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Abstract: Diverticular disease (DD) is a common gastrointestinal condition. Patients with DD
experience a huge variety of chronic nonspecific symptoms, including abdominal pain, bloating,
and altered bowel habits. They are also at risk of complications such as acute diverticulitis, abscess
formation, hemorrhage, and perforation. Intestinal dysbiosis and chronic inflammation have recently
been recognized as potential key factors contributing to disease progression. Probiotics, due to their
ability to modify colonic microbiota balance and to their immunomodulatory effects, could present a
promising treatment option for patients with DD. Lactobacillus paracasei CNCM I 1572 (LCDG) is a
probiotic strain with the capacity to rebalance gut microbiota and to decrease intestinal inflammation.
This review summarizes the available clinical data on the use of LCDG in subjects with colonic DD.

Keywords: Lactobacillus paracasei CNCM I 1572; probiotics; acute diverticulitis; diverticular disease;
symptomatic uncomplicated diverticular disease

1. Introduction

Diverticular disease (DD) is a spectrum of gastrointestinal conditions characterized
by the presence of diverticula, defined as small, balloon-like sacs protruding through the
layers of the colon [1]. DD is the fifth most important gastrointestinal disease in terms of
healthcare costs in Western countries, with the highest rates occurring in the United States
and Europe with 60–70% prevalence rates in those older than 60 [1,2]. The presence of one
or more diverticula in the colon is called diverticulosis [2,3]. Diverticulosis is a common
condition that generally occurs during middle age and remains asymptomatic [2,3]. Its
finding is incidental [4]. Approximately 20% of patients with DD develop symptoms,
including abdominal pain, bloating, and altered bowel habits, the condition is called symp-
tomatic uncomplicated diverticular disease (SUDD) [1,2]. The major clinical complication,
occurring in about 4% of individuals, is acute diverticulitis, that could be uncomplicated or
complicated by abscess formation, haemorrhage, and perforation [1,5,6]. Moreover, due to
persistent mucosal inflammation, patients with acute diverticulitis may be susceptible to
the consecutive development of SUDD [7]. DD appear to share similar pathophysiological
mechanisms with irritable bowel syndrome (IBS) [8,9]. In DD, alteration in bacterial micro-
biota occurs primarily because of faecal material stasis which predisposes to diverticular
bacterial overgrowth [10–13]. This leads to impairment of the mucosal barrier function and
up-regulates inflammatory cytokine release with low-grade microscopic inflammation; this
inflammation has the potential to progress to microperforation and, ultimately, to acute
diverticulitis [10–13]. In addition, dysbiosis and mucosal inflammation are associated with
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dysmotility; they alter nerve fibre activation leading to subsequent neuronal and muscular
dysfunction, thus favouring the development of abdominal symptoms [14,15].

Given these observations, probiotics may be an appealing treatment option for this condi-
tion, due to their ability to modify colonic microbiota balance and to their immunomodulatory
effects [16–19]. Although probiotics have already been proposed for use in inflammatory, in-
fectious, neoplastic, and allergic disorders, the ideal probiotic strain for use in any of these
indications has yet to be identified [20–24]. The interpretation of available data on probiotics
is further confounded by variability in strain selection, dose, delivery vehicle, and evaluation
of viability and efficacy. Lacticaseibacillus paracasei (formerly Lactibacillus paracasei) CNCM I1572
(LCDG; L. casei DG®; Enterolactis®, Sofar S.p.A., Trezzano Rosa, Milan, Italy, deposited at In-
stitute Pasteur of Paris with number I1572) is a probiotic strain with the capacity to rebalance
gut microbiota and to decrease intestinal inflammation. This review aims to summarize the
available evidence on the use of L. casei DG® (Lactobacillus paracasei CNCM I 1572—LCDG;
Enterolactis®) in the management of DD.

