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In this study, we examined regions in the left and right hemisphere language network

that were altered in terms of the underlying neural activation and effective connectivity

subsequent to language rehabilitation. Eight persons with chronic post-stroke aphasia

and eight normal controls participated in the current study. Patients received a 10

week semantic feature-based rehabilitation program to improve their skills. Therapy was

provided on atypical examples of one trained category while two control categories

were monitored; the categories were counterbalanced across patients. In each fMRI

session, two experimental tasks were conducted: (a) picture naming and (b) semantic

feature verification of trained and untrained categories. Analysis of treatment effect sizes

revealed that all patients showed greater improvements on the trained category relative

to untrained categories. Results from this study show remarkable patterns of consistency

despite the inherent variability in lesion size and activation patterns across patients.

Across patients, activation that emerged as a function of rehabilitation on the trained

category included bilateral IFG, bilateral SFG, LMFG, and LPCG for picture naming; and

bilateral IFG, bilateral MFG, LSFG, and bilateral MTG for semantic feature verification.

Analysis of effective connectivity using Dynamic Causal Modeling (DCM) indicated that

LIFG was the consistently significantly modulated region after rehabilitation across

participants. These results indicate that language networks in patients with aphasia

resemble normal language control networks and that this similarity is accentuated by

rehabilitation.

Keywords: aphasia, stroke, language recovery, fMRI activations, effective connectivity, dynamic causal modeling,

rehabilitation, naming

Introduction

Most studies of language recovery have examined the recovery process in the chronic stage and
have found that the recovery of language function in aphasia is a more complex process than a
simple reversal of normal left hemisphere lateralization or exclusive recruitment of left perilesional
and other left language areas, and likely reflects a combination of the two (Price and Crinion,
2005; Crinion and Leff, 2007; Thompson and den Ouden, 2008). Two recent cross-sectional
studies highlight the complexity of the interaction. The first, a recent meta-analytic review of 12
studies by Turkeltaub et al. (2011), found that patients with aphasia showed activation in left
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hemisphere regions such as the left inferior frontal gyrus (IFG)
and left middle temporal gyrus (MTG) that was also observed
in control participants. In addition, they showed activation in
new left hemisphere regions such as anterior insula and middle
frontal gyrus (MFG) and homologous right hemisphere regions
such as right inferior frontal gyrus (RIFG), right post central
gyrus (RPCG) and right middle temporal gyrus (RMTG); none
of these activation patterns were observed in control participants.
According to Turkeltaub et al., patients with limited damage to
the dominant/left hemisphere may demonstrate improvements
due to re-engagement of spared regions and may also recruit
alternate perilesional areas to subserve language recovery. In
patients with large left hemisphere lesions, the engagement of
the contralateral right hemisphere homologs, particularly the
RIFG, is crucial to successful recovery of language. A second
study (Sebastian and Kiran, 2011) examined two tasks (picture
naming and semantic feature judgment) and found that while
activation was observed in the LIFG in patients without lesions
in the LIFG for both tasks, activation was also observed in the
RIFG in all patients for the picture naming task. These studies
show that undamaged regions in the left hemisphere are capable
of subserving language recovery but do so in a way that is
constrained by task demands and the amount of perilesional
tissue available (i.e., lesion size).

The study of the neural basis of rehabilitation-induced
language recovery in patients has mostly focused on whether
activation in the left hemisphere or the right hemisphere is
ultimately related to positive language recovery (Peck et al., 2004;
Davis et al., 2006; Fridriksson et al., 2006, 2007, 2010; Vitali
et al., 2007; Meinzer et al., 2008; Raboyeau et al., 2008; Crosson
et al., 2009; Menke et al., 2009; Fridriksson, 2010; Marcotte
and Ansaldo, 2010; Rochon et al., 2010; Heath et al., 2012).
The more recent studies have highlighted the importance of left
hemisphere and perilesional activation as a function of improved
picture naming skills after rehabilitation (Meinzer et al., 2008;
Fridriksson, 2010; Rochon et al., 2010; Marcotte et al., 2012;
van Hees et al., 2014) that are consistent with Turkeltaub et al.
(2011)’s suggestions about the role of the LIFG and perilesional
regions in recovery. All of the above-mentioned studies have
been useful in providing insight into which regions may change
as a function of rehabilitation; however, these studies do not
necessarily explain how these regions are modulated within a
network, nor were they designed to do so.

A few studies have examined changes in network connectivity
after rehabilitation (Abutalebi et al., 2009; Sarasso et al., 2010;
Vitali et al., 2010). In one study, Abutalebi et al. (2009) used
Dynamic Causal Modeling (DCM) to examine the effect of
rehabilitation in one bilingual patient with aphasia on two
different networks: the control network and the language
network. The connections in these networks were measured
for both languages (L1 = native language, L2 = second
language) before and after therapy in L2. The authors found
that rehabilitation in L2 strengthened connections within the
L2 language network, but weakened connections within the
L1 language network. Two other studies have also examined
connectivity changes using structural equation modeling (SEM).
Vitali et al. (2010) used SEM to explore rehabilitation-induced
changes in connectivity among four left hemisphere language

areas (IFG, MTG, insula, and IPL) and their right hemisphere
homologs in two patients. For both patients, more strengthened
connections were noted for trained vs. untrained items. In
another study, Sarasso et al. (2010) compared left hemisphere and
right hemisphere networks in four patients to a normative model
at several time points throughout rehabilitation to improve
articulation. They found that as rehabilitation progressed,
patients’ left hemisphere networks (using structural equation
models) more closely resembled (i.e., were a better fit to) that
of the normative model, whereas right hemisphere networks
started out resembling the normal network, but progressively
resembled it less. While these preliminary studies have included
few subjects, they provide important preliminary evidence that
improvements in behavioral rehabilitations can be reflected in
terms of changes in connectivity in the language network. They
also highlight the fact that there is inherent variability both within
and across individuals and warrant more careful and systematic
analysis of the nature of connectivity changes in patients with
varying lesion and behavioral profiles.

We have also previously demonstrated that rehabilitation for
naming deficits can result in positive behavioral outcomes (Kiran
and Bassetto, 2008; Kiran et al., 2009, 2011; Sandberg and Kiran,
2014) and the studies reviewed above suggest that improvements
after rehabilitation can be captured with neuroimaging in terms
of changes in patterns of activation and inter-hemispheric shifts.
The present study examined changes in patterns of BOLD
signal activation and changes in connectivity as a function of
rehabilitation. We implemented two behavioral tasks, picture
naming and semantic feature verification, before and after
rehabilitation to improve naming skills in eight patients. Both
these tasks have been examined in prior studies with patients
with aphasia (Postman-Caucheteux et al., 2009; van Oers et al.,
2010; Sebastian and Kiran, 2011) and have a well-articulated
neural framework. According to Indefrey and Levelt (2004),
there are three distinct stages of word production. Selection
of a word during picture naming involves regions in the left
MTG, retrieval of the phonological word form involves the left
posterior superior temporal gyrus (LPSTG) and middle temporal
gyrus (LMTG), and finally, planning of the phonological
form (i.e., syllabification) involves the left posterior inferior
frontal gyrus (LIFG). Likewise, Binder and colleagues (Binder
et al., 2009; Binder and Desai, 2011) have proposed a neural
framework for semantic processing that includes modality-
specific input to temporal and parietal regions that process
modal representations of semantic knowledge. Also, frontal
regions including dorsomedial and inferior prefrontal regions
are involved in the goal directed activation of information from
the temporal regions.

Since the rehabilitation was focused on strengthening
semantic representations through feature verification to improve
picture naming, the fMRI tasks focused on the outcome
of therapy (picture naming which requires semantic and
phonological access) as well as the cognitive mechanism targeted
in therapy (semantic processing during the semantic feature
verification). Thus, in addition to the fact that both the picture
naming and semantic feature tasks have been well-examined in
fMRI experiments across both patients with aphasia and normal
controls, these tasks are well-tailored to the behavioral language
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rehabilitation implemented in the study and compensate for
the modest number of participants by providing within-subject
replication across similar tasks. The following were the research
aims and hypotheses proposed in the present study:

(1) To examine behavioral changes in patients with aphasia
who receive a semantic feature-based naming therapy. Our
previous work has shown that a theory based rehabilitation
aimed at improving lexical retrieval for atypical examples
results in improvement of trained items as well as
generalization to untrained items within the same category
(Kiran and Thompson, 2003; Kiran, 2008; Kiran and
Bassetto, 2008; Kiran and Johnson, 2008; Kiran et al., 2011)
leading to the Complexity Account of Treatment Efficacy
(Kiran, 2007; Thompson, 2007). In the present study,
we implement this well-established protocol by training
atypical examples from different semantic categories across
patients, with the expectation that the semantic feature-
based treatment will result in improved naming of the
trained items as well as generalized naming of untrained
items within the same category. The goal of this study was
not to examine the patterns of generalization; therefore,
although they were collected, these data will not be reported.

