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The cosolvent effect on the equilibrium of peptide aggre-
gation is reviewed from the energetic perspective. It is 
shown that the excess chemical potential is stationary 
against the variation of the distribution function for the 
configuration of a flexible solute species and that the 
derivative of the excess chemical potential with respect to 
the cosolvent concentration is determined by the corre-
sponding derivative of the solvation free energy averaged 
over the solute configurations. The effect of a cosolvent at 
low concentrations on a chemical equilibrium can then 
be addressed in terms of the difference in the solvation 
free energy between pure-water solvent and the mixed 
solvent with the cosolvent, and illustrative analyses with 
all-atom model are presented for the aggregation of an 
11-residue peptide by employing the energy-representation 
method to compute the solvation free energy. The solva-
tion becomes more favorable with addition of the urea  
or DMSO cosolvent, and the extent of stabilization is 
smaller for larger aggregate. This implies that these 
cosolvents inhibit the formation of an aggregate, and the 
roles of such interaction components as the electrostatic, 
van der Waals, and excluded-volume are discussed.
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Protein or peptide can be harmful upon formation of 
aggregate [1–4]. It is considered that such amyloidoses as 
Alzheimer’s, Parkinson’s, and prion diseases are caused by 
the amyloid aggregation, and the formation of inclusion 
body is an impeding factor for massive expression in the 
field of protein engineering. The extent of aggregate forma-
tion of a peptide is determined by the interactions among  
the peptides forming the aggregate and those between the 
peptides and the surrounding solvent. In fact, the potential 
function is fixed for the interactions within the peptide 
aggregate when the peptide species is identified, whereas  
it can be tuned for the interactions with the surrounding 
environment. A common scheme for treating a peptide 
aggregate is thus to control the solvent environment with 
cosolvent [5–10], and since the cosolvent interacts with the 
peptide in a different manner from water, the interactions 
among the peptide, cosolvent, and water needs to be eluci-
dated at the molecular level toward rational design of a 
cosolvent.

The aggregation mechanism of peptide has been investi-
gated both theoretically and experimentally [11–39]. Molec-
ular dynamics (MD) simulation has proven to be useful to 
address atomic-level processes, in particular, and the peptide-
peptide and peptide-solvent interactions were analyzed to 
reveal the driving force of aggregate formation [12,14,16,18–
24,30]. In the context of statistical thermodynamics, the 
extent of peptide aggregation is described by the equilibrium 
constant of aggregation. It is determined by the balance of the 

The cosolvent effect on peptide aggregation is addressed with all-atom molecular dynamics simulation and free- 
energy calculation. It is shown from the variational principle that the stability of a flexible solute species is modulated 
by a cosolvent through the solvation free energy averaged over the solute structures. The computational analyses 
are conducted for an 11-residue peptide, and the solvation free energies of the peptide and its aggregates are 
obtained with the energy-representation method of solutions. It is demonstrated quantitatively that urea and DMSO 
inhibit the aggregation since these cosolvents stabilize the monomer more strongly than the aggregates.



186 Biophysics and Physicobiology Vol. 16

pure-water solvent but also in more complex environments 
involving cosolvent or lipid membrane, that can be beyond 
the reach of exact free-energy methods or integral equation 
theories [30,81,86,90–93,97–102]. The method of energy 
representation is approximate in practical applications, while 
it has been observed that the error from the approximation  
in the free-energy functional is not larger than the error  
from the use of force field [80,84,85]. The solvation free 
energies presented in this review were obtained by the 
energy-representation method [30].

