknown
or unmeasured confounders. Ensuring summary statistics for
summary-level approaches are drawn from populations of the
same genetic ancestry and analyses are statistically adjusted
for ancestry will reduce the risk of population stratification.

Several methods have been developed to assess if IV3 is likely
to be satisfied. If all instruments are valid, they should all gener-
ate the same estimate of the causal effect. In the individual-level
data setting, the Sargan test is used as a measure of heterogene-
ity in the effect estimates across SNPs,(31) whereas Cochran’s
Q-statistic assesses heterogeneity in an IVW analysis.(32) Hetero-
geneity across instruments can occur due to sampling error,
but excessive heterogeneity across instruments suggests that
at least some of the instruments are acting on the outcome via
a separate pathway. However, it is important to note that a lack
of heterogeneity does not necessarily mean all instruments are
valid; heterogeneity will also be low if all instruments are invalid
in a similar way.(9) Another consideration is that heterogeneity
can be high for complex traits despite all instruments being
valid, as different SNPs instrument different aspects of the trait(9)

(eg, pain versus structural deterioration in OA).
Alternative methods of meta-analysis are often additionally

performed in the summary-level setting to assess pleiotropy.
Methods that are commonly presented in MR studies are the
weighted median and weighted mode estimator. Although the
IVW estimate is a weighted mean of all the Wald ratio estimators
and is therefore influenced by all Wald ratio estimators, the
weighted median estimator is the median Wald ratio estimate
and therefore is valid as long as at least 50% of the weight comes
from SNPs that are valid (non-pleiotropic) instruments.(33) Simi-
larly, the weighted mode allows invalid instruments, assuming
that the invalid instruments will give different effect estimates,
whereas the valid instruments will give the same effect estimate.
It therefore provides a valid effect estimate as long as the largest
group of SNPs are valid instruments.(34) The weighted median
and weighted mode estimates are therefore often provided
alongside the IVW estimate in MR studies, with consistency in
effect estimates strengthening the confidence in the IVW esti-
mate. Fig. 3 shows how these methods are commonly presented
in MR studies and additional tests that can be performed to test
the IV3 assumption.

Perhaps themost commonly used sensitivitymethod to detect
pleiotropy is MR-Egger regression. Whereas the IVWmethod sets
the intercept of the regression line at zero, the MR-Egger inter-
cept is allowed to vary from zero.(20,35) The intercept represents
the average SNP effect on the outcome when the SNP effect on
the exposure is zero, thus giving an estimate of directional hori-
zontal pleiotropy.(36) The slope of the MR-Egger regression line
can then be considered as a pleiotropy-robust estimate of the
causal effect, although this should not be relied upon as the only
effect estimate in an analysis as power, and therefore precision, is
lower than the IVW method.(35) Although the MR-Egger assump-
tion relaxes the assumption of no horizontal pleiotropy, it does
make an additional assumption that there is no correlation
between the SNP effect on the exposure and the pleiotropic
effect of the SNP on the outcome, which is often referred to as
the Instrument Strength Independent of Direct Effect (InSIDE)
assumption.(35) In the Section Methods for dealing with corre-
lated pleiotropy, we discuss how this assumption may not hold
in cases of correlated exposures and outcomes sharing underly-
ing developmental pathways, for example, when determining
the effect of BMD on OA.

Methods that identify outliers can also be used to generate a
pleiotropy-robust estimate of effect.(37) For example, MR Pleiot-
ropy Residual Sum and Outlier (PRESSO) identifies pleiotropic
SNPs by detecting SNPs that have a greater contribution to
the residual sum of squares from the IVW regression.(38) These
SNPs are then removed when calculating the IVW estimate.
However, in some cases, the outlier SNPs may be the best
instruments; for example, for molecular traits such as protein
expression, the cis-variant in the gene encoding the protein
of interest may actually be the outlier when there are several
trans instruments,(37) however, the trans instruments are more
likely to affect the outcome via distinct pathways. There are sev-
eral other methods to identify and either remove or down-
weight outliers in MR analyses, and these methods are
reviewed elsewhere.(9,37)

Bidirectional MR

MR studies often present bidirectional analyses (ie, reversing
the exposure and outcome in a second analysis) for one of
two reasons. The first reason being that there is biological
plausibility for a causal effect in both directions. For example,
an MR analysis determining effects of circulating sclerostin
levels on BMD observed an inverse effect, whereby higher
plasma sclerostin levels reduced BMD, which is biologically
plausible given the role of sclerostin in Wnt signaling inhibi-
tion.(39) However, the authors also found evidence for an effect
of higher BMD on higher plasma sclerostin, suggestive of a
feedback mechanism whereby individuals with more bone,
and thus more osteocytes, produce more sclerostin to inhibit
further bone formation.(39) Alternatively, evidence of bidirec-
tional effects may represent horizontal pleiotropy, whereby
the instruments are acting through a causal pathway mediated
by a common cause of exposure and outcome (see the
section on Methods for dealing with correlated pleiotropy).
As the effect of an instrument on one trait increases, so will
its effect on the other, resulting in evidence of an effect in
both directions. An example was our recent analysis of the
causal effect of BMD on OA and vice versa, where we observed
evidence for an effect in both directions, although the direc-
tion of effect of OA on BMD did not reflect the direction we
hypothesized for a true bidirectional effect (ie, if OA-related
reductions in physical activity lead to lower BMD).(40) Bidirec-
tional MR analyses require summary statistics for SNPs associ-
ated with both the exposure and outcome at genomewide
significance. Steiger filtering is often performed before analysis
to exclude SNPs that explain a greater variance in the outcome
variable than the exposure variable for that analysis.(41)