(2) To explore changes in activation on two tasks: picture
naming and semantic feature matching. Based on previous
studies examining task-based activation for picture naming
and semantic feature matching and data collected from
healthy normal controls reported in this paper, we expect
to see activation in the language network that encompasses
regions including temporal regions (ITG, MTG, STG),
inferior parietal regions [supramarginal gyrus (SMG),
angular gyrus (AG)], precentral gyrus (PCG) and the
dorsolateral (MFG, SFG), and inferior frontal regions (IFG),
in patients with aphasia who have residual tissue in these
regions. Furthermore, we expect changes in activation
in these regions in patients who show improvements in
language function after rehabilitation.

(3) To explore changes in effective connectivity using DCM.

Given the current robust evidence for regions involved
in the two tasks examined in this experiment, DCM

is the ideal methodology as it is hypothesis-driven and
allows researchers to examine whether rehabilitation changes

the nature and strength of connectivity between language

regions in patients. Importantly, DCM has been used to
examine the nature of the damaged or reorganized network

in clinical populations (Sonty et al., 2007; Grefkes et al., 2008;
Abutalebi et al., 2009; Rehme et al., 2011; Campo et al., 2013;
Kahan and Foltynie, 2013); however, there is only one case

study examining DCM tomeasure changes in connectivity as
a function of rehabilitation (Abutalebi et al., 2009). Notably,

we employed this method at the single participant level due

to the inherent variability across our participants in terms of

lesion sites and responsiveness to rehabilitation. Therefore,
we expected to see differences in networks that changed as a

function of rehabilitation within patients, but also expected
to see certain regions (e.g., LIFG) that were modulated as a
function of treatment across participants.

Materials and Methods

Participants with Aphasia
Eight participants with aphasia (mean age = 58 years; seven
male), all of whom had a single stroke, participated in the study.
All participants had infarcts in the left hemisphere with the
exception of #5 who had a stroke in the right hemisphere1.
All patients were given a battery of standardized language
tests, including the Western Aphasia Battery-Revised WAB-R
(Kertesz, 2007) to establish the type and severity of aphasia,
the Boston Naming Test (BNT) (Goodglass et al., 1983; Kaplan
et al., 2001) to determine confrontation naming ability, the
Pyramids and Palm Trees (PAPT) (Howard and Patterson, 1992)
to determine overall soundness of the semantic system, and
the Cognitive Linguistic Quick Test (CLQT) (Helm-Estabrooks,
2001) to determine the relative contribution of cognitive deficits
such as attention and visuo-spatial skills to language dysfunction.
Due to the linguistic nature of the tasks included in the language
andmemory subscales of the CLQT, these scores are not included
in the table; it should be noted, however, that language and
memory scores (as well as other cognitive domain scores)
do contribute to the CLQT composite score. As can be seen
in Table 1, patients presented with varying levels of language
impairment ranging from 48 to 97.2 on the WAB AQ, and 6.6
to 85% on the BNT. Of note, lesion volume did not correlate with
language impairment either on the WAB (r = −0.4, p = ns) or
BNT scores (r = 0.07, p = ns) (see Figure 1 for a lesion overlap
map).

In addition, six tests assessing semantic and phonological
processing were administered to examine the nature of
phonological processing, semantic processing and naming.While
performance varied across participants, semantic processing
scores were higher than phonological processing scores in general
(see Table 2). The only behavioral criteria for inclusion into the
experiment was the presence of a naming impairment (<70%
accuracy) on a set of pre-determined 96 pictures that varied by
their category typicality, seeTable 2 for details. Of note,WABAQ
correlated with the average naming skills for atypical examples
(r = 0.65, p < 0.05) indicating that the naming impairment
was consistent with their overall language impairment profile. All
participants gave consent according to BU IRB protocol.

Control Participants
Eight control participants (mean age = 57.5 years, four males)
with no history of brain damage were recruited to obtain
normative data on task-specific activation for the two language
tasks. Exclusionary criteria included neurological disorders
such as stroke, transient ischemic attacks, Parkinson’s disease,
Alzheimer’s disease, psychological illness, learning disability,
seizures, and attention deficit disorders. The controls did not
receive language therapy and were scanned at only one time
point. Half the controls were scanned as part of a different

1#5 presented with crossed-aphasia, although it is unclear whether he was left or

right hemisphere dominant for language prior to his stroke. Given the inherent

variability across all participants, we chose to include this patient’s data in the study

as all data were analyzed individually, and the observation of similar results in a

patient with a right hemisphere stroke and aphasia strengthens this study.
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TABLE 1 | Demographic information for participants in the study that include age, months post onset (MPO), Western Aphasia Battery Aphasia Quotient

(WAB AQ), Boston Naming Test (BNT), Pyramids And Palm Trees (PAPT, 3 pictures test), Cognitive Linguistic Quick Test (CLQT), and overall lesion volume

in cc.

Patient # (in years) MPO Overall lesion WAB BNT PAPT (three CLQT (Composite CLQT (Attention) CLQT

volume (in cc) AQ score (%) pictures) Severity) (Visuospatial Skills)

5 53 107 287.17 75.4 83 96.1 Mild WNL WNL

11 59 143 235.03 71.2 60 94.2 Mild WNL WNL

15 59 15 168.46 85.1 85 94.2 Mild WNL WNL

32 51 87 247.1 48 6.6 88.4 Mild Mild WNL

33 65 49 114.83 49.6 15 96.1 Mild Mild WNL

62 49 157 431.63 58.2 58.1 96.1 Moderate Mild Mild

93 66 24 24.21 97.2 65.5 92.3 Mild WNL WNL

115 63 98 208.05 53.4 15 96.1 Mild Mild WNL

The CLQT composite severity computes a profile by measuring attention, memory, executive functions, language, visuo-spatial skills, and clock drawing abilities. WNL, Within normal

limits.

FIGURE 1 | Lesion overlap of all the eight patients.

ongoing experiment, the details of which are provided in
Supplementary Table 1. All participants gave consent according
to BU IRB protocol.

Stimuli
Five semantic categories (birds, vegetables, furniture, clothing, and
musical instruments) were used to study naming and semantic
processing during the rehabilitation tasks across the eight
patients. Twenty-four items were selected for each category that
comprised typical and atypical examples (e.g., bird: typical–robin,
atypical–ostrich; vegetables: typical–spinach, atypical–mushrooms,
clothing: typical–sweater, atypical–apron; furniture: typical–
dresser, atypical–chandelier; musical instruments: typical–violin,
atypical–bagpipe). Patients were exposed to three of the five
categories: a trained category (probed weekly), an assessed
category (only tested before and after rehabilitation) and a
monitored category (probed at the same frequency as the
trained category). The assignment of trained, untrained, and
monitored categories was counterbalanced across participants
and constrained by their initial naming accuracy. Hence if the
patient named more than 70% of the items in the category at
baseline, that category was eliminated from potential set of

stimuli for that patient. Each category contained 12 typical
and 12 atypical examples that were selected from our previous
rehabilitation studies (Kiran and Thompson, 2003; Kiran,
2008). All stimuli were concrete nouns balanced for length,
frequency of occurrence (CELEX, Vanderwouden, 1990),
familiarity, and concreteness (http://websites.psychology.
uwa.edu.au/school/MRCDatabase/uwa_mrc.htm) (Coltheart,
1981). Each patient was trained on 12 examples within each
category.