Theory
When the aggregation of NACore is treated, the solute 

refers to the peptide or its aggregate. It should be noted that 
the aggregate is treated as a single, solute particle as a whole, 
and the (relative) stability of the solute species is described 
by its excess chemical potential μex. Let ψ denote the coordi-
nate of the solute particle collectively and P(ψ) be the prob-
ability distribution function of ψ in the solution system of 
interest. μex is then expressed in the canonical (NVT) ensem-
ble as [30]

μex = ∫ dψP(ψ)ES(ψ) + ∫ dψP(ψ)∆ν(ψ) 

+ kBT∫ dψP(ψ) log (P(ψ)V)	 (1)

where ES(ψ) is the one-body energy of the solute, kB and T 
are the Boltzmann constant and temperature, respectively,  
V is the volume of the system, and P(ψ) satisfies the normal-
ization condition of

∫ dψP(ψ) = 1.	 (2)

∆ν(ψ) is the solvation free energy at fixed configuration ψ of 
the solute particle, and is introduced by

∆ν(ψ) = −kBT log( ∫ dX exp (−β{U(X) + u(ψ,X)}) )∫ dX exp (−βU(X))
,

	 (3)

where β=1/kBT, all the solvent particles are collectively writ-
ten with the coordinate X and the energy U(X), and u(ψ,X) 
is the interaction between the solute and solvent. It is further 
supposed that ES(ψ) is a function only of the solute configu-
ration ψ and does not depend on the solvent coordinate. The 
first term of Eq. 1 is the average of the one-body energy of 
the solute in the solution system of interest, and the second 
term is the averaged free energy of solvation. The third term 
corresponds to the “configurational entropy” (chain entropy) 
of the solute particle for which the configuration ψ distrib-
utes with P(ψ). Although the solvation free energy refers to 
the “reference-solvent” system without solute (denominator 
within the logarithm of Eq. 3), the other variables in Eq. 1 
can be obtained in principle from a simulation of the solution 
system of interest.

intermolecular interactions among the peptide and solvent 
molecules, and an all-atom treatment of (free-)energetics is 
desirable to understand and control the aggregation and dis-
solution of the peptide.

The purpose of the present review is to show the ener
getics of peptide aggregation by focusing on NACore [38]. 
It corresponds to the 68th to 78th residues of α-synuclein, 
which are considered as the key region to cause Parkinson’s 
disease through aggregate formation [2,40–42]. All-atom 
MD simulation was recently conducted to examine the roles 
of the intra-aggregate and aggregate-solvent interactions in 
the formations of the 8-mer, 16-mer, and 24-mer of NACore, 
and the effect of urea or dimethyl sulfoxide (DMSO) as a 
cosolvent was elucidated through free-energy calculations 
[30]. This review introduces a statistical-thermodynamic 
treatment for the aggregation of the peptide, with emphasis 
on the free energy of solvation of a peptide or its aggregate 
as the solute.

When the solvent environment is varied by addition of  
a cosolvent, the extent of fluctuation will change for the 
structure of a flexible solute molecule. The “configurational 
entropy” (chain entropy) is a quantity to assess the effect of 
structural fluctuation, though its computation is still a sub-
ject of active development [43–50]. In the following section, 
in fact, we show that the derivative of the excess chemical 
potential of the solute species with respect to the cosolvent 
concentration is determined by the corresponding derivative 
of the solvation free energy. It is not necessary to handle the 
configurational entropy, and the effect of cosolvent can be 
addressed only in terms of the solvation free energy. The key 
variable is then the solvation free energy and its derivative 
with respect to the cosolvent concentration.

The solvation free energy requires much computational 
demand for a peptide or its aggregate in explicit solvent, 
however, when the free-energy perturbation or thermody-
namic integration method is utilized in molecular simulation 
[51]. Indeed, these standard methods are carried out by 
introducing a number of intermediate states connecting the 
solution system of interest and the reference-solvent system 
without the solute of interest. The method of energy repre-
sentation is a useful alternative for the computation of the 
solvation free energy [52–56]. It is a density-functional 
method for solutions and evaluates the solvation free energy 
with a functional of a set of distribution functions for the 
pair-interaction energy between the solute and solvent. A vari-
ety of approximate methods have been proposed for free-
energy computation [57–75], and the energy-representation 
method is unique in compromising the accuracy, efficiency, 
and range of applicability [30,53,55,56,76–96]. In the method 
of energy representation, the molecular simulation is to be 
performed only at the endpoints of solute insertion (solution 
and reference-solvent systems of interest), leading to the 
reduction of the computational load. The solvation free 
energy can then be obtained feasibly for a protein or its 
complex consisting of a few hundred residues not only in 
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Equation 10 shows that the derivative of μ ex can be com-
puted by averaging the corresponding derivative of ∆ν(ψ). 
Actually, ψ is high-dimensional unless the solute is simple 
and it is often prohibitive to obtain P(ψ) (and log(P(ψ))) 
explicitly. At c=0, Eq. 10 reduces to