Software and data sources

Various software packages and databases have been developed
to aid MR studies. MR-Base is an online platform for performing
summary-level MR analyses, with a linked database of published
GWAS summary statistics to aid MR.(42,43) Unpublished summary
statistics for many traits from UK Biobank, FinnGen, and Biobank
Japan have beenmade publicly available by various groups(44–48)

and are available to download through this database.(43) Published
summary statistics can also be downloaded from the GWAS Cata-
log(49) and the Musculoskeletal Knowledge Portal.(50) R packages
such as TwoSampleMR(42) and MendelianRandomization(51) have
been developed for summary-level analyses and OneSampleMR(52)

for individual-level MR. Stata packages ivonesamplemr(53) and
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mrrobust(54) are available for individual-level and summary-level
analyses, respectively. General IV packages for R (Applied Econo-
metrics with R (AER)(55)) and Stata (eg, ivreg2(56)) are often useful
for MR estimation.

Given the availability of these tools, which help to simplify MR,
there is a danger that researchers can perform and publish MR
studies without fully understanding the data sources, instru-
ments, or methodology used. Therefore, when analyzing an MR
study, it is important to critically appraise the methodology
and interpretation published. Guidelines for performing an MR
study have been published,(57) and the STROBE-MR consortium
has developed a checklist for MR studies.(58,59) These are impor-
tant to follow when writing an MR article to ensure correct inter-
pretation and reproducibility. These checklists can also form a
guide for researchers to assess a published study.

Developments Relevant to the
Musculoskeletal Field

In the first section, we covered the basic concepts of MR to aid
researchers in reading and understanding MR literature. In this
section, we will give a brief overview of recent developments
in MR, which may be useful to consider for researchers aiming
to design MR studies in the musculoskeletal field. This is not an
exhaustive list of MR developments but a review of the most rel-
evant methods.

Multivariable and two-step MR

An extension toMR that is becomingmore popular in themuscu-
loskeletal field is multivariable MR.(1,4,40,60–75) When evidence of
pleiotropy is observed, and there is a trait believed to explain
the pleiotropy, multivariable MR can estimate the direct effect
of the exposure on the outcome, independent of the additional
trait.(76,77) For example, in our recent analysis, we used

multivariable MR to identify a BMI-independent effect of BMD
on OA, as we suspected that the pleiotropy we observed in our
univariable analyses reflected pleiotropy via the shared causal
factor, BMI.(40) In an individual-level data setting, multivariable
MR requires additional instrument(s) for the second exposure
and measurement of the second exposure (ie, the confounding
variable) in the same population. In a summary-level setting,
the SNP effects on both exposures and the outcome are required
for all instruments. It is not necessary for all instruments to be
associated with all exposures, but they should be associated with
at least one exposure. However, it should be noted that multivar-
iable MR can only be used to account for correlated pleiotropy if
all shared causal factors are included in the model. For example,
the analysis in Fig. 4 would still give a biased effect estimate as
there is a pleiotropic pathway via Exposure3 that has not been
accounted for. Multivariable MR also requires that the instru-
ments can robustly predict each exposure, conditional of the
other exposures in the model.(9,77) This can be determined using
the Sanderson-Windmeijer conditional F-statistic, using a thresh-
old of 10 for each exposure to determine sufficient instrument
strength.(77,78)

Whereas multivariable MR estimates the direct effect of an
exposure on an outcome, independent of another exposure, two-
step MR can be used to identify the effect of an exposure on an
outcome mediated by another trait.(79,80) Two-step MR involves
performing two MR analyses: the first of the exposure on the medi-
ator, then of the mediator on the outcome.(80) The indirect effect of
the exposure on the outcome, ie, the effect mediated via the medi-
ator, can then be calculated by the product of the beta for the
exposure effect on the mediator and the beta for the mediator
effect on the outcome.(80) The proportion mediated can then be
calculated by dividing the indirect effect by the total effect of the
exposure on the outcome, estimated by univariable MR. It is impor-
tant to ensure that any instruments included for the exposure are
not related to the mediator and vice versa to reduce the possibility
of horizontal pleiotropy.(80) An example of the use of this method
in the musculoskeletal field was a recent analysis to determine
the mediating effect of BMI and smoking on the protective effect
of education on rheumatoid arthritis.(81)

Multivariable MR can also be employed in lifecourse analyses
to disentangle the timing at which the exposure influences a
later life outcome.(82–84) For example, a recent multivariable MR
analysis identified a direct influence of childhood body size on
later life fracture risk, with a higher body size in childhood being
protective against fractures, independent of later life body
size.(83) Conversely, a greater body size in later life appeared to
increase fracture risk.(83) Two-step MR was then employed to
identify mediators of the effect of childhood body size on later
life fracture risk, providing evidence to suggest that adulthood
BMD (estimated from heel ultrasound) mediated the effect of
childhood body size on later life fracture risk.(83)

Novel methods for overlapping samples

Although there is now evidence to suggest that the bias due to
sample overlap is minimal in most scenarios,(22) the bias toward
the observational estimate is greater when instruments are
weak,(21) for example, using instruments identified in a GWAS
where winner’s curse is likely to be present (ie, an unreplicated
GWAS).(22) This is an issue given that many of the publicly avail-
able GWAS, available through the data sources described in Soft-
ware and Data Sources, were performed in UK Biobank. For
example, the largest GWAS sample for BMD to date was drawn