Semantic Features Employed During Treatment
The typicality treatment employed analysis of semantic attributes
of concepts. Semantic features were selected from our previous
studies (Kiran and Thompson, 2003; Kiran, 2008). Each category
contained 40 semantic features, each of which was applicable
to at least two items within the category, and each item
within the category could be assigned at least six features.
Equal numbers of distractor features were included. Semantic
features were controlled for whether they were defining or
characteristic of the category and for type of information
conveyed; i.e., equal number of physical, functional, and
contextual features.
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TABLE 2 | Performance on behavioral measures prior to treatment, including phonological processing tasks (rhyme judgment, syllable judgment, and

phoneme judgment), semantic processing tasks (coordinate task, superordinate task, semantic feature), and picture naming (atypical and typical

examples) collapsed across categories.

Patient # Rhyme Syllable Phoneme Coordinate Superordinate Semantic feature Average naming Average naming

judgment (%) judgment (%) judgment (%) judgment (%) judgment (%) judgment (%) typical (%) Atypical (%)

5 100 87.00 67.00 ND ND 80.00 68.94 56.82

11 ND ND ND ND ND ND 70.83 61.11

15 78.75 78.75 65.00 98.75 97.50 88.75 65.74 67.59

32 51.25 51.25 47.50 81.25 82.50 87.50 30.00 26.19

33 45.00 45.00 55.00 97.50 90.00 88.75 30.83 18.33

93 77.50 65.00 57.50 87.50 95.00 86.25 68.52 59.26

62 55.00 52.50 46.25 62.50 80.00 80.00 41.67 47.22

115 53.75 66.25 ND ND ND 85.00 25.00 31.48

ND, no data.

Treatment and Monitoring Protocol
Confrontation picture naming was tested during baseline
sessions, and then treatment was applied to one set of items
within a category. In each session, semantic attributes of the
target category were presented to the patient in order to
strengthen the semantic representation of that specific category
(Kiran and Bassetto, 2008). Participants practiced the following
steps for each of the trained items: (1) analysis and selection of
six semantic features of the target item, (2) answering 15 Y/N
questions of which five belong to the target example (e.g., “has
wings”), five belong to the category but not the target example
(e.g., “flies”), five that do not belong to the target category
(e.g., “worn on body”), and (3) naming the target picture (e.g.,
ostrich).

Throughout rehabilitation, weekly naming probes were
administered to assess naming of the trained and untrained
items within the trained category and untrained categories. The
assessed category was only probed during the pre- and post-
rehabilitation sessions. Rehabilitation was terminated when each
patient named at least 10/12 (80% accuracy or higher) items
accurately across two consecutive sessions. Subsequently, three
post-rehabilitation naming probes, using the same procedures
as the baseline and rehabilitation probes, were administered to
calculate the efficacy of rehabilitation. Effect sizes2 and percent
change were calculated to determine the degree of change in
pre-post rehabilitation performance (Busk and Serlin, 1992).

Neuroimaging Experiment and Design
Procedures
Both patients and control participants participated in the fMRI
experiment. As noted before, the controls completed the fMRI
experiment once in order to identify regions of activation that
are normally engaged for the two tasks. All patients completed
two fMRI scans, one during the baseline testing phase (pre-
treatment scan) and one during the post-rehabilitation phase
(post-treatment scan).

2Effect sizes and percent change reported here are the average of the trained

atypical example and untrained typical examples. A full examination of the extent

of generalization to typical examples is out of the scope of this study.

fMRI Task Design
For both picture naming and semantic feature tasks (shown
in Figure 2), an event-related design using randomized inter-
stimulus intervals (ISIs) was implemented using E-Prime 2.0
(Psychology Software Tools, Inc.). For both tasks, ISIs were
jittered between 2 and 4 s (Birn et al., 2004). In this design,
when averaged, the jittered ISI accounts for speaker-related brief
motion artifacts and has been successfully implemented for
several overt-naming tasks that do not use sparse sampling (Birn
et al., 2004; Meltzer et al., 2009; Menke et al., 2009; Postman-
Caucheteux et al., 2009).

For the picture naming task, 80 stimuli included items from
the trained category and the untrained- assessed category (except
for P1 and P2). Four different runs of the picture naming task
were used, each containing 20 experimental stimuli (pictures to
name) and 20 control stimuli (scrambled pictures). Two runs
consisted of stimuli from the trained category and the other
two runs consisted of stimuli from the untrained categories.
Participants were required to name each picture aloud or say
“SKIP” for pictures they could not name. The control stimuli
were pixelated, scrambled versions of the experimental stimuli.
Participants were required to say “SKIP” for each control item.
The experimental pictures were presented for 5 s while the
scrambled control stimuli were presented for 3 s.

In the semantic feature verification task, 80 stimuli were
evenly distributed across the four categories. In both the
experimental and control conditions, each trial consisted of a
picture prime (presented for 1 s) followed by the target stimulus
(presented for 4 s). Half of these prime stimuli and their
corresponding target stimuli were presented in black and white
and the other half were presented in color. The target stimulus
was the prime picture repeated with a written phrase below. This
design was used to provide enough time for patients with aphasia
to process the visual attributes of the picture prior to making a
decision. In the experimental condition, the written phrase was
a semantic feature, and participants indicated by button press
whether the written semantic feature applied to the pictured item.
The control stimuli contained a scrambled picture (presented
in either black-and-white or color) and a statement regarding
the color of the scrambled picture (either “black and white”
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FIGURE 2 | Picture naming (top) and Semantic feature task (bottom).

or “color”). Participants indicated by button press whether the
statement regarding the color of the picture was true or false (see
Figure 2 for details).

fMRI Data Acquisition
Magnetic resonance images were acquired at Boston University
Center for Biomedical Imaging on a 3 Tesla Philips Acheiva MRI
scanner. High-resolution T1-weighted images were acquired
with the following parameters: 140 sagittal slices, 1mm3 voxels,
240 × 240 matrix, FOV = 240mm, flip angle = 8, fold-over
direction = AP, TR = 8.2ms, TE = 3.8ms. Blood-oxygen-level-
dependent (BOLD) sensitive functional images were collected
using the following parameters: 31 axial slices, 3mm thick,
0.3mm interslice gap, 80 × 78 matrix, FOV = 240mm, flip
angle= 90, fold-over direction=AP, TR= 2000ms, TE= 35ms.
Picture naming responses were recorded in software OptiMRI
2.4 (dual channel) with live noise cancelation. Semantic feature
responses were recorded using a left hand button response box
for both groups of participants.

fMRI Data Analysis
Preprocessing
Preprocessing was performed to correct for slice timing
differences and movement, and to remove slow baseline
drifts. Data were analyzed using SPM8 software (Wellcome

Trust Centre for Neuroimaging). Slice timing correction
was applied with reference to the middle slice. Structural
scans were coregistered to a mean functional image obtained
from realignment performed on functional scans for motion
correction. For each patient, a lesion map was drawn on
their T1 image using MRIcron (http://www.cabiatl.com/mricro/)
(see Table 1). Unified segmentation was performed based on
coregistered structural images into gray matter, white matter
and CSF. A masking image was provided during segmentation
so that the regions containing a value of zero would not
contribute to the analysis when estimating the segmentation
parameters (Brett et al., 2001; Meinzer et al., 2013). Structural
and functional images were spatially normalized to the default
MNI template in SPM8. Slow baseline drifts were filtered out
using a high-pass filter with a cutoff of 1/128 s. Spatial smoothing
of functional data was not performed to minimize the loss of
specific activations that can occur due to smoothing (Meinzer
et al., 2013).

Several steps were performed in the pre-processing of the
data to address potential movement-related artifacts on the
picture naming task. In addition to slice timing and co-
registration, motion correction in SPM8 (Realign) was utilized.
All fMRI images/volumes were registered to mean slice. Also,
the realignment parameters (motion correction parameters) were
used as regressors in the first level GLM analysis. In addition, for

Frontiers in Human Neuroscience | www.frontiersin.org 6 June 2015 | Volume 9 | Article 316

http://www.cabiatl.com/mricro/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Kiran et al. Changes in effective connectivity in aphasia

specific individuals (#5, 11, 15, 62), volumes with large variations
(>0.05mm) in scan-to-scan motion were repaired via linear
interpolation using the ArtRepair toolbox in SPM8 (Mazaika
et al., 2009).