∂μex |
c=0∂c  = ∫ dψP0(ψ) 

∂(∆ν(ψ)) |
c=0∂c  

≈ ∫ dψP0(ψ) 

∆ν(ψ;c) − ∆ν(ψ;0)
c  

= 
 〈∆ν(ψ;c)〉−〈∆ν(ψ;0)〉 

c  	 (11)

where P0(ψ) is the distribution function of ψ in pure-water 
solvent (c=0, without cosolvent), ∆ν(ψ;c) is the solvatin free 
energy for the solute configuration ψ at the cosolvent con-
centration of c, and 〈...〉 is the average over the distribution 
P0(ψ). The second equation is the finite-difference approxi-
mation, and is valid when c is small enough. To compute the 
value of the rightmost side, both of ∆ν(ψ;c) and ∆ν(ψ;0) are 
to be averaged over a set of solute configurations ψ sampled 
in pure-water solvent (c=0).

(∂∆ν(ψ)/∂c) is related to the Kirkwood-Buff integral 
through [77,103–107]

−
∂(∆ν(ψ))

∂c  = kBT ∫ dr(4πr2) (ɡc(r;ψ) − ɡw(r;ψ)),	 (12)

where ɡc(r;ψ) and ɡw(r;ψ) are the radial distribution func-
tions of the cosolvent and water, respectively, with the solute 
at fixed configuration ψ; the spatial integrals of (ɡc−1) and 
(ɡw−1) are called Kirkwood-Buff integrals and their values 
are independent of the sites that specify points within the 
molecules and define the radial distance r. Equations 10 and 
12 then lead to

−
∂μex

∂c  = kBT ∫ dr(4πr2) (ɡc(r) − ɡw(r)),	 (13)

where ɡc(r) and ɡw(r) are the radial distribution functions 
obtained by averaging ɡc(r;ψ) and ɡw(r;ψ) over the distribu-
tion P(ψ) of the solute configuration, respectively. Equation 
13 shows that the accumulation of the cosolvent around the 
solute and/or the depletion of water stabilizes the solute with 
more negative μ ex. The Kirkwood-Buff integral requires a 
careful treatment in its computation with molecular simula-
tion, however [108–111], and Eq. 10 can be a more viable 
route to evaluating the cosolvent effect on the excess chem-
ical potential through molecular simulation.

Let W be the peptide concentration where α% of the pep-
tide molecules are in the aggregate form. W is a function of 
the cosolvent concentration c, and Eqs. 4 and 11 lead to

The equilibrium of n-mer formation is determined by the 
excess chemical potentials of the n-mer and monomer. When 
ρn and μn

ex are the concentration and excess chemical poten-
tial of the n-mer, respectively, and ρ1 and μ1

ex are the corre-
sponding quantities for the monomer,

−kBT log( ρn )ρ1
n  = n( μn

ex

 − μ1
ex )n 	 (4)

is satisfied at equilibrium. ρn/ρ1
n is the equilibrium constant 

for the n-mer formation, and the difference from μ1
ex appears 

in Eq. 4 for μn
ex per monomer basis. Actually, Eqs. 1 and 4 are 

valid even when the solute species is at finite concentration. 
In such a case, one of the solute particles is treated with ψ 
and the others are expressed as part of X. The activity coef-
ficient is incorporated in the excess chemical potential μ ex, 
furthermore.