2. Probiotics and Their Mechanisms of Actions

Probiotics are living organisms that are originally found in the intestine. They can also
be synthesized in laboratories and therefore be available in commercial products [25–27].
Probiotics are defined as live microorganisms that, when administered in adequate amounts,
confer a health benefit on the host [27]. The minimum quantity to obtain a temporary colo-
nization of the intestine is generally at least 1 billion live cells per day [28]. Probiotics must
also be resistant to gastric acid and bile to survive through the gastrointestinal tract [29–31].
Once present in the colon, probiotics must adhere to the colon’s epithelial cells to ensure
adequate colonization [32]. Probiotic organisms have the ability to produce antimicrobial
substances or antagonize pathogenic bacteria in the gut [33,34]. Finally, commercially
manufactured probiotics must be stable for storage before being ingested and must be safe
for use in humans’ large amounts [35,36]. The mechanism of action of probiotics is likely
to be multifactorial. To simplify, we can resume 3 basic functional principles by which
probiotics may confer health benefits: restoration of intestinal microbiota; regulation of
immune function; and enhancement of barrier function of gut epithelium (Figure 1) [37,38].
Through competitive inhibition probiotics hinder the ability of pathogenic Gram-negative
bacteria to adhere and colonize the intestinal mucosa [39–41]. Some probiotic strains secrete
proteases that help to degrade toxins [42,43]. Also, by fermenting dietary fibers, probiotics
can produce SCFAs (short-chain fatty acids), such as butyrate, propionate, and acetate,
with protective properties against intestinal pathogens [44]. Moreover, probiotics have
been associated to decreased secretion of inflammatory cytokines such as tumor necrosis
factor-α, interferon-γ, and interleukin-1, and increased production of the anti-inflammatory
cytokines such as interferon-α and interleukin-10 [45–47]. Some species displayed the
capacity to stimulate immunoglobulin A secretion in Peyer patches [48]. Finally, probiotics
exert a direct effect on the intestinal epithelial barrier function: by binding with toll-like
receptors on the apical surface of the epithelial cells [49], they activate protein kinase C
within the cell, which results in clenching of the tight junctions between epithelial cells
and improving the barrier function of the gut mucosa, thus potentially limiting bacterial
translocation [50–52].
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gastrointestinal pathogenic infection.

3. Lactobacillus paracasei CNCM I 1572

LCDG is a Gram-positive bacterial strain isolated from human faeces and normally
present in healthy individuals’ intestinal microbiota. It survives the gastrointestinal transit
in healthy children and adults when ingested with the probiotic drinkable formulation
containing no less than 1 × 109 CFU, demonstrating resistance to digestive juices, hydrolytic
enzymes, and bile acids [53–55]. LCDG’s human origin guarantees a long-lasting intestinal
colonization, persisting in the gut of patients up to one week after the end of probiotic
consumption [53,54]. LCDG produces lactic acid, providing a quick rebalancing action of
faecal microbiota [48]. Moreover, LCDG does not induce antibiotics resistance, guaranteeing
safe human consumption [54]. Consistently with these peculiarities, several in vitro/in vivo
experiments demonstrated that the polysaccharides present on the surface of the bacteria,
referred either as capsule or as exopolysaccharides (EPSs) can play a role both in the
modulation of the intestinal microbial ecosystem and in the stimulation of the host’s
immune responses; protecting LCDG, these polysaccharides also allow the probiotic strain
to reach the intestine alive [48,56–61]. Finally, a genomic analysis of LCDG revealed that this
strain produces a unique rhamnose-rich hetero-exopolysaccharide, named DG-EPS, with
the ability to stimulate the production of proinflammatory cytokines by antigen-presenting
cells (APCs) responsible for the detection of microorganisms and involved in their clearance
through phagocytosis [57]. Acting as mild booster of the innate immunity, LCDG may
contribute to a more efficient and faster immune response against potential infectious
agents [61–63].