First level analysis
First level analysis was performed based on the General Linear
Model (GLM) in SPM8. Task timings (stimulus onsets and
durations) were convolved with the canonical hemodynamic
response function (HRF) and its temporal derivative. Conditions
included pictures, scrambled pictures, and fixations, and were
modeled in the GLM separately for each scan. Motion parameters
were included in the model as regressors. Serial correlations were
accounted for using an AR (1) model. The model was estimated
using a restricted maximum likelihood approach (ReML). For
the patients, pre-rehabilitation and post-rehabilitation scan
activation maps were calculated based on t-test contrasts for
the pictures—scrambled contrast for the trained and untrained
category separately. The main contrast of interest was [post-
rehabilitation (picture-scrambled)]-[pre-rehabilitation (picture-
scrambled)] for each task. Activations maps were thresholded at
a family wise error threshold (FWE) < 0.05. Uncorrected p <

0.001 activations were examined when FWE thresholds were not
significant. Coordinates for activated voxels were entered into the
Anatomy toolbox, v.17, to obtain the label for each active region.
For normal controls, all four runs (two from each category)
were combined into one GLM for each task as no treatment was
provided.

Effective Connectivity Analysis
Effective connectivity analysis was applied using the DCM
toolbox in SPM8. DCM uses differential equations to model
inter-regional interactions to infer their directionality and
context-dependent modulations (Seghier et al., 2010; Stephan
et al., 2010). It is a hypothesis-driven modeling method testing
for effect of task on and between regions. The constructedmodels
calibrate the neuronal activity into hemodynamic responses and
estimate the parameters based on observed fMRI signal. To apply
DCM, a set of models is defined with regions and their intrinsic
connections in the form of a matrix labeled DCM-A. This is
followed by applying task effect modulation(s) to connection(s)
(DCM-B) and regions(s) (DCM-C). The Bayesian estimation
provides estimated parameters for each model and its subsequent
connection and region as Ep.A, Ep.B, and Ep.C. The averaging
tools in DCM provide inference either at the model level by
computing the Bayesian Model Average (BMA) in each session,
or at the connection level by computing the Bayesian Parameter
Average (BPA) across all sessions. As will be discussed in detail
below, in this study, only connection parameters (Ep.B and Ep.C)
from the BPA were used to investigate patterns of connectivity
for normal controls and changes in connectivity as a function of
rehabilitation for patients.

VOI Selection and Model Specification
All normal healthy controls showed overlapping activation in
language areas for each task; thus, a common model space was
constructed for this group (Seghier et al., 2010). As shown in

Tables 4, 5, regions which were active across all controls for
the picture > scrambled contrast in each task were selected as
potential voxels of interest (VOIs). This resulted in 12VOIs for
the picture naming task and 12VOIs for the semantic feature
task. Within an active cluster, the voxel with the highest T-
value was selected. Subject-specific eigenvariates were extracted
as spheres of 5mm around the MNI coordinate of the peak voxel
and adjusted for the effect of interest.

Because the patients presented with varying sizes and sites
of lesion and corresponding fMRI activation patterns, extraction
of a common set of VOIs across patients was not possible.
Thus, for each patient, a common active voxel of interest (VOI)
present at both the pre- and post-rehabilitation scan (at p <

0.001 uncorrected) was extracted for each of the two tasks
using the same procedure as that described for normal controls.
All DCM models were deterministic, bilinear, two-state with
mean-centered inputs. The DCM models were set up based on
guidelines from previous studies (Abutalebi et al., 2009; Seghier
et al., 2010; Rehme et al., 2011; Kahan and Foltynie, 2013). Across
both the groups, within-hemisphere connections were defined
for all the regions while between-hemisphere connections were
defined for homologous regions only.

Extraction of Bayesian Parameter Average (BPA)

Values
Bayesian Model Selection (BMS) with random-effects (rfx) was
initially performed on each model space to find the best fit
model. Due to the variability in activation within patients, the
best fit model was not uniform across patients and, hence, was
not consequently pursued for controls or patients. Instead, for
both groups, BPA was computed to investigate connectivity
parameters for each connection (Ep.B) and region (Ep.C). For
controls, these connectivity parameters were plotted to create
a normal language network for each task that then served
as a reference framework to evaluate the patient rehabilitated
networks. For patients, BPA parameters were computed for
trained and untrained categories separately. These subject-
specific parameter estimates were used for second-level analysis
(rANOVA, t-tests) to understand changes after rehabilitation
(Stephan et al., 2010).

Results

The results of the study are organized into three sections. First,
we discuss the behavioral rehabilitation results, followed by fMRI
activation and connectivity patterns for the controls, and lastly by
fMRI activation and connectivity patterns for the patients.

Rehabilitation Results
As can be seen in Table 3, all patients improved after
rehabilitation, as noted by effect sizes for the trained examples
irrespective of the category trained. Therefore, all participants
show medium to large effect sizes for the trained examples
(Beeson and Robey, 2006). One-way ANOVAs on the average
effect size and percent change on the trained category, untrained
monitored category (monitored every week) and the untrained
assessed category (before and after rehabilitation), showed a
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TABLE 3 | Effect sizes (ES) and percent changes for the trained categories across participants compared with untrained but weekly monitored category

and untrained but assessed category as a function of rehabilitation.

Patient # Trained set Untrained probe set Untrained assessed set

Category ES Percent change Category ES Percent change Category ES Percent change

05 Vegetables 5.02 40% Birds 2.18 14% Musical instruments 0.74 8%

11 Birds 6.24 39% Vegetables 1.50 13% Musical instruments −0.34 0%

15 Birds 4.53 22% Vegetables 0.74 15% Furniture 1.16 13%

32 Vegetables 3.29 20% Birds 1.09 10% Furniture 0.45 5%

33 Clothing 8.94 49% Birds 1.56 19% Furniture 0.08 0%

62 Clothing 2.68 24% Vegetables 1.59 11% Furniture 0.52 7%

93 Vegetables 2.84 36% Birds 0.97 10% Clothing 0.94 10%

115 Birds 9.51 46% Furniture 2.90 18% Vegetables 2.69 15%

TABLE 4 | Regions of activation across healthy control participants at one time point with T-values for picture naming task.

Picture naming Healthy controls

#4 #11 #13 #14 #67 #69 #70 #71 VOI

ANTERIOR LEFT

Left superior frontal gyrus 6.38 4.49 3.78 5.67 3.48 4.75 3.69 5.38 X

Left middle frontal gyrus 5.65 4.70 6.25 5.57 4.34 3.56 5.14 7.72 X

Left inferior frontal gyrus 8.05 6.16 5.80 9.36 4.44 4.84 8.68 7.66 X

Left precentral gyrus 8.32 6.42 10.08 8.65 3.84 4.54 7.69 7.75 X

ANTERIOR RIGHT

Right superior frontal gyrus 5.98 4.14 5.93 3.23 3.40 3.32 5.34

Right middle frontal gyrus 6.04 5.03 4.08 5.75 3.28 3.53 3.89 5.04 X

Right inferior frontal gyrus 6.35 7.72 4.25 6.55 3.12 3.91 5.70 6.43 X

Right precentral gyrus

POSTERIOR LEFT

Left superior temporal gyrus 3.80 3.77 8.33 4.26 4.54 3.18 4.69

Left middle temporal gyrus 5.38 5.93 8.60 11.10 3.91 5.00 5.36 6.52 X

Left inferior temporal gyrus 5.70 6.77 5.01 4.68 3.79 4.97 6.48 6.71 X

Left fusiform gyrus 6.16 4.68 6.90 5.48 3.85 5.06 9.68 8.46 X

Left supramarginal gyrus 6.76 8.41 3.23 3.73 4.35 3.39

Left angular gyrus 4.64 6.03 4.17 4.69 3.29 6.42

POSTERIOR RIGHT

Right superior temporal gyrus 4.09 5.47 6.96 3.60 3.67 4.73

Right heschls gyrus 5.62 3.72

Right middle temporal gyrus 7.99 5.14 4.05 4.25 3.22 6.34 4.74 8.85 X

Right inferior temporal gyrus 3.48 4.93 5.60 7.07 4.75 5.18 4.23 4.93 X

Right fusiform gyrus 5.54 6.56 3.47 7.81 4.56 4.99 8.10 5.08 X

Right supramarginal gyrus 3.65 4.03 7.24 3.88 4.02 4.13

Right angular gyrus 3.78 5.15 3.39 3.46 3.35 4.89

Voxels active at p < 0.001 uncorrected have threshold at T values between 3.10 < T < 4.80 while voxels active at p < 0.05 family wise error correction (FWE) have threshold at T values

T > 4.80. Red cells indicate significance at p < 0.05 FWE.

significant effect of category on effect size [F(2, 24) = 17.3,
p < 0.0001] and percent change [F(2, 24) = 29.5, p < 0.0001];
post-hoc tests show a significantly larger effect size and percent
change for the trained category relative to the untrained assessed
category (p < 0.0001) and the untrained monitored category

(p < 0.00001). Therefore, a clear effect of rehabilitation on the
trained category was observed.