When Eq. 1 is viewed as a functional of the distribution 
function P(ψ), the variational property of

δμex |
ES(ψ),Δν(ψ),TδP(ψ)  = constant independent of ψ	 (5)

holds at the P(ψ) that is realized in the solution system of 
interest and is given by

P(ψ) = ∫ dX exp (−β{ES(ψ) + U(X) + u(ψ,X)})

∫ dψdX exp (−β{ES(ψ) + U(X) + u(ψ,X)})

 

.	 (6)

This is because P(ψ) of Eq. 6 satisfies

−kBT log (P(ψ)) = ES(ψ) + ∆ν(ψ) 

+ constant independent of ψ	 (7)

and the variation of the excess chemical potential μex is 
expressed as

δμ ex = ∫ dψ (δP(ψ)) [ES(ψ) + ∆ν(ψ) + kBT log (P(ψ)V) + kBT]

	 (8)

at fixed ES(ψ), ∆ν(ψ), V, and T. ∆ν(ψ) and P(ψ) may change 
when a cosolvent is added at constant temperature. Due to 
the variational property of Eq. 5, though, the change in P(ψ) 
does not contribute to the derivative of the excess chemical 
potential μex with respect to the cosolvent contribution c. The 
normalization condition of

∫ dψ (δP(ψ)) = 0	 (9)

and Eq. 5 lead to

∂μex

∂c  = ∫ dψP(ψ) 

∂(∆ν(ψ))
∂c  .	 (10)
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with the time evolution in MD when no restraint was applied. 
A restraining potential in the flat-bottomed form of

1
2 k(r − d)2H(r − d)	 (15)

was thus employed for the 8-mer, 16-mer, and 24-mer, where 
k is the force constant of 2500 kcal/mol/Å2, d is the threshold 
distance of 8 Å, H is the Heaviside step function, and r is  
the distance between the atoms in the terminal residues of 
neighboring pairs of parallel peptide chains. The anti-parallel 
pairs were not subject to any restraint, and r refers to the N 
atom within -NH-CO-CH3 of the N-terminus or the carbonyl 
C atom within -CO-NH-CH3 of the C-terminus. The detailed 
procedures of MD simulation are presented in Ref. [30].

Two types of MD simulation were conducted to obtain the 
computational results in the present review. One was per-
formed to prepare a set of solute structures, and the other 
was done to analyze the solute-solvent energetics. In the 
former, MD was conducted in pure-water solvent by treating 
the solute as a flexible species. The simulation length was 
150 ns including the first 50 ns for equilibration, and 50 
samples of the solute structure were collected at an interval 
of 2 ns in the course of equilibrium fluctuation. Each (snap-
shot) structure of solute thus sampled was then subject to the 
energetic analysis in the latter type of MD. The free-energy 
calculation was carried out by freezing the solute structure, 
and the solvation free energy was evaluated for each rigid 
structure of the solute in all of pure-water solvent, the urea-
water mixed solvent, and the DMSO-water mixed solvent. 
The method of energy representation was adopted to obtain 
the solvation free energy [53,55,56], with its detailed proce-
dures described in Ref. [30].

The solute structures subject to the energetic analysis were 
taken from trajectories in pure-water solvent. In accordance 
with Eqs. 11 and 14, the solvation free energies in the urea-
water and DMSO-water mixed solvents were also calculated 
over the solute structures sampled in pure water. The error 
estimate is then necessary for the average of a quantity A 
with the form of

〈A〉 = ∫ dψP(ψ)A(ψ),	 (16)

where ψ is the solute configuration and P(ψ) is the proba
bility distribution function of ψ. A(ψ) is evaluated at fixed  

( ∂logW
∂c )

c=0
 = 

n
(n−1)kBT

 

[ 1
n ∫ dψnP0(ψn) (∂(∆ν(ψn))

∂c )
c=0

− ∫ dψ1P0(ψ1) (∂(∆ν(ψ1))
∂c )

c=0
]

≈ 
n

(n−1)kBT

 

[1
n ∫dψnP0(ψn) 

∆ν(ψn;c)−∆ν(ψn;0)
c

− ∫dψ1P0(ψ1) 