Fig. 4. Directed acyclic graph illustrating the concept of multivariable
Mendelian randomization. Including additional instruments for body
mass index (BMI) in the analysis accounts for the horizontal pleiotropy
acting via BMI and gives an estimate of the direct effect of bone mineral
density (BMD) on hip osteoarthitis (OA) and BMI on hip OA. However, if
there is another pleiotropic pathway via an unknown or unmeasured var-
iable (Exposure3), the effect estimates will still be biased. GRS = genetic
risk score.
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fully from the UK Biobank population,(85) and the population of
the largest BMI GWAS to date is also predominantly UK Bio-
bank.(86) Therefore, there is the possibility of (i) large sample
overlap between exposure and outcome populations and
(ii) winner’s curse as these GWAS have not been replicated.
One could find a previous GWAS with a smaller sample size for
the instruments, but this could lead to fewer instruments and
lower power. Another consideration for BMD is that previous
DXA-assessed BMD GWAS adjusted for weight,(87,88) which can
lead to collider bias.(89)

An online calculator is available to estimate the likely bias and
type 1 error rate due to sample overlap,(21) and these estimates
should be presented in a study presenting two-sample MR results
with overlapping samples. A block-jackknife approach has recently
been described to overcome the limitation of sample overlap and
maximize the use of populations such as UK Biobank in an
individual-level data setting.(24) This technique involves randomly
dividing the total population into a specified number of groups,
then excluding each group in turn as aGWASof the exposure is per-
formed. The resulting independent genomewide significant loci are
then used to generate a PRS for the group that was excluded from
that GWAS. Thatway, the instrument forMRwas identified in a non-
overlapping population and therefore any weak instrument bias
will be toward the null.(21,22)

Methods for dealing with correlated pleiotropy

Most of the methods so far described to deal with pleiotropy
(except the weighted median and mode methods) are useful
to estimating pleiotropy-robust effect estimates in the presence
of uncorrelated pleiotropy, where the instrument affects the
outcome via a separate pathway to the exposure(90) (Fig. 5, left).
However, when the instrument affects both the exposure and

outcome via a shared pathway, or via a shared causal factor (ie,
confounder), correlated pleiotropy is present,(90) which violates
the InSIDE assumption of MR-Egger.(35) If this shared causal fac-
tor is known and has been measured, multivariable MR can be
performed to estimate the causal effect independent of this con-
founder.(77,90) For example, in the example presented in Fig. 5, a
multivariable MR analysis could be performed including both
BMD and BMI as exposures.(40) However, it is often not possible
to identify all common factors contributing to the correlated
pleiotropy, and therefore additional MR methods are required.

Methods that have been specifically designed to deal with
correlated pleiotropy in MR include the latent causal variable
(LCV) method,(91) which calculates a genetic causality proportion
for one trait on the other without an estimate of the effect; the
latent heritable confounder MR model (LHC-MR), which esti-
mates and quantifies bidirectional effects;(92) MR Causal Analysis
Using Summary Effect Estimates (CAUSE), which models both
correlated and uncorrelated pleiotropy;(90) and Welch-weighted
Egger regression, which downweights potential outliers (ie,
pleiotropic SNPs) in an Egger regression.(93) These methods are
more computationally intensive than standard MR analyses as
they rely on full GWAS summary statistics for the exposure and
outcome (ie, they include all SNPs in the modeling, rather than
just genomewide significant instruments). A full review of all
novel methods for accounting for correlated pleiotropy is
beyond the scope of this review, but we point the readers to
the following studies describing additional methods.(94–96)

MR for disease prognosis/progression

The majority of MR studies in the musculoskeletal field have, to
date, focused on causal risk factors for incident disease. How-
ever, it is plausible that, for most conditions, there will be

Fig. 5. Directed acyclic graphs highlighting the difference between uncorrelated and correlated pleiotropy. *Weighted median and weighted mode can
give an unbiased estimate in the presence of either form of pleiotropy, as long as at least 50% SNPs are non-pleiotropic for the weighted median and the
most common Wald ratio comes from the non-pleiotropic SNPs for the weighted mode. Dashed arrows represent pathways that do not need to be pre-
sent. BMI= bodymass index; BMD= bonemineral density; GWS= genomewide significant; OA= osteoarthritis; SNP= single-nucleotide polymorphism;
MR = Mendelian randomization; LCV = latent causal variable; LHC = latent heritable confounder.
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different causal risk factors for disease onset and progres-
sion(97) (eg, progression to total joint replacement in OA). An
important consideration in MR of disease progression is col-
lider bias, as the analysis will be restricted to individuals who
have incident disease (the full analysis for individual-level data
and the outcome GWAS for summary-level data). As disease
incidence is a common outcome of the disease risk factors,
spurious associations between risk factors for disease incidence
can be induced in the case population, which can bias the
effect estimate for subsequent progression, leading to incor-
rect causal inference.(97) For example, in a study of outcomes
after fracture, risk factors for fragility fracture such as physical
inactivity or experiencing a fall may be inversely related in
the fracture cases, and if one of these risk factors is also causal
for post-fracture mortality, the other risk factor may appear to
have an effect on mortality of biased direction or magni-
tude (Fig. 6).