Activation and Connectivity Results for Controls
fMRI Activation Results
Activation patterns for normal controls are provided for each
individual control across regions that are broadly involved in
language processing. Table 4 and Figure 3A show activation for
each individual control participant (at one time point) for the
picture-scrambled contrast for the picture naming task. For
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FIGURE 3 | (A) Overlap activation maps of the eight healthy controls for picture naming task. (B) Overlap activation maps of the eight healthy controls for the

semantic feature verification task. The voxels are at threshold based on T > 3.10, p = 0.001. See Tables 4, 5 for individual thresholded activation.

picture naming, these regions include LSFG, bilateral MFG,
bilateral IFG, LPCG, bilateral MTG, bilateral ITG, and bilateral
fusiform gyrus. For semantic feature verification, Table 5 and
Figure 3B show that regions that were consistently active across
the eight participants included LSFG, LMFG, bilateral IFG,
LPCG, bilateral MTG, LITG, bilateral AG, and bilateral fusiform
regions. As the next step, we only included a region as a VOI
in the connectivity analysis if each individual control subject
showed significant activation (either at an uncorrected or FWE
threshold).

Connectivity Results for Controls
Each of the VOIs identified in Tables 4, 5 were then entered
into BPA analysis as described above. Specifically, as our GLM
consisted of three conditions (pictures, scrambled, and fixation),
we used pictures for the driving (c-matrix) and modulatory (b-
matrix) input as an effect of condition for our model space
across both the tasks. Thus, the input used for DCM was the
effect of condition “pictures.” The detailed specification of A, B,
and C matrices are provided in Supplementary Table 2. For the
picture naming task, there were 72model combinations that were
specified and for the semantic feature verification task, there were
76 model combinations that were specified. One-Way ANOVAs
were performed on Ep.C (regions) for both the picture naming
and semantic feature verification tasks separately. First, a One-
Way ANOVA using Ep.C estimates as the dependent measure
and input to regions as the independent measure across the
eight participants for the picture naming task was found to be
significant [F(11, 564) = 4.00, p < 0.001]. Figure 4A shows
that across the regions, LSFG, followed by LITG, LPCG, and
LIFG had higher Ep.C values or modulations relative to RITG,

RMTG and R fusiform regions (all p values significant at least
<0.05).

Likewise, a one-way ANOVA using Ep.C estimates as the
dependent measure and input to regions as the independent
measure across the eight participants for the semantic feature
verification task was found to be significant [F(11, 596) = 11.3,
p < 0.0001]. Figure 4B shows that across the regions, LSFG,
followed by LMFG, LPCG, and LIFG had higher Ep.C values
or modulations relative to R fusiform, RMTG and LAG regions
(all p values significant at least <0.05). Due to the high number
of different connections and limited number of participants,
neither of the ANOVAs performed on the Ep.B (i.e., connections)
values for the two tasks was significant. To summarize, the goal
of the control analysis was to use the normal control VOIs
and corresponding DCM analysis (which includes a broader set
of VOIs than is available for patients) as a reference for the
interpretation of patient DCM connectivity changes.

Activation and Connectivity Results for Patients
after Rehabilitation
fMRI Activation Results
Table 6 and Figure 5 show individual regions of activation that
emerged for the post-rehabilitation > pre-rehabilitation contrast
for the trained category on the picture naming task. Across
patients, there were several regions that were consistently active
in seven out of the eight patients as a function of rehabilitation
that included LSFG, bilateral MFG, LPCG, and RMTG. Other
regions that were active in most (>6) patients included RSFG,
bilateral IFG, bilateral SMG, LAG, and RSTG. When compared
to Table 4, it is apparent that several of these regions (LSFG,
bilateral MFG, LPCG, bilateral IFG, and RMTG) are active in
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TABLE 5 | Regions of activation across healthy control participants at one time point with T-values for semantic feature verification task.

Semantic feature Healthy controls

#4 #11 #13 #14 #67 #69 #70 #71 VOI

ANTERIOR LEFT

Left superior frontal gyrus 6.26 3.84 6.64 3.59 7.58 6.33 5.24 4.69 X

Left middle frontal gyrus 4.45 4.44 5.36 4.24 4.91 8.18 7.59 4.26 X

Left inferior frontal gyrus 6.86 7.67 7.72 5.94 9.26 11.16 6.94 7.27 X

Left precentral gyrus 5.53 4.54 7.74 4.28 6.13 8.35 8.11 3.15 X

ANTERIOR RIGHT

Right superior frontal gyrus 3.12 3.17 4.40 3.37 4.84 3.28 3.21

Right middle frontal gyrus 4.35 4.24 3.97 3.66 4.12 4.49 5.13

Right inferior frontal gyrus 4.28 3.38 4.32 3.92 5.27 5.82 6.93 5.20 X

Right precentral gyrus

POSTERIOR LEFT

Left superior temporal gyrus 4.06 4.63 4.68 9.19

Left middle temporal gyrus 6.10 8.32 6.19 8.13 7.63 11.93 5.90 6.10 X

Left inferior temporal gyrus 4.08 9.14 3.90 4.76 7.75 7.39 4.17 3.74 X

Left fusiform gyrus 4.75 5.53 6.49 4.40 6.76 7.72 10.80 6.48 X

Left supramarginal gyrus 4.67 4.15 5.00 6.13 4.57

Left angular gyrus 3.35 6.32 3.61 4.09 5.30 6.15 6.13 5.51 X

POSTERIOR RIGHT

Right superior temporal gyrus 3.36 4.35 4.15 4.68

Right Heschl’s gyrus 3.78

Right middle temporal gyrus 4.09 3.96 3.92 3.43 5.66 7.35 4.97 5.28 X

Right inferior temporal gyrus 4.19 5.63 5.15 4.64 4.56 3.76 3.38

Right fusiform gyrus 3.24 6.44 4.49 3.93 4.33 3.93 7.94 3.74 X

Right supramarginal gyrus 3.21 3.53 4.11 4.54 4.78

Right angular gyrus 3.67 3.32 3.70 3.40 5.07 4.58 4.32 4.52 X

Voxels active at p < 0.001 uncorrected have threshold at T values between 3.10 < T < 4.80 while voxels active at p < 0.05 family wise error correction (FWE) have threshold at T values

T > 4.80. Red cells indicate significance at p < 0.05 FWE.

all normal controls, indicating that as a function of treatment,
several normally-engaged language regions are further recruited
after rehabilitation.

For the semantic feature verification task, Table 7 and
Figure 6 show individual regions of activation that emerged
for the post-rehabilitation > pre-rehabilitation contrast for the
trained category. While changes in patient activation were less
consistent in this task, seven out of eight patients showed changes
as a function of rehabilitation in RMFG, RMTG, and RAG.
Other regions that were active in at least six patients included
LPCG, RSFG, RIFG, LMTG, and RSTG. When compared to
Table 5, some of these regions were also active in normal controls
including LPCG, RIFG, RMTG, and LMTG. Interestingly, there
were several regions in the right hemisphere (RMFG, RSFG,
RSTG) that were not consistently active in the normal controls
but emerged in the post > pre-rehabilitation contrast.

It should be noted that all of these regions identified above
are those that emerged as regions that were more active after
rehabilitation relative to before rehabilitation. This analysis does
not reflect regions that were active before and after rehabilitation
and that may have changed as a function of rehabilitation but
did not cross the activation thresholds. The question of how
regions that may have been active before and after rehabilitation

and may have been modulated is addressed in the connectivity
analysis. Additionally, a complete explanation of activation for
the untrained categories is beyond the scope of this paper and is
provided in Supplementary Tables 3, 4.