∆ν(ψ1;c)−∆ν(ψ1;0)
c

 

]	 (14)

where ψn and ψ1 denote the configurations of the n-mer and 
monomer, respectively, P0(ψn) and P0(ψ1) are the distribution 
functions of ψn and ψ1 in pure-water solvent (c=0), respec-
tively, ∆ν(ψn;c) and ∆ν(ψ1;c) are the solvation free energies 
of the n-mer at the configuration ψn and of the monomer  
at ψ1, respectively, when the cosolvent concentration is c, 
and ∆ν(ψn;0) and ∆ν(ψ1;0) are the corresponding values in 
pure-water solvent. Actually, Eq. 14 holds at any percent α 
(0<α<100) of aggregate formation.

Computational Methods
The present review shows the energetic analyses of 

NACore, its 8-mer, 16-mer, and 24-mer in pure-water sol-
vent and 3.0 M mixtures of water with urea and with DMSO 
(M=mol/L). The NACore peptide consists of 11 residues, 
with the amino-acid sequence of Gly-Ala-Val-Val-Thr-Gly-
Val-Thr-Ala-Val-Ala [38]. When the peptide was simulated, 
it was treated as a neutral species by capping the N- and 
C-termini with -CO-CH3 and -NH-CH3, respectively. The 
crystal structure (PDB code: 4RIL) was utilized to build the 
initial structures of the aggregates. The 8-mer, 16-mer, and 
24-mer were prepared by extracting 4 parallel and 2 anti-
parallel layers of β-sheet, 4 parallel and 4 anti-parallel layers, 
and 4 parallel and 6 anti-parallel layers, respectively. Illus-
trative structures are provided in Figure 1. The original 
TIP3P model was adopted for water, and the Amber99sb 
force field with the RESP procedure was employed for 
NACore, urea, and DMSO [30,84,112–114]. The configura-
tions of the system were generated by carrying out the 
molecular dynamics (MD) simulation in the canonical (NVT) 
ensemble with a cubic unit cell. GROMACS 2016.4 was 
used at a temperature of 300 K and the cell size that cor
responds to the pressure of 1 bar [115,116]. In all the MD 
simulations, the number of solvent molecules in the unit cell 
was 30000 in total, and when the urea-water and DMSO-
water mixtures were simulated, 1770 urea molecules and 
1960 DMSO were located, respectively, to make the cosol-
vent concentration 3.0 M at 300 K and 1 bar. The solute refers 
to NACore, its 8-mer, 16-mer, or 24-mer, and the number of 
solute particle in the unit cell was always unity. It was actu-
ally observed for the 8-mer that the β-sheet structure is lost 

Figure 1 Illustrative structures for the NACore peptide, its 8-mer, 
the 16-mer, and the 24-mer.
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To obtain the computational results presented in the next 
section, 50 configurations were sampled for the solute struc-
ture as noted in the 2nd paragraph of the present section. The 
dependence of the results on the number of sampled config-
urations was analyzed in Ref. [30], and it was observed there 
that 50 samples are enough for the NACore peptide and its 
aggregates.

Results and Discussion
Figure 2 shows the solvent-accessible surface area (SASA) 

per monomer; note that the first 50 ns is for equilibration and 
that the last 100 ns corresponds to the production period. The 
SASA fluctuates stably, and its average (per monomer) is 
1.30, 0.59, 0.48, and 0.45 in units of 103 Å2 for the monomer, 
8-mer, 16-mer, and 24-mer, respectively. The peptide is thus 
exposed less to the solvent with aggregation. In the follow-
ing, the aggregate means a set of configurations of the 8-mer, 
16-mer, or 24-mer sampled during the course of MD in 
pure-water solvent. Each of the 8-mer, 16-mer, and 24-mer 
is further treated as a single particle as a whole without 
adopting any criterion to identify whether the particle is 
aggregated or not.