3.1. Lactobacillus paracasei CNCM I 1572 in Human Health

The efficacy of LCDG has been investigated in several clinical settings, including
healthy humans or patients with urological diseases such as chronic bacterial prostatitis
and gastrointestinal disorders such as IBS, small intestinal bacterial overgrowth (SIBO), and
DD [48,58–60,64–68]. To determine the impact of LCDG on the intestinal microbial ecology
of healthy patients, Ferrario et al. [48] conducted a randomized, double-blind, placebo-
controlled crossover trial on 34 healthy human volunteers’ faecal microbiota. Participants
were randomly assigned to 2 parallel groups receiving, once a day for 4 weeks, in addition
to their habitual diet, either placebo or a probiotic capsule containing at least 24 billion
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viable cells of LCDG. Each volunteers’ faecal microbiota was evaluated before and after
LCDGs’ consumption. Despite inter-individual variability in intestinal microbiota, this
probiotic strain has been shown to positively modulate microbiota of healthy human,
increasing the percentage of bacteria that—according to the literature—can potentially
confer a health benefit to the host [69–75]. In fact, LCDG intake induced an increase in
the gram-negative phylum Proteobacteria (p = 0.006), which is the most abundant phyla
in the human gut microbiota, and in the gram-positive Clostridiales genus Coprococcus
(p = 0.009), which play a crucial role in folate biosynthesis and in the colonic fermentation of
dietary fiber leading to short chain fatty acids (SCFAs) production [48]. SCFAs (i.e., acetate,
butyrate, and propionate) are crucial in preserving gut equilibrium, an increased level of
SCFAs leads to the enhancement of barrier function of intestinal epithelium [76]. Butyrate
in particular, is linked with a number of beneficial activities on the intestinal mucosa;
drastic increase or reduction in its concentration is typical for several pathologies such as
IBS and metabolic syndrome [77–83]. So, modifying the concentration of bacterial groups
able to produce SCFAs in the gut, this probiotic strain can “rebalance” SCFAs and butyrate
concentrations. After LCDG intervention, participants with butyrate > 100 mmol/kg of
wet feces had a mean butyrate reduction of 49 ± 21%. In contrast, in participants with
initial butyrate concentrations < 25 mmol/kg of wet feces, the probiotic contributed to a
329 ± 255% (p > 0.05) increment in butyrate. Finally, a declining trend was observed in
genus Ruminococcus (p = 0.016) known for its role in the etiopathogenesis of IBS [73,84,85].
LCDG seems to work in the direction of a potential protective and healthy microbiota,
rebalancing gut physiological conditions. Additional studies were then conducted to
investigate its application in different colonic diseases. Rosania et al. [65] evaluated the
effects of addition of LCDG to antibiotics in patients with SIBO during a 6-month follow-up.
Twenty patients reporting abdominal compliant without gastrointestinal diseases/alarm
symptoms were enrolled. SIBO was diagnosed by the agreement of lactulose and glucose
breath tests. Patients received rifaximin 400 mg/day for 7 days/month followed by LCDG
for 7 days more. All patients recorded a questionnaire for subjective symptom evaluation
according to Rome III criteria and Bristol scale for stool characteristics before the study
and after 6 months. A significant improvement was obtained in 5 (diffuse abdominal pain
p < 0.001; pain in the left iliac area p < 0.002; meteorism p < 0.002; flatulence p < 0.001;
nausea p < 0.01) out of 6 symptoms. The analysis for each single patient also showed an
improvement in the number of bowel movements and stool characters in 16 out 20 patients
(80%). Besides, in a recent multicenter randomized study, Cremon et al. [58] evaluated
the effects of LCDG on gut microbiota-related factors in IBS patients’ faecal samples. The
participants were randomly assigned to different groups: in one group they had to take
LCDG two times a day for four weeks, in the other group they had to take the equivalent
product without bacteria (placebo), this phase was followed by a washout period of
four more weeks before crossing over to the alternate treatment (twice daily for four
weeks). After 14 weeks, patients entered a four-week follow-up phase. In all cases, faecal
samples were obtained before and after each treatment and follow-up period. The intestinal
microbial ecosystem was then characterized. In IBS patients, at baseline, members of the
gut microbiota attributed to the genus Ruminococcus were increased. Concentration of the
proinflammatory cytokine IL-15 was also enhanced, whereas SCFAs levels were decreased.
Interestingly, LCDG induced a significant trend of reduction in Ruminococcus (p = 0.042) and
in IL-15 (mean change −173.4; p = 0.042). In contrast, faecal short chain fatty acids acetate
(p = 0.021) and butyrate (p = 0.047) were increased, confirming once again the potential
role of the probiotic strain in such disorders. Finally, to better understand the molecular
mechanisms of action of LCDG, Compare et al. [59], by using human intestinal biopsy
specimens in culture, analyzed the effect of the Lactobacillus on ileal and colonic mucosa of
10 post-infectious irritable bowel syndrome (PI-IBS) patients. At baseline, IL-1α, IL-6, IL-8
mRNA levels, and TLR-4 proteins expression were higher while anti-inflammatory IL-10
mRNA levels were lower in PI-IBS patients than in healthy controls. Treatment of colonic
biopsies with LCDG significantly reduced the levels of all proinflammatory cytokines (Il-1 α
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p < 0.002, IL-6 p < 0.0001 and IL-8 p < 0.0001) in respect to baseline. In ileal mucosa, LCDG
treatment was effective in reducing IL-1α and IL-8 mRNA levels (p < 0.0002 and p < 0.0001,
respectively) but did not affect IL-6 levels. In contrast, IL-10 m-RNA levels significantly
increased in both ileal and colonic mucosa (p < 0.0001 and p < 0.0001, respectively). Finally,
the increase of TLR-4 protein expression was attenuated by LCDG (p < 0.0001).