Connectivity Results for Patients
Recall that for each patient, a common active VOI present
at both the pre- and post-rehabilitation scan (at p < 0.001
uncorrected) was extracted for each of the two tasks using the
same procedure as that described for normal controls. These
VOIs largely overlapped with the VOIs extracted for the normal
controls, although, across patients, the specific set of VOIs were
different. Patient #62 was excluded from DCM analysis as there
were no common active VOIs present in both scans. See Table 8
for VOIs selected for patients and supplementary Table 5 for
a complete description of the full model space for each patient
across the two tasks.

To examine rehabilitation-induced modulations in patients,
separate, two-factor (trained and untrained categories) repeated
measures ANOVAs using Ep.B (estimates on connections)
and Ep.C (estimates on regions) as dependent measures with
rehabilitation outcome (effect size for trained and untrained
assessed category) as the covariate were performed for each
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FIGURE 4 | (A) Connectivity patterns for controls for the picture naming

task. (B) Connectivity patterns for controls for the semantic feature

verification task. For both tasks, average modulation for eight controls are

shown. Oval shapes are the VOI’s selected for model space, ranging from

lowest (red) to highest (blue) modulation strengths. Intrinsic connections are

shown in black arrows.

task (picture naming and semantic feature). Specific regions and
connections were collapsed across patients in these analyses.

For the picture naming task, when estimates on connections
(Ep.B) were examined, the effect of rehabilitation was not
significant [F(1, 177) = 1.6; p = ns], the interaction between
rehabilitation and the effect size covariate was also not significant
[F(1, 177) = 0.82; p = ns] and finally, the interaction between
rehabilitation and category also was not significant [F(1, 177) =

0.59; p = ns]. Second, when estimates on regions (Ep. C) were
examined, the effect of rehabilitation was significant [F(1, 59) =

9.9; p < 0.01]; while the interaction between rehabilitation and
effect size covariate was not significant [F(1,59) = 3.1; p =

0.08], the interaction between rehabilitation and category was
significant [F(1, 59) = 4.6; p < 0.05]. Post-hoc LSD tests showed
lower Ep.C values after rehabilitation for the trained category
but not for the untrained category (all differences significant at
p < 0.05).

Similar analyses were performed for the semantic feature task.
First, when estimates on connections (Ep.B) were examined, the
effect of rehabilitation modulation was significant [F(1, 193) =

18.4; p < 0.0001], the interaction between rehabilitation and
effect size covariate also was significant [F(1, 193) = 108.7; p <

0.0001], and finally, the interaction between rehabilitation and
category was significant [F(1, 193) = 8.15; p < 0.01]. Post-
hoc LSD tests showed higher Ep.B values after rehabilitation for
the untrained category than the trained category (all differences
significant at p < 0.05). When examining the estimates on

regions (Ep.C), the effect of rehabilitation was not significant
[F(1, 59) = 0.91; p = ns], and the interaction between
rehabilitation and the effect size covariate was not significant
[F(1, 59) = 0.42; p = ns]. Finally, the interaction between
rehabilitation and category also was not significant [F(1, 59) =

0.10; p = ns]. These results, when significant, point to lower BPA
values for the trained relative to the untrained category. They,
however, do not explain which regions change their connectivity
as a function of rehabilitation and if the network changes are
consistent from patient to patient.

One likely reason for the lack of significance in some of
the analyses is inter-participant variability. Therefore, individual
repeated measures ANOVAs on pre- and post-estimates as
dependent measures for both Ep.B and Ep.C and participants
as the independent variable were performed for the trained
category for the picture naming and semantic feature tasks (see
Supplementary Section). All the analyses showed a significant
patient-by-rehabilitation interaction, indicating that certain
patients showed greater differences between their pre- and
post-treatment Ep.B and Ep.C estimate values for both tasks.
Therefore, it is likely that inter-subject differences overshadowed
any group level differences.

Therefore, as in the fMRI analysis, individual patient data
were analyzed before and after rehabilitation as paired t-tests
for individual participants. For each patient, paired t-tests were
performed on pre-rehabilitation and post-rehabilitation averaged
BPA Ep.B (and Ep.C values) over the entire model space with
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TABLE 6 | Regions of activation across patients in the post-rehabilitation > pre-rehabilitation contrast with T-values for the picture naming task.

Picture naming Patients: trained category

Post > Pre Count

#05 #11 #15 #32 #33 #62 #93 #115

ANTERIOR LEFT

Left superior frontal gyrus 4.24 4.65 3.55 4.16 3.41 3.73 3.56 7

Left middle frontal gyrus 5.84 3.73 4.37 5.86 3.47 3.75 3.80 7

Left inferior frontal gyrus 4.26 5.70 3.32 4.78 3.69 4.25 6

Left precentral gyrus 4.72 3.18 3.77 3.75 3.77 3.63 4.24 3.54 8

ANTERIOR RIGHT

Right superior frontal gyrus 3.78 4.88 3.30 5.74 4.28 3.96 6

Right middle frontal gyrus 3.62 4.57 3.51 4.80 3.36 4.96 3.79 7

Right inferior frontal gyrus 3.40 4.81 4.87 6.25 3.66 3.60 6

Right precentral gyrus 0

POSTERIOR LEFT

Left superior temporal gyrus 4.08 6.98 3.84 3.24 4.06 5

Left middle temporal gyrus 6.11 8.44 3.19 3.94 3.39 4.07 6

Left inferior temporal gyrus 4.59 3.45 4.78 3

Left fusiform gyrus 3.16 6.60 3.46 4.64 4

Left supramarginal gyrus 3.18 4.81 3.36 3.84 3.72 3.83 6

Left angular gyrus 3.93 4.79 3.95 3.99 3.51 3.92 6

POSTERIOR RIGHT

Right superior temporal gyrus 4.25 3.53 4.71 3.37 3.72 3.54 6

Right Heschl’s gyrus 3.12 1

Right middle temporal gyrus 4.20 4.61 4.77 4.14 3.33 3.67 3.31 7

Right inferior temporal gyrus 3.91 3.99 3.15 3.17 3.58 5

Right fusiform gyrus 3.27 3.99 3.56 3

Right supramarginal gyrus 3.98 3.40 4.28 3.50 4.51 3.86 6

Right angular gyrus 3.60 3.54 3.57 3.75 3.45 5

Voxels active at p < 0.001 uncorrected have threshold at T values between 3.10 < T < 4.80 while voxels active at p < 0.05 FWE have threshold at T values T > 4.80. Red cells indicate

significance at p < 0.05 FWE. The last column indicates the number of patients that showed activation that exceeded the uncorrected threshold.

a significance criterion set at p < 0.05. As displayed in
Figure 7, for the picture naming task, LIFG was the most
consistently active VOI in the pre- and post-rehabilitation scans
and the most consistently significantly modulated region as a
function of rehabilitation (5/7 patients). Next, two other regions
that were consistently active across participants at the pre-
and post-rehabilitation scans and were consistently significantly
modulated as a function of rehabilitation were LPCG (3/4
patients) and RIFG (4/5 patients). Notably, even though few
patients showed consistent activation in LITG, RITG, and LSFG
in the pre- and post-rehabilitation scans, these regions were
modulated as a function of rehabilitation when they were active.
In terms of connections, RIFG-RMFG (4/4 patients) was themost
consistently significantly modulated connection as a function of
rehabilitation. In addition, LIFG-LPCG (3/4 patients) and LIFG-
LITG (3/3 patients) also showed a significant modulation as a
function of rehabilitation. Importantly, LITG, LSFG, LIFG, and
RIFG were also all regions that were modulated for normal
controls.

Likewise, for the semantic feature verification task (see
Figure 8), LIFG was the most consistently active region and
significantly modulated in 4/7 patients. Interestingly, RIFG was

consistently active and significantly modulated in 4/6 patients
and LMFG was consistently active and significantly modulated
in 4/4 patients. Similarly, LMTG was an active VOI in only three
patients but was significantly modulated in all three of them. In
terms of connections, RIFG-RMFG was significantly modulated
in all four patients who had these regions in their network, as was
LIFG-LMFG (4/4 patients), LIFG-RIFG (3/3 patients), and RIFG-
RMTG (3/3) patients. Most of the regions that were modulated as
a function of rehabilitation in the patients were similar to those in
the healthy control network for this task, including LSFG, LMFG,
LIFG, LPCG, and RIFG.