In an individual-level setting, inverse probability-weighted
(IPW) two-stage least-squares regression can be performed
to estimate the effect of an exposure on disease progression
accounting for collider bias.(97,98) IPW involves modeling the
probability of disease incidence using all known predictors
for incidence and then weighting the MR analysis by the
inverse of this probability.(15) In a summary-level data setting,
methods are available to correct the disease progression
summary statistics for collider bias, using summary statistics
from a GWAS of disease incidence and regression-based
techniques.(99–101) These corrected summary statistics can
then be used to perform collider bias-free summary-level MR
using methods described above. This relies on the assumption
that the instrument-exposure effect is the same in the dis-
eased compared with the total population, which may not
be correct; for example, a recent analysis found that the asso-
ciation between C-reactive protein (CRP) SNPs and measured
CRP differed between cases and controls for obesity and type
2 diabetes.(102) A full review of methods to identify and correct
for collider bias in MR of disease progression is available
elsewhere.(103)

Summary and Conclusions

We hope this review has been a useful guide to reading and
understanding MR studies or even when designing your own
MR study. The MR dictionary, available at https://mr-dictionary.
mrcieu.ac.uk/, is a useful further guide to MR concepts. The meth-
odology to perform and test assumptions of MR is constantly
evolving, and we recommend the reader strongly considers how
the assumptionsmay ormay not be valid with regard to their spe-
cific research question. MR is just one method for inferring causal-
ity in epidemiological studies, and we hope this review highlights
that it comes with its own set of assumptions, which cannot be
proven. We therefore highly recommend MR is used as part of a
toolkit alongside other methods with different assumptions and
biases. This concept is known as triangulation, and we refer the
reader to detailed reviews of possible methods for this.(104,105)

Conflict of Interest

The authors have no conflicts of interest to declare.

Disclosures

All authors state that they have no conflicts of interest.

Acknowledgments

All authors work in a unit funded by the Medical Research Coun-
cil (MRC) and the University of Bristol (MC_UU_00011/1,
MC_UU_00011/3). GMP is supported by the GW4 Biomed Doc-
toral Training Programme, awarded to the Universities of Bath,
Bristol, Cardiff, and Exeter from the Medical Research Council
(MRC)/UKRI (MR/N0137941/1).

No individual-level data were analyzed for this review, and
therefore ethics approval was not required for this study.

Authors’ roles: conceptualization: AEH and GDS. Writing—
original draft: AEH. Writing—review and editing: all authors.

Author Contributions

April E Hartley Conceptualization; writing – review and editing;
writing – original draft. Grace M Power: Writing – review and
editing. Eleanor Sanderson:Writing – review and editing.George
Davey Smith: Conceptualization; writing – review and editing.

Peer Review

The peer review history for this article is available at https://
publons.com/publon/10.1002/jbm4.10675.

Data Availability Statement

The results presented in Fig. 3 were generated from publicly
available data sets accessed through the IEU OpenGWAS project
(https://gwas.mrcieu.ac.uk/, data set IDs ieu-a-2 and ebi-a-
GCST007090). No new data were created for this article.

References

1. Kemp JP, Sayers A, Davey Smith G, Tobias JH, Evans DM. UsingMen-
delian randomization to investigate a possible causal relationship

Fig. 6. Illustration of the potential issue of collider bias in a study of dis-
ease progression/prognosis. The black box around fracture indicates that
this variable has been conditioned on by restricting the prognosis (frac-
ture-related mortality) analysis to individuals who have experienced a
fracture. In this hypothetical example, by conditioning on having a frac-
ture, an inverse association between experiencing a fall and level of phys-
ical activity may be induced, with those experiencing a fall measuring a
higher level of physical activity than fracture cases who have not experi-
enced a fall. If physical inactivity also causes fracture-related mortality,
experiencing a fall may appear protective against mortality. This will also
be the case for any instrument associated with experiencing falls. The
magnitude and direction of bias will depend on the interaction between
the causes of fracture on probability of experiencing a fracture.(100)

JBMR® Plus AN OVERVIEW OF MENDELIAN RANDOMIZATION 11 of 14 n

https://mr-dictionary.mrcieu.ac.uk/
https://mr-dictionary.mrcieu.ac.uk/
https://publons.com/publon/10.1002/jbm4.10675
https://publons.com/publon/10.1002/jbm4.10675
https://gwas.mrcieu.ac.uk/


between adiposity and increased bone mineral density at different
skeletal sites in children. Int J Epidemiol. 2016;45:1560-1572.

2. Zengini E, Hatzikotoulas K, Tachmazidou I, et al. Genome-wide ana-
lyses using UK Biobank data provide insights into the genetic archi-
tecture of osteoarthritis. Nat Genet. 2018;50:549-558.

3. Funck-Brentano T, Nethander M, Movérare-Skrtic S, Richette P,
Ohlsson C. Causal factors for knee, hip, and hand osteoarthritis: a
Mendelian randomization study in the UK Biobank. Arthritis Rheu-
matol. 2019;71:1634-1641.

4. Hartley A, Sanderson E, Paternoster L, et al. Mendelian randomiza-
tion provides evidence for a causal effect of higher serum IGF-1 con-
centration on risk of hip and knee osteoarthritis. Rheumatology.
2021;60:1676-1686.

5. Fewell Z, Davey Smith G, Sterne JAC. The impact of residual and
unmeasured confounding in epidemiologic studies: a simulation
study. Am J Epidemiol. 2007;166:646-655.

6. Davey Smith G, Ebrahim S. ’Mendelian randomization’: can genetic
epidemiology contribute to understanding environmental determi-
nants of disease? Int J Epidemiol. 2003;32:1-22.

7. Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey SG. Mendelian
randomization: using genes as instruments for making causal infer-
ences in epidemiology. Stat Med. 2008;27:1133-1163.

8. Richmond RC, Davey SG. Mendelian randomization: concepts and
scope. Cold Spring Harb Perspect Med. 2022;12(1):a040501.