3.2. Lactobacillus paracasei CNCM I 1572 and Diverticular Disease

Some new data on the role of LCDG in the management of diverticular disease have
emerged in the last years. Anti-inflammatory action of LCDG on patients with DD was
investigated in an in vitro study conducted by Turco et al. [60] Intestinal biopsies were
collected during endoscopy in 40 consecutive individuals, divided as follow: 10 patients
with diverticulosis, 10 patients with SUDD, 10 patients with SUDD with previous acute
diverticulitis (SUDD+AD), and a control group of 10 people without gastrointestinal
diseases. Biopsies were then stimulated with the probiotic LCDG and/or the pathogen
enteroinvasive Escherichia coli (EIEC). As previous studies demonstrated an increase in
nitric oxide (NO)-mediated responses in patients with DD; the rationale was to evaluate
NO release and inducible nitric oxide synthase (iNOS) expression before and after biopsies
stimulation [86–89]. Basal iNOS expression was significantly increased in SUDD and
SUDD+AD patients (+2.04- and +2.86-fold increase vs. CTRLs, respectively; p < 0.05). Basal
NO expression was significantly increased in SUDD+AD (+7.77-fold increase vs. CTRLs;
p < 0.05) (Figure 2).
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Figure 2. Basal INOs expression and NO release in patients vs. controls * p < 0.05 vs. controls
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diverticular disease; AD = acute diverticulitis.