Discussion

The goal of this study was to examine changes in BOLD
signal activation and in effective connectivity as a function
of neurorehabilitation across eight patients with aphasia.
All patients presented with naming impairments, received
rehabilitation to improve their naming skills and showed changes
in activation and connectivity as a function of the intervention.
Two tasks, picture naming and semantic feature verification,
which closely aligned with the rehabilitation approach, were
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FIGURE 5 | Series of images showing individual patients’

activation maps for the picture naming task illustrating the

[post-rehabilitation (picture-scrambled)]–[pre-rehabilitation

(picture-scrambled)] contrast for the trained category at

p = 0.001 uncorrected. Voxels above a threshold of T > 3.10 are

shown.

used for the BOLD signal change and connectivity analysis
and to examine brain-behavior relationships before and after
rehabilitation. The main observations of the study were as
follows: (a) all patients improved as a function of rehabilitation,
and improvements across patients were greater for the trained
categories than the untrained categories, (b) in terms of the
fMRI changes in activation, there were several regions such as
LIFG, RIFG, LPCG, LMFG, RMFG, LMTG, and RMTG that
were consistently active in normal controls and in several of
post > pre-rehabilitation comparisons for patients, and (c) in
terms of connectivity changes across patients, LIFG was the most
modulated region, independent of task and as a function of
rehabilitation. Each of these results will be addressed in greater
depth below.

As noted in the introduction, naming deficits are pervasive in
individuals with aphasia and a semantic feature-based treatment
that emphasizes semantic feature analysis and phonological
access was effective in improving word retrieval even in
individuals with chronic aphasia. While we have examined
generalization to untrained items in our previous work, in
this study we instead chose to examine the changes on the
trained category (including both trained and untrained items)
only using two tasks (picture naming and semantic feature
verification) that were germane to the rehabilitation. Results
showed that a semantic-feature based naming intervention
resulted in improvements in naming function in all patients
on the trained category. While the efficacy of this intervention
has been examined before (Kiran and Thompson, 2003; Kiran,
2007, 2008; Kiran and Johnson, 2008), the present results further
extend the validity of this rehabilitation approach to facilitate
language recovery in patients with aphasia. It should be noted

that irrespective of which category was trained, behavioral
improvements in the trained category was higher relative to
untrained monitored categories.

Next, changes in patterns of BOLD signal activation as a
function of rehabilitation revealed that regions such as LIFG,
RIFG, LPCG, LMFG, RMFG, LMTG, RMTG, LAG, and RAG
showed greater activation after rehabilitation for picture naming.
For semantic feature verification, a subset of the above regions
were active including RIFG, LPCG, RMFG, LMTG, RMTG, as
well as RSTG. Several of these regions were also significantly
activated in the healthy controls indicating that these regions
comprise a set of core regions that are required for normal
language processing and to subserve rehabilitation-induced
language recovery. While the role of LIFG and LMTG is well
understood for semantic processing and word retrieval (Seghier
et al., 2004; Vigneau et al., 2006; Binder et al., 2009; van Oers
et al., 2010; Cappa, 2012; Visser et al., 2012; Jefferies, 2013),
LMFG has been implicated in both semantic processing (Binder
et al., 2009) as well as in domain general processing of tasks with
increased difficulty (Fedorenko et al., 2013). Also, LSFG has been
implicated in semantic processing (Binder et al., 2009). Likewise,
LPCG has been observed in previous studies to emerge as a
region with increased activation as a function of a semantic-based
naming treatment (Marcotte et al., 2012).

Interestingly, the role of the RIFG is less well documented
for normal healthy controls (Wierenga et al., 2008). In a recent
metaanalytic review, Vigneau et al. (2011) noted that few studies
reported unilateral right hemisphere activation during lexical-
semantic processing; rather, most activation of right frontal
regions tended to be bilateral activation. RIFG and RMTG,
however, have been reported fairly extensively in patients with
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TABLE 7 | Regions of activation across patients in the post-rehabilitation > pre-rehabilitation contrast with T-values for the semantic feature verification

task.

Semantic feature Patients: trained category

Post > Pre Count

#05 #11 #15 #32 #33 #62 #93 #115

ANTERIOR LEFT

Left superior frontal gyrus 4.00 5.00 3.18 3.33 4.19 5

Left middle frontal gyrus 5.58 3.37 3.11 3.24 4

Left inferior frontal gyrus 3.73 3.72 3.81 3.77 4

Left precentral gyrus 3.27 3.92 5.33 3.36 3.90 5.08 6

ANTERIOR RIGHT

Right superior frontal gyrus 5.89 3.86 5.76 3.47 3.83 4.56 6

Right middle frontal gyrus 3.85 4.93 3.70 5.10 4.54 3.19 4.67 7

Right inferior frontal gyrus 4.87 3.34 3.42 4.65 4.61 4.68 6

Right precentral gyrus 0

POSTERIOR LEFT

Left superior temporal gyrus 3.45 3.18 4.22 3.58 4.12 5

Left middle temporal gyrus 3.60 3.24 4.66 3.57 4.21 3.42 6

Left inferior temporal gyrus 3.17 3.86 3.17 3

Left fusiform gyrus 3.61 3.74 3.84 3

Left supramarginal gyrus 3.73 4.09 4.49 3.23 4

Left angular gyrus 4.64 3.50 3.86 3.11 3.18 5

POSTERIOR RIGHT

Right superior temporal gyrus 3.12 3.57 3.30 3.79 4.30 5.07 6

Right Heschl’s 0

Right middle temporal gyrus 3.57 3.12 4.93 3.70 5.04 3.95 3.25 7

Right inferior temporal gyrus 5.32 3.29 3.73 3.11 4

Right fusiform gyrus 3.76 6.29 3.34 4.22 4

Right supramarginal gyrus 4.04 4.04 3.45 4.01 3.89 5

Right angular gyrus 3.68 5.09 3.22 3.69 4.70 3.46 4.36 7

Voxels active at p < 0.001 uncorrected have threshold at T values between 3.10 < T < 4.80 while voxels active at p < 0.05 FWE have threshold at T values T > 4.80. Red cells indicate

significance at p < 0.05 FWE. The last column indicates the number of patients that showed activation that exceeded the uncorrected threshold.

left hemisphere injury (Voets et al., 2006; Crosson et al., 2007;
Harnish et al., 2008; van Oers et al., 2010). In another study,
we have demonstrated that RMFG is part of a network involved
in recovered semantic processing in patients with aphasia (Sims
et al., under review). In line with this, left fronto-parietal cortex
and right middle frontal cortex (and medial frontal cortex) may
be critical regions involved in word/sentence comprehension
in patients with aphasia as shown in a recent study examining
intrinsic functional connectivity (Zhu et al., 2014).

There were also regions such as bilateral ITG and fusiform
gyrus that were active for controls but not consistently observed
in the post > pre-rehabilitation comparisons across patients.
These regions have been implicated in perceptual processing
of visual objects (Soldan et al., 2010) including their featural
attributes (Zannino et al., 2010; Tyler et al., 2013) and in
processing of semantic information for words and pictures
(Seghier and Price, 2011) in normal individuals. Since these
regions were not consistently active across patients in the
post > pre-rehabilitation contrasts, these regions may not yet be
integrated into the normal picture naming or semantic feature

verification language network for individuals who do not show
these regions engaged as a function of rehabilitation.

Next, we examined changes in connectivity across patients
as a function of rehabilitation. Because patients’ individual
responsiveness to rehabilitation was varied, as was their lesion
site and size, individual model spaces were created for each
patient based on regions that were active before and after
rehabilitation. First, group level analyses revealed the effects of
rehabilitation on modulation with lower modulation for regions
and connections for the trained compared to the untrained
category. Unfortunately, these analyses were not significant
in all the comparisons, and further, did not indicate which
regions/connections were subject to greater modulation as a
function of rehabilitation. Therefore, individual patient network
analyses proved to be more useful. Across patients, regions
including LIFG, RIFG, and LMFG were active and modulated for
both tasks; LSFG, LITG, and LFUS were active and modulated
for picture naming; and RMFG, LMTG, and RMTG were
active and modulated for semantic feature verification as a
function of rehabilitation. Notably, specific modulations of
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FIGURE 6 | Series of images showing individual patients’

activation maps for the semantic feature verification task

illustrating the [post-rehabilitation

(picture-scrambled)]–[pre-rehabilitation (picture-scrambled)]

contrast for the trained category at p = 0.001 uncorrected.