9. Sanderson E, GlymourMM, Holmes MV, et al. Mendelian randomiza-
tion. Nat Rev Methods Primers. 2022;2:6.

10. Davey Smith G, Ebrahim S. Mendelian randomization: prospects,
potentials, and limitations. Int J Epidemiol. 2004;33:30-42.

11. Trajanoska K, Rivadeneira F. Using Mendelian randomization to
decipher mechanisms of bone disease. Curr Osteoporos Rep. 2018;
16:531-540.

12. Larsson SC, Michaëlsson K, Burgess S. Mendelian randomization in
the bone field. Bone. 2019;126:51-58.

13. Zheng J, Frysz M, Kemp JP, et al. Use of Mendelian randomization to
examine causal inference in osteoporosis. Front Endocrinol. 2019;
10:807.

14. Brumpton B, Sanderson E, Heilbron K, et al. Avoiding dynastic, assor-
tativemating, and population stratification biases inMendelian ran-
domization through within-family analyses. Nat Commun. 2020;11:
3519.

15. Hernan MA, Robins JM. Causal inference: What if. Boca Raton, FL:
Chapman & Hall/CRC; 2020.

16. Davey SG. Epigenesis for epidemiologists: does evo-devo have
implications for population health research and practice? Int J Epi-
demiol. 2012;41:236-247.

17. Katan MB. Apolipoprotein E isoforms, serum cholesterol, and can-
cer. Lancet. 1986;1:507-508.

18. Angrist JD, Imbens GW. Two-stage least squares estimation of aver-
age causal effects in models with variable treatment intensity. J Am
Stat Assoc. 1995;90:431-442.

19. Purcell SM, Wray NR, Stone JL, et al. Common polygenic variation
contributes to risk of schizophrenia and bipolar disorder. Nature.
2009;460:748-752.

20. Burgess S, Butterworth A, Thompson SG. Mendelian randomization
analysis with multiple genetic variants using summarized data.
Genet Epidemiol. 2013;37:658-665.

21. Burgess S, Davies NM, Thompson SG. Bias due to participant overlap
in two-sample Mendelian randomization. Genet Epidemiol. 2016;40:
597-608.

22. Sadreev II, Elsworth BL, Mitchell RE, et al. Navigating sample overlap,
winner’s curse and weak instrument bias in Mendelian randomiza-
tion studies using the UK Biobank. medRxiv. 2028;2021(2006):
21259622.

23. Burgess S, Small DS, Thompson SG. A review of instrumental vari-
able estimators for Mendelian randomization. Stat Methods Med
Res. 2015;26:2333-2355.

24. Fang S, Hemani G, Richardson TG, Gaunt TR, Davey SG. Evaluating
and implementing block jackknife resampling Mendelian

randomization to mitigate bias induced by overlapping samples.
medRxiv. 2003;2021(2012):21267246.

25. Pierce BL, Burgess S. Efficient design for Mendelian randomization
studies: subsample and 2-sample instrumental variable estimators.
Am J Epidemiol. 2013;178:1177-1184.

26. Duncan L, Shen H, Gelaye B, et al. Analysis of polygenic risk score
usage and performance in diverse human populations. Nat Com-
mun. 2019;10:3328.

27. Staiger D, Stock JH. Instrumental variables regression with weak
instruments. Econometrica. 1997;65:557-586.

28. Burgess S, Thompson SG, Collaboration CCG. Avoiding bias from
weak instruments in Mendelian randomization studies. Int J Epide-
miol. 2011;40:755-764.

29. Zhao Q, Wang J, Hemani G, Bowden J, Small DS. Statistical inference
in two-sample summary-data Mendelian randomization using
robust adjusted profile score. Ann Stat. 2020;48(3). https://doi.org/
10.48550/arXiv.1801.09652

30. Wang J, Zhao Q, Bowden J, et al. Causal inference for heritable phe-
notypic risk factors using heterogeneous genetic instruments. PLoS
Genet. 2021;17:e1009575.

31. Sargan JD. The estimation of economic relationships using instru-
mental variables. Econometrica. 1958;26:393-415.

32. Bowden J, Fabiola Del Greco M, Minelli C, et al. Improving the accu-
racy of two-sample summary-data Mendelian randomization: mov-
ing beyond the NOME assumption. Int J Epidemiol. 2019;48:728-742.

33. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent esti-
mation in Mendelian randomization with some invalid instruments
using a weighted median estimator. Genet Epidemiol. 2016;40:
304-314.

34. Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary
data Mendelian randomization via the zero modal pleiotropy
assumption. Int J Epidemiol. 2017;46:1995-1998.

35. Bowden J, Davey Smith G, Burgess S. Mendelian randomizationwith
invalid instruments: effect estimation and bias detection through
egger regression. Int J Epidemiol. 2015;44:512-525.

36. Bowden J, Fabiola Del Greco M, Minelli C, et al. Assessing the suit-
ability of summary data for two-sample Mendelian randomization
analyses using MR-egger regression: the role of the I2 statistic. Int
J Epidemiol. 2016;45:1961-1974.

37. Slob EAW, Burgess S. A comparison of robust Mendelian randomiza-
tion methods using summary data. Genet Epidemiol. 2020;44:
313-329.

38. Verbanck M, Chen C-Y, Neale B, Do R. Detection of widespread hor-
izontal pleiotropy in causal relationships inferred from Mendelian
randomization between complex traits and diseases. Nat Genet.
2018;50:693-698.