In all groups, iNOS expression was significantly increased by EIEC and reduced by
LCDG (p < 0.05 and p < 0.05, respectively). In all groups, except for SUDD+AD, EIEC
significantly increased NO release and LCDG significantly reduced NO release (p < 0.05
and p < 0.05 respectively). Data confirmed an activation of NO-dependent inflammation
related to iNOS expression and NO release that appeared progressively increased from
diverticulosis to SUDD with previous diverticulitis. At baseline, a significantly increased
release of the anti-inflammatory cytokine IL-10 in patients with SUDD+AD (−11.25+ fold
increase vs. controls was also observed; p < 0.05), clear evidence of the body’s attempt
to control inflammation after acute diverticulitis. Finally, this study demonstrated that
colonic mucosa of patients with DD is characterized by a different reactivity towards
pathogenic stimuli. LCDGs’ role in counteracting the pro-inflammatory effects exerted by
EIEC was confirmed, suggesting a beneficial role of this probiotic in DD. Three in vivo
studies (Table 1) have then investigated the efficacy of LCDG administered in combination
with mesalazine (5-ASA), which is commonly used in the treatment of inflammatory bowel
disease. The rationale for this approach was to control peri-diverticular inflammation
while simultaneously restore local microbiota [90–92]. Tursi et al. [66] conducted a mul-
ticenter, prospective, randomized controlled study comparing 5-ASA, LCDG, and their
combination in 90 patients with recurrent SUDD. Subjects periodically self-rated their
symptoms using a tool that generated an “overall symptom score”, including constipation,
diarrhea, abdominal pain, rectal bleeding, and mucus with the stools, that could range
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from 0 to 50. After 12 months, 76.7% of subjects (23/30) in each monotherapy arm were
symptom-free, compared with 96.7% of those on combination therapy (29/30; one subject
lost to follow up). In general, when symptoms occurred, they were rated as mild, but
the overall symptom score was lower in the group receiving the combination of 5-ASA
plus LCDG compared with the other two groups (p < 0.001). A related randomized study
was reported by Tursi et al. [67] in 75 subjects with additional study arms to assess 5-ASA
doses of 0.8 g versus 1.6 g daily; follow up was extended to 24 months. In the present
case, 80% and 87% of patients on monotherapy remained symptom-free versus 92% and
94% of those on combination therapy, the differences were not statistically significant. No
5-ASA dose-response was reported. Of note, all subjects who stopped treatment devel-
oped symptoms or a diverticular complication. Finally, Tursi et al. [68] conducted another
randomized, controlled double-blind, double-dummy trial to evaluate the effectiveness
of 5-ASA and/or LCDG in maintaining remission in SUDD. The study was conducted on
210 patients with SUDD. Participants were randomly enrolled in four groups: Group M
(active 5-ASA 1.6 g/day plus LCDG placebo), Group L (LCDG 24 billion/day plus 5-ASA
placebo), Group LM (active LCDG 24 billion/day plus active 5-ASA 1.6 g/day), Group
P (LCDG placebo plus 5-ASA placebo). Patients received treatment during 12 months
for 10 days/month. Recurrence of SUDD was defined as the reoccurrence, for at least
24 consecutive hours, of abdominal pain during follow-up, scored as ≥5 (0: best; 10: worst).
Reappearance of SUDD happened in no (0%) patient in group LM, in 7 (13.7%) patients
in group M, in 8 (14.5%) patients in group L, and in 23 (46.0%) patients in group P (LM
group vs. M group, p = 0.015; LM group vs. L group, p = 0.011; LM group vs. P group,
p = 0.000; M group vs. P group, p = 0.000; L group vs. P group, p = 0.000). Compared with
all other groups, in group P there was a significant number of recurrences (p = 0.003). Both
cyclic 5-ASA and LCDG emerged to be better than placebo for maintaining remission in
SUDD, particularly when used together (Figure 3). Moreover, both treatments, alone or
in combination, were significantly better than placebo in preventing occurrence of acute
diverticulitis in SUDD patients. No adverse effects related to the probiotic treatment were
observed in the overall studies [66–68].
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at any time during the follow up) was defined as clinical remission. SUDD = symptomatic
uncomplicated diverticular disease; group LM = active mesalazine + active Lactobacillus casei;
group L = active Lactobacillus casei + mesalazine placebo; group M = active mesalazine + Lactobacillus casei
placebo; group P = mesalazine placebo + Lactobacillus casei placebo.
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Table 1. Main characteristics of the 3 in vivo selected studies on LCDG treatment in DD.

Author
Year [Ref.] # Patients F

Mean
Age

(Years)

Type of
Diverticular

Disease
Study Type Arms

Single
Center
Yes/No

Interventions Follow-Up Outcome
Measure

Efficacy of
Interventions

Tursi et al.,
2006 [66] 85 54 67

Symptomatic
uncomplicated

DD in remission
Open RT 3 No

G1: 5-ASA 1.6 g/day
G2: LCDG 8 × 109 CFU

15 days/month
G3: LCDG 8 × 109 CFU

15 days/month + 5-ASA
1.6 g/day

12 months
Remission of
abdominal
symptoms

Symptom free at
12 months:

G1 76.7% (23/27)
G2 76.7% (23/27)
G3 96.7% (29/29)

Tursi et al.,
2008 [67] 75 42 65

Symptomatic
uncomplicated

DD in remission
Open RT 5 Yes

G1: LCDG 16 × 109 CFU
10 days/month + 5-ASA

800 mg/day
G2: LCDG 16 × 109 CFU
10 days/month + 5-ASA

1600 mg/day
G3: 5-ASA 800 mg

10 days/month
G4: 5-ASA 1600 mg

10 days/month
G5: LCDG 16 × 109 CFU

10 days/month

24 months
Remission of
abdominal
symptoms

Symptom free at
24 months:

G1 93.7% (15/16)
G2 92.3% (12/13)
G3 84% (11/13)
G4 80% (8/10)

G5 86.9% (20/23)

Tursi et al.,
2013 [68] 210 101 62

Symptomatic
uncomplicated

DD in remission

DB placebo-
controlled RT 4 No

G1: LCDG 24 × 109 CFU
10 days/month + 5-ASA

1600 mg/day
G2: LCDG

placebo + 5-ASA
1600 mg/day for
10 days/month

G3: LCDG 24 × 109 CFU
10 days/month + 5-ASA

placebo
G4: LCDG

placebo + 5-ASA placebo

12 months
Recurrence of

abdominal
symptoms

Recurrence of
SUDD

at 12 months:
G1 0% (0/54)

p > 0.01 vs.
other arms

G2 13.7% (7/51)
G3 14.5% (8/55)
G4 46.0% (23/50)

Ref. = reference; # = number; F = female; DD = diverticular disease; DB = double blind; RT = randomized trial;
G = group; ASA = mesalazine; LCDG = Lactobacillus.

4. Discussion

Dysbiosis has been described in patients with symptomatic diverticular disease. Thus,
changing gut bacterial composition and switching off inflammatory patterns through
probiotics seems an interesting therapeutic strategy, breaking the vicious circle in which
dysbiosis and inflammation promote each other. These observations have encouraged to
investigate the potential role of LCDG as a new therapy for DD [93–96].

LCDG has multiple modes of action (Figure 4), including rebalancing of the intestinal
microbiotas’ ecology and regulation of the immune system activity. This probiotic strain
has a clear impact on faecal microbiota, modifying specific microbial groups at the phylum
and genus levels, inhibiting colonic bacterial overgrowth and metabolism of pathogens,
and increasing levels of SCFAs playing an important role in maintaining intestinal home-
ostasis [48,58]. Moreover, data coming from in vitro and in vivo studies, demonstrated
LCDGs’ capacity to regulate the immune system activity in IBS and DD, by controlling pro-
and anti-inflammatory cytokines levels [58–60]. Acting on inflammation, LCDG may also
act on symptom development in individuals affected by such intestinal diseases [58,65].

In three clinical trials, this probiotic strain seemed to show an apparent trend to
significantly obtain remission and reduction of the recurrence of SUDD, especially when
used in combination with 5-ASA [66–68] (Table 1). However, the poor number of overall
studies, the heterogeneous nature, and the relatively poor quality of the available studies on
the use of LCDG make it difficult to evaluate the cumulative efficacy of this probiotic strain.
Treatment protocols about timing, dosage, or combination with other drugs and the follow-
up periods in the different studies were very variable. Only 1 study was a double-blinded
randomized controlled trial. Furthermore, the type of DD was heterogeneous between the
mentioned studies because there is a lack of a globally recognized clinical classification for
diagnosing and defining SUDD and its recurrence.
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Two main considerations can be extrapolated from this work. First, even if the amount
of data present is not sufficient to draw robust conclusions, LCDG appears a promising
option to promote the health of the individual, equilibrating gut physiological conditions
in colonic pathologies such as SIBO, IBS, and DD. Especially in the latter pathology, the
efficacy and safety of LCDG in improving symptoms of SUDD have already been mentioned
in the WGO Global Guidelines of the use of Probiotics and Prebiotics (2017) [97]. It could
also be interesting to evaluate its use in inflammatory bowel disease (IBD) and microscopic
colitis, two more multifactorial gastrointestinal diseases in which we find the same patho-
genetic pattern of chronic inflammation and protracted dysbiosis. Secondly, data emerging
from this review suggest that large, randomized placebo-controlled studies are needed to
establish efficacy, dose-responses, optimal timing for introduction, and duration of LCDG
therapy in the spectrum of colonic diverticular disease.

5. Conclusions

Lactibacillus paracasei is a promising candidate in the management of diverticular
disease, ensuring multiple benefic effects on the intestinal homeostasis.

Specific studies to evaluate LCDGs’ efficacy in each clinical setting of DD are warranted,
including treatment of acute diverticulitis and SUDD, prevention of recurrent diverticulitis,
and management of chronic symptoms.
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