We next describe the β-sheet structure of NACore and  
its aggregates in pure-water solvent. At the monomer state, 
NACore does not keep the β-sheet conformation in the sense 
that the average number of residues with that conformation 
is zero. The β sheet forms for the aggregates, and the number 
of β-sheet residues per monomer is 7.3, 8.0, and 7.9 on aver-
age for the 8-mer, 16-mer, and 24-mer, respectively, with the 
standard deviation of 0.6, 0.2, and 0.2. The β-sheet is thus 
more “rigid” for the larger aggregates, given that the crys-
tal structure has 9 residues with β-sheet conformation (per 
monomer) [38].

The energetics in pure-water solvent can be examined on 
the basis of Eq. 1. The first and second terms of Eq. 1 are 
denoted by 〈ES〉 and 〈∆ν〉, respectively, and in accordance 
with Eq. 4, we discuss the energetics of n-mer formation in 

ψ by allowing only the solvent molecules to move, and  
〈A〉 denotes the average over the solute degrees of freedom. 
The first and second terms of Eq. 1 are in the form of Eq. 16 
by setting A to the intra-solute energy ES and the solvation 
free energy ∆ν, respectively, and in Eqs. 11 and 14, A is 
involved as the cosolvent-induced change in the solvation 
free energy ∆ν.

When n configurations are prepared for ψ according to the 
distribution function P(ψ), 〈A〉 is computed as

〈A〉 = 
1
n

n

∑
i=1

Ai ,	 (17)

where Ai is the value of A(ψ) for the ith sample. In fact, the 
number of sampled configurations for the solvent is also 
finite in actual simulation, and accordingly, a statistical error 
is involved in the calculation of Ai (i=1, ..., n). When Ai is 
calculated mi times through finite sampling of the solvent, 
we let (Ai+ei

j) denote the numerical result from the jth run 
( j=1, ..., mi) and Ai stand for the value at infinite sampling. 
In practical computation, only (Ai+ei

j) can be obtained. 
Equation 17 should then read as

〈A〉 = 
1
n

n

∑
i=1

1
mi

mi

∑
j=1

(Ai+ei
j)	 (18)

and the standard error for 〈A〉 is expressed as

1
√n √varu(A) + 

1
n

n

∑
i=1

(stev(ei))2	 (19)

when all of Ai and ei
j are supposed to be uncorrelated to one 

another. In Eq. 19, varu(A) refers to the variance of A(ψ) and 
is evaluated over the distribution function P(ψ) of the solute 
configuration ψ. The subscript u is attached to mean that varu 
is the variance over the solute degrees of the freedom, and in 
numerical treatment with n >>1,

varu(A) ≈ 
1
n

n

∑
i=1

[( 1
mi

mi

∑
j=1

(Ai+ei
j)) − 〈A〉]2

	 (20)

is employed with 〈A〉 of Eq. 18. stev(ei) denotes the standard 
error for Ai due to the finite sampling of the solvent at fixed, 
solute configuration ψ, where the subscript v is for the sol-
vent. stev(ei) is calculated from

(stev(ei))2 ≈ 
1
mi

[ 1
mi

mi

∑
j=1

((Ai+ei
j) − 

1
mi

mi

∑
k=1

(Ai+ei
k))2]	 (21)

by virtue of mi >>1. It should be noted that stev(ei) converges 
to zero for each i when the solvent degrees of freedom are 
sampled enough, while varu(A) remains finite even when a 
large number of solute configurations ψ is explored. The 
average of (stev(ei))2 over i=1, ..., n is involved within the 
square root of Eq. 19, and is reduced by a factor of √n when 
the standard error of 〈A〉 is estimated.

Figure 2 Solvent-accessible surface area (SASA) divided by the 
degree of aggregation n against the MD time for the monomer (blue), 
8-mer (green), 16-mer (black), and 24-mer (red). The MD was per-
formed in pure-water solvent, and the SASA was calculated using the 
solute surface in contact with the spherical probe which mimics the 
water molecule and has a radius of 1.4 Å.
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the cosolvent favors the monomeric form of the peptide  
and acts to inhibit the aggregation. The n dependence of  
(∂〈∆ν〉/∂c)/n is stronger with urea than with DMSO. The 
difference in the cosolvent effect of stabilization between the 
monomer and aggregates is thus larger with urea, which 
means in turn that urea is a better inhibitor of aggregation 
than DMSO.