39. Zheng J, Maerz W, Gergei I, et al. Mendelian randomization analysis
reveals a causal influence of circulating Sclerostin levels on bone
mineral density and fractures. J Bone Miner Res. 2019;34:1824-1836.

40. Hartley A, Sanderson E, Granell R, et al. Using multivariable Mende-
lian randomization to estimate the causal effect of bone mineral
density on osteoarthritis risk, independently of body mass index.
Int J Epidemiol. 2022;51(4):1254-1267.

41. Hemani G, Tilling K, Davey SG. Orienting the causal relationship
between imprecisely measured traits using GWAS summary data.
PLoS Genet. 2017;13:e1007081.

42. Hemani G, Zheng J, Elsworth B, et al. TheMR-base platform supports
systematic causal inference across the human phenome. Elife. 2018;
7:e34408.

43. Elsworth B, LyonM, Alexander T, et al. TheMRC IEUOpenGWAS data
infrastructure. bioRxiv. 2010;2020(2008):244293.

44. Mitchell R, Mitchell RE, Elsworth BL, et al. MRC IEU UK Biobank
GWAS pipeline version. 2019;2. https://doi.org/10.5523/bris.pnoat
8cxo0u52p6ynfaekeigi

45. Abbott, L., V Anttila, K Aragam et al. Rapid GWAS of Thousands of
Phenotypes for 337,000 Samples in the UK Biobank. (2017).

46. Pan-UKBTeam. Pan-UK Biobank. 2020. Available at: https://pan.
ukbb.broadinstitute.org.

JBMR Plus (WOA)n 12 of 14 HARTLEY ET AL.

https://doi.org/10.48550/arXiv.1801.09652
https://doi.org/10.48550/arXiv.1801.09652
https://doi.org/10.5523/bris.pnoat8cxo0u52p6ynfaekeigi
https://doi.org/10.5523/bris.pnoat8cxo0u52p6ynfaekeigi
https://pan.ukbb.broadinstitute.org
https://pan.ukbb.broadinstitute.org


47. FinnGen. FinnGen. Documentation of R6 Release. 2022. Available at:
https://finngen.gitbook.io/documentation/.

48. BiobankJapanProject. Japanese encyclopedia of genetic associa-
tions by riken. 2020. Available at: http://jenger.riken.jp/en/.

49. Buniello A, MacArthur JAL, CerezoM, et al. The NHGRI-EBI GWAS cat-
alog of published genome-wide association studies, targeted arrays
and summary statistics 2019. Nucleic Acids Res. 2019;47:D1005-
D1012.

50. Kiel DP, Kemp JP, Rivadeneira F, et al. The musculoskeletal knowl-
edge portal: making omics data useful to the broader scientific
community. J Bone Miner Res. 2020;35:1626-1633.

51. YavorskaOO, Burgess S. MendelianRandomization: an R package for
performing Mendelian randomization analyses using summarized
data. Int J Epidemiol. 2017;46:1734-1739.

52. Palmer T, Spiller W, Sanderson E. OneSampleMR - R package for
one-sample mendelian randomization and instrumental variable
analyses. 2021.

53. Palmer T. ivonesamplemr - Stata package for one-sample Mende-
lian randomization and instrumental variable analyses. 2021. Avail-
able at: https://githubcom/remlapmot/ivonesamplemr.

54. Spiller W, Davies NM, Palmer TM. Software application profile:
mrrobust—a tool for performing two-sample summary Mendelian
randomization analyses. Int J Epidemiol. 2019;48:684-690.

55. Kleiber C, Zeileis A. AER: Applied Econometrics with R. R package
version. 2019;1:2-7.

56. Baum CF, Schaffer ME, Stillman S. IVREG2: Stata module for
extended instrumental variables/2SLS and GMM estimation. In: Bos-
ton College Department of Economics: Statistical Software Compo-
nents. 2002 (revised 19 Apr 2018).

57. Burgess S, Smith GD, Davies NM, et al. Guidelines for performing
Mendelian randomization investigations. Wellcome Open Res.
2020;4:186.

58. Skrivankova VW, Richmond RC, Woolf BAR, et al. Strengthening the
reporting of observational studies in epidemiology using Mende-
lian randomization: the STROBE-MR statement. JAMA. 2021;326:
1614-1621.

59. Skrivankova VW, Richmond RC, Woolf BAR, et al. Strengthening the
reporting of observational studies in epidemiology using Mende-
lian randomisation (STROBE-MR): explanation and elaboration.
BMJ. 2021;375:n2233.

60. Hindy G, Åkesson KE, Melander O, et al. Cardiometabolic polygenic
risk scores and osteoarthritis outcomes: a Mendelian randomization
study using data from the Malmö Diet and Cancer study and the UK
Biobank. Arthritis Rheumatol. 2019;71:925-934.

61. Yuan S, Michaëlsson K, Wan Z, Larsson SC. Associations of smoking
and alcohol and coffee intake with fracture and bone mineral den-
sity: a Mendelian randomization study. Calcif Tissue Int. 2019;105:
582-588.

62. Li GH, Robinson-Cohen C, Sahni S, et al. Association of genetic var-
iants related to serum calcium levels with reduced bone mineral
density. J Clin Endocrinol Metab. 2020;105:e328-e336.

63. Zheng J, Brion MJ, Kemp JP, et al. The effect of plasma lipids
and lipid-lowering interventions on bone mineral density: a
Mendelian randomization study. J Bone Miner Res. 2020;35:
1224-1235.

64. Freuer D, Meisinger C, Linseisen J. Causal relationship between die-
tary macronutrient composition and anthropometric measures: a
bidirectional two-sample Mendelian randomization analysis. Clin
Nutr. 2021;40:4120-4131.