Voxels above a threshold of T > 3.10 are shown.

TABLE 8 | Regions of interest for patients (active at both pre and

post-rehabilitation) selected for DCM analysis for the picture naming task

and semantic feature task.

PICTURE NAMING

#05 #11 #15 #32 #33 #93 #115

LAG LIFG LAG LFUSI LIFG LIFG LMFG

LIFG LITG LIFG LIFG LMFG LITG LFUSI

LPCG LPCG LSFG LITG RAG LPCG LIFG

RIFG RIFG RFUSI RIFG LSFG LPCG

RMFG RMFG RIFG RMFG RAG RFUSI

RITG RITG RIFG

RSTG RMFG

RSTG

SEMANTIC FEATURE

#05 #11 #15 #32 #33 #93 #115

LIFG LIFG LIFG LIFG LFUSI LSFG LMFG

RIFG LMFG RIFG LMFG LIFG LIFG LIFG

RMFG LMTG LMTG LMFG LMTG LITG

RSFG LPCG RIFG LSFG RIFG LPCG

LSFG RITG RAG RMTG RAG

RAG RMFG RFUSI RAG RIFG

RIFG RMTG RMTG RMFG

RMFG RSFG RMTG

The regions are thresholded at p < 0.001 uncorrected.

these regions within individual patient networks varied as a
function of lesion size and site. Nonetheless, LIFG was the most
consistently modulated region, independent of task and as a
function of rehabilitation, followed by RIFG and LMFG. These

changes in modulation after rehabilitation are consistent with
the changes in patterns of activation for individual patients,
indicating that regions identified with increased activation after
rehabilitation are also correspondingly significantly modulated
within the network. These preliminary results indicate the
presence of nodes of change within the language network across
patients.

One methodological note worth pointing out here is that
“new” regions that emerge as a function of rehabilitation would
be identified in the post > pre-rehabilitation contrast, but may
have been missed in the DCM analysis since only regions
that were active at the post > pre-rehabilitation contrasts were
considered. As an example, Table 7 shows greater activation
in RSFG for 6/8 patients for the semantic feature verification
task; however, as seen in Figure 8, only two patients show this
region as significantly active in the post > pre-rehabilitation
contrast and significantly modulated in the DCM analysis. A
complete discussion of which “new” regions emerge as a function
of rehabilitation compared to which existing regions alter their
modulation due to rehabilitation is out of the scope of this paper.
Nonetheless, the present study provides preliminary evidence
that such a distinction may be captured in carefully constructed
fMRI and connectivity experiments.

The results of our study are different from several recent
studies described in the introduction that have not demonstrated
left hemisphere substrates subsequent to rehabilitation. Instead,
the present results are consistent with studies that suggest that
traditional language regions such as IFG, MTG, and PCG are also
engaged subsequent to improvements in behavior as a function of
rehabilitation.
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FIGURE 7 | Series of images show individual patients’ connectivity

networks as a function of rehabilitation for the trained category on

the picture naming task. Regions with significant modulations are shown

in blue ovals while regions with non-significant modulations are shown in

white ovals. Intrinsic connections are shown in black arrows while

connections with significant modulations are shown in red arrows.

It should be noted that individual patient networks as a
function of rehabilitation (at two time points) look qualitatively
different from the normal language network (captured at
one time point). These results can be interpreted as follows.
First, task-specific modulation for normal controls indicated
a bilateral network for picture naming and a left-lateralized
network for semantic feature verification. These results are
consistent with findings of an fMRI study that examined semantic
categorization (predominantly semantic processing) and rhyme
detection (predominantly phonological processing) in normal
individuals (Seghier et al., 2004). Like the present results, Seghier
et al. found that while both tasks revealed left frontal activation,
phonological processing (closer to our picture naming task)
revealed more bilateral activation than semantic processing
which was predominantly left lateralized. In our study, while not
all patients show differential lateralization in their networks as a

function of rehabilitation, some patients show patterns similar to
the control network.

Second, the normal network can be interpreted as a network
engaged in successful language processing (either picture naming
or semantic processing) and the corresponding modulations
of regions indicative of their relative contributions within the
network. The individual patient networks, in contrast, are
indicative of reorganized or altered networks that have not
completely returned to their normal-like function (Teki et al.,
2013). Further, the precise implications of the modulation of
LIFG in this study are difficult to ascertain as there are too
few participants and the patterns across these individuals are
variable. Nonetheless, there are a few interesting observations
that warrant future examination. First, patients who showed
some spared LIFG also showed significant changes in activation
as a function of rehabilitation as well as significant modulation
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FIGURE 8 | Series of images showing individual patients’ connectivity

networks as a function of rehabilitation for the trained category on the

semantic feature verification task. Regions with significant modulations

are shown in blue ovals while regions with non-significant modulations are

shown in white ovals. Intrinsic connections are shown in black arrows while

connections with significant modulations are shown in red arrows.

(Patients # 32, #15, #93; however see Patient #33) suggesting
that the presence of modulation in the LIFG depends on the
degree of spared LIFG. Second, patients with large lesions
(Patients # 32, #11, and #115) also showed significant modulation
of the RIFG, suggesting that for such patients, RIFG is an
important part of the reorganized network, a finding that is
consistent with previous research (Turkeltaub et al., 2011).
While the results of this study are preliminary, they set the
stage for future examinations of the brain-behavior relationships
as a function of neurorehabilitation and allow perusal of
factors that influence the impairment and corresponding
recovery.

An important limitation of this study is that changes in
connectivity are not interpreted in terms of magnitude and
directionality as there are too few patients to draw any
meaningful conclusions. Future studies with larger groups
of homogenous patients that can systematically examine and

interpret magnitude and directionality of change need to be
undertaken.

There are several theoretical and clinical implications of these
results. From a theoretical standpoint, even with the inherent
variability across patients, the results underscore the importance
of LIFG in the retrained language network in post-stroke patients
with aphasia. This finding is not surprising, and has been a
consistent observation in most studies examining the nature
of language recovery in post-stroke aphasia (Fridriksson, 2010;
Marcotte and Ansaldo, 2010; Rochon et al., 2010; Fridriksson
et al., 2012; Sebastian et al., 2012; Sims et al., under review). All
of these studies are fMRI activation studies, and the results of the
present study demonstrate that when using effective connectivity
analysis across individual patients, when undamaged, LIFG is
an important node of a retrained language network. Another
important observation in the present study is the role of the
RIFG and connections between the RIFG and RMFG that were
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consistently modulated in patients. While the discussion of
the role of right hemisphere homologs has been debated in
the literature (Winhuisen et al., 2007; Raboyeau et al., 2008;
van Oers et al., 2010) with suggestions that it may play a
more complementary or supportive role (Turkeltaub et al.,
2011), the present results indicate that these regions are also
an important part of the retrained language network and are
associated with improved language function at least for some
individuals.

From a clinical perspective, the results highlight the
importance of language rehabilitation shaping neuroplasticity
even in chronic stroke patients with residual aphasia. Despite
obvious differences in patterns of activation that are constrained
by individual patient lesions, this study provides tentative
support for the assumption that rehabilitation promotes a
damaged brain to reorganize to support language processing
abilities. The remarkable consistency across patients in terms of
the modulation within the networks (LIFG, LPCG, and LMTG)
indicates that there is a systematic way the network reorganizes
for language recovery as a function of rehabilitation.

The small number of healthy controls and patients involved
in the study limits the conclusions that can be drawn from the
study. Also, the inherent variability in lesion and behavioral
profiles across the participants warranted all the behavioral,
neuroimaging and connectivity data to be analyzed at the
individual participant level. While this type of analysis (i.e.,

case-series approach), required several modifications to the
traditional group level analysis, the explicit attempt to account
for and detail the inherent variability across the patients with
aphasia is a clear strength of this study. Within the patient group,
there are several levels of controls and replications that have been
incorporated in the experimental design which allow meaningful
interpretations to be drawn from the study (Kiran et al., 2013).
Future studies in larger samples can examine how these regions
change in comparison to the amount of rehabilitation outcome.
Finally, the neurorehabilitation approach described in this study
allowed the standardization of the methods across patients
even though the rehabilitation was targeted at the individual
patient’s impairment. Ultimately, these results are important for
understanding the brain-behavior relationship during and after
the process of rehabilitation of language processing after a stroke.
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