65. Katsuhara S, Yokomoto-Umakoshi M, Umakoshi H, et al. Impact of
cortisol on reduction inmuscle strength andmass: a mendelian ran-
domization study. J Clin Endocrinol Metab. 2022;107(4):e1477-
e1487.

66. Sun JY, Zhang H, Zhang Y, et al. Impact of serum calcium levels on
total body bone mineral density: a Mendelian randomization study
in five age strata. Clin Nutr. 2021;40:2726-2733.

67. Tomata Y, Wang Y, Hägg S, Jylhävä J. Fatty acids and frailty: a Men-
delian randomization study. Nutrients. 2021;13(10):3539.

68. Xu F, Zhang Q, Wang L-K, et al. Estimates of the effects of physical
activity on osteoporosis using multivariable Mendelian randomiza-
tion analysis. Osteoporos Int. 2021;32:1359-1367.

69. Yokomoto-Umakoshi M, Umakoshi H, Miyazawa T, et al. Investigat-
ing the causal effect of fibroblast growth factor 23 on osteoporosis
and cardiometabolic disorders: a Mendelian randomization study.
Bone. 2021;143:115777.

70. Yu XH, Wei YY, Zeng P, Lei SF. Birth weight is positively associated
with adult osteoporosis risk: observational and Mendelian random-
ization studies. J Bone Miner Res. 2021;36:1469-1480.

71. Yu XH, Yang YQ, Cao RR, Bo L, Lei SF. The causal role of gut micro-
biota in development of osteoarthritis. Osteoarthr Cartil. 2021;29:
1741-1750.

72. Yuan S, Larsson SC. Genetically predicted insulin-like growth factor-I
in relation to muscle mass and strength. Clin Endocrinol (Oxf). 2021;
95:800-805.

73. Yuan S, Wan ZH, Cheng SL, Michaëlsson K, Larsson SC. Insulin-like
growth factor-1, bone mineral density, and fracture: a Mendelian
randomization study. J Clin Endocrinol Metab. 2021;106:e1552-
e1558.

74. Zhang Q, Greenbaum J, Shen H, et al. Detecting causal relationship
between metabolic traits and osteoporosis using multivariable
Mendelian randomization. Osteoporos Int. 2021;32:715-725.

75. Zhu J, Niu Z, Alfredsson L, et al. Age at menarche, age at natural
menopause, and risk of rheumatoid arthritis—a Mendelian ran-
domization study. Arthritis Res Ther. 2021;23:108.

76. Burgess S, Thompson SG. Multivariable Mendelian randomization:
the use of pleiotropic genetic variants to estimate causal effects.
Am J Epidemiol. 2015;181:251-260.

77. Sanderson E, Davey Smith G, Windmeijer F, Bowden J. An examina-
tion of multivariable Mendelian randomization in the single-sample
and two-sample summary data settings. Int J Epidemiol. 2019;48:
713-727.

78. Sanderson E, Windmeijer F. A weak instrument [formula: see text]-
test in linear IV models with multiple endogenous variables.
J Econom. 2016;190:212-221.

79. Relton CL, Davey SG. Two-step epigenetic Mendelian randomiza-
tion: a strategy for establishing the causal role of epigenetic pro-
cesses in pathways to disease. Int J Epidemiol. 2012;41:161-176.

80. Carter AR, Sanderson E, Hammerton G, et al. Mendelian randomisa-
tion for mediation analysis: current methods and challenges for
implementation. Eur J Epidemiol. 2021;36:465-478.

81. Zhao SS, HolmesMV, Zheng J, Sanderson E, Carter AR. The impact of
education inequality on rheumatoid arthritis risk is mediated by
smoking and body mass index: Mendelian randomization study.
Rheumatology. 2022;5:2167-2175.

82. Richardson TG, Sanderson E, Elsworth B, Tilling K, Davey SG. Use of
genetic variation to separate the effects of early and later life adi-
posity on disease risk: Mendelian randomisation study. BMJ. 2020;
369:m1203.

83. Power GM, Tobias JH, Frayling TM, et al. Age-specific effects of body
size on fracture risk in later life: a lifecourse Mendelian randomiza-
tion study. medRxiv. 2006;2021(2012):21267379.

84. Sanderson E, Richardson TG, Morris TT, Tilling K, Davey SG. Estima-
tion of causal effects of a time-varying exposure at multiple time
points through multivariable Mendelian randomization. medRxiv.
2004;2022(2001):22268740.

85. Morris JA, Kemp JP, Youlten SE, et al. An atlas of genetic influences
on osteoporosis in humans and mice. Nat Genet. 2019;51:258-266.

86. Yengo L, Sidorenko J, Kemper KE, et al. Meta-analysis of genome-
wide association studies for height and body mass index in
�700000 individuals of European ancestry. Hum Mol Genet. 2018;
27:3641-3649.

87. Estrada K, Styrkarsdottir U, Evangelou E, et al. Genome-wide meta-
analysis identifies 56 bone mineral density loci and reveals 14 loci
associated with risk of fracture. Nat Genet. 2012;44:491-501.

88. Zheng HF, Forgetta V, Hsu Y-H, et al. Whole-genome sequencing
identifies EN1 as a determinant of bone density and fracture.
Nature. 2015;526:112-117.

JBMR® Plus AN OVERVIEW OF MENDELIAN RANDOMIZATION 13 of 14 n

https://finngen.gitbook.io/documentation/
http://jenger.riken.jp/en/
https://githubcom/remlapmot/ivonesamplemr


89. Hartwig FP, Tilling K, Davey Smith G, Lawlor DA, Borges MC. Bias in
two-sample Mendelian randomization when using heritable
covariable-adjusted summary associations. Int J Epidemiol. 2021;
50:1639-1650.

90. Morrison J, Knoblauch N, Marcus JH, Stephens M, He X. Mendelian
randomization accounting for correlated and uncorrelated pleiotro-
pic effects using genome-wide summary statistics. Nat Genet. 2020;
52:740-747.

91. O’Connor LJ, Price AL. Distinguishing genetic correlation from cau-
sation across 52 diseases and complex traits. Nat Genet. 2018;50:
1728-1734.

92. Darrous L, Mounier N, Kutalik Z. Simultaneous estimation of bi-
directional causal effects and heritable confounding from GWAS
summary statistics. Nat Commun. 2021;12:7274.

93. Brown BC, Knowles DA. Welch-weighted egger regression reduces
false positives due to correlated pleiotropy in Mendelian randomi-
zation. Am J Hum Genet. 2021;108:2319-2335.

94. Qi G, Chatterjee N. Mendelian randomization analysis using mixture
models for robust and efficient estimation of causal effects. Nat
Commun. 2019;10:1941.

95. Xu S, Fung WK, Liu Z. MRCIP: a robust Mendelian randomization
method accounting for correlated and idiosyncratic pleiotropy. Brief
Bioinform. 2021;22:bbab019.

96. Xue H, Shen X, Pan W. Constrained maximum likelihood-based
Mendelian randomization robust to both correlated and uncor-
related pleiotropic effects. Am J Hum Genet. 2021;108:1251-
1269.

97. Paternoster L, Tilling K, Davey SG. Genetic epidemiology and
Mendelian randomization for informing disease therapeutics:
conceptual and methodological challenges. PLoS Genet. 2017;
13:e1006944.

98. MunafòMR, Tilling K, Taylor AE, Evans DM, Davey SG. Collider scope:
when selection bias can substantially influence observed associa-
tions. Int J Epidemiol. 2018;47:226-235.

99. Dudbridge F, Allen RJ, Sheehan NA, et al. Adjustment for index
event bias in genome-wide association studies of subsequent
events. Nat Commun. 2019;10:1561.

100. Mahmoud O, Dudbridge F, Davey Smith G, Munafo M, Tilling K. A
robust method for collider bias correction in conditional genome-
wide association studies. Nat Commun. 2022;13:619.

101. Cai S, Hartley A, Mahmoud O, Tilling K, Dudbridge F. Adjusting for
collider bias in genetic association studies using instrumental vari-
able methods. Genet Epidemiol. 2022;46(5–6):303-316.

102. Zheng J, Tang H, Lyon M, et al. Genetic effect modification of cis-
acting C-reactive protein variants in cardiometabolic disease status.
bioRxiv. 2023;2021(2009):461369.

103. Mitchell RE, Hartley A, Walker VM, et al. Strategies to investigate and
mitigate collider bias in genetic andMendelian randomization stud-
ies of disease progression. medRxiv. 2022;2022(2004):22274166.

104. Lawlor DA, Tilling K, Davey SG. Triangulation in aetiological epide-
miology. Int J Epidemiol. 2016;45:1866-1886.

105. Munafò MR, Higgins JPT, Davey SG. Triangulating evidence through
the inclusion of genetically informed designs. Cold Spring Harb Per-
spect Med. 2021;11(8):a040659.

106. Tchetgen EJT, Sun B, Walter S. The GENIUS approach to robust Men-
delian randomization inference. Statist Sci. 2021;36(3):443-464.
https://doi.org/10.1214/20-STS802

107. Kang H, Zhang A, Cai TT, Small DS. Instrumental variables estimation
with some invalid instruments and its application to Mendelian ran-
domization. J Am Stat Assoc. 2016;111:132-144.

108. Windmeijer F, Farbmacher H, Davies N, Davey SG. On the use of the
Lasso for instrumental variables estimation with some invalid
instruments. J Am Stat Assoc. 2019;114:1339-1350.

109. Bowden J, Spiller W, Del GrecoMF, et al. Improving the visualization,
interpretation and analysis of two-sample summary dataMendelian
randomization via the radial plot and radial regression. Int J Epide-
miol. 2018;47:1264-1278.

110. LockeAE,Kahali B, BerndtSI, et al. Genetic studiesofbodymass index
yield new insights for obesity biology. Nature. 2015;518:197-206.

111. Tachmazidou I, Hatzikotoulas K, Southam L, et al. Identification of
new therapeutic targets for osteoarthritis through genome-wide
analyses of UK Biobank data. Nat Genet. 2019;51:230-236.

JBMR Plus (WOA)n 14 of 14 HARTLEY ET AL.

https://doi.org/10.1214/20-STS802

	A Guide for Understanding and Designing Mendelian Randomization Studies in the Musculoskeletal Field
	Introduction
	MR: The Basics
	Instruments
	Assumptions
	Individual-level versus summary-level approaches
	Pre-analysis quality control
	Sensitivity analyses relaxing the core assumptions
	Bidirectional MR
	Software and data sources

	Developments Relevant to the Musculoskeletal Field
	Multivariable and two-step MR
	Novel methods for overlapping samples
	Methods for dealing with correlated pleiotropy
	MR for disease prognosis/progression

	Summary and Conclusions
	Conflict of Interest
	Disclosures
	Acknowledgments
	Author Contributions
	Peer Review
	Data Availability Statement

	References