Since the cosolvent stabilizes the monomer more strongly 
than the aggregate, its addition shifts the equilibrium of 
aggregate formation to the monomer side. Equation 14 con-
nects the cosolvent effect of inhibiting the aggregate forma-
tion to (∂〈∆ν〉/∂c)/n in Figure 4, and (∂log10W/∂c) at c=0  
is depicted in Figure 5 at each degree of aggregation n; W 
denotes the peptide concentration at which the aggregation 
occurs (see the description above Eq. 14 and the caption of 
Fig. 5). It should be noted that the common logarithm (with 
base 10) is adopted in Figure 5 to show the order of magni-
tude more clearly. According to Figure 5, the peptide aggre-
gates at concentrations higher by orders of magnitude in  
the mixed solvent with urea or DMSO than in pure-water  

terms of δ(〈ES〉/n) and δ(〈∆ν〉/n) defined respectively as the 
differences of 〈ES〉/n and 〈∆ν〉/n from their values for the 
monomer (n=1). Figure 3 depicts δ(〈ES〉/n) and δ(〈∆ν〉/n) 
against the degree of aggregation n. As noted in the previous 
section, 〈ES〉 and 〈∆ν〉 were computed by averaging over 
the 50 structures sampled in pure-water solvent. Note that ES 
consists both of the intramolecular energy of the peptide and 
the intermolecular interaction among the peptides when the 
solute of interest is an aggregate (n>1). It is seen in Figure 3 
that δ(〈ES〉/n) is more favorable (more negative) at larger n. 
The interactions among the peptide molecules favor the for-
mation of a larger aggregate, and this reflects the increase  
of the number of β-sheets with n as noted in the preceding 
paragraph. The solvent effect in the n-mer formation is 
expressed as δ(〈∆ν〉/n) and is less favorable (more positive) 
at larger degree of aggregation. The solvent water inhibits 
the aggregation, and in terms of 〈ES〉 and 〈∆ν〉, the former 
is the driving force of aggregate formation. The increase of 
δ(〈∆ν〉/n) is overwhelmed by the decrease of δ(〈ES〉/n), and 
the aggregate of NACore is energetically more stable than 
the monomer.

As noted with respect to Eq. 11, the effect of a cosolvent 
on the stability of a solute species is determined by the change 
in 〈∆ν〉 due to addition of the cosolvent. Figure 4 shows  
(∂〈∆ν〉/∂c)/n against the degree of aggregation n, where c is 
the cosolvent concentration and the derivative with respect 
to c is taken at c=0. It is seen from (∂〈∆ν〉/∂c)/n<0 that the 
solvation is more favorable in the mixed solvent of water with 
urea or DMSO than in pure-water solvent. The peptide and 
its aggregates are stabilized with these cosolvents, and the 
stabilization effect is stronger with DMSO. The cosolvent-
induced change in 〈∆ν〉/n is smaller in magnitude at larger 
n, furthermore, implying that the urea or DMSO cosolvent 
stabilizes a larger aggregate to a lesser extent. In other words, 

Figure 3 Difference δ(〈ES〉/n) of the averaged intra-aggregate 
energy from the value for the monomer (n=1), the difference δ(〈∆ν〉/n) 
of the averaged solvation free energy from the monomer value, and 
their sum δ([〈ES〉+〈∆ν〉]/n) plotted against the degree of aggregation  
n. 〈ES〉 and 〈∆ν〉 are the first and second terms of Eq. 1, respectively, 
where the averages were taken over the solute structures sampled in 
pure-water solvent. δ(〈ES〉/n), δ(〈∆ν〉/n), and δ([〈ES〉+〈∆ν〉]/n) are 
zero at n=1 by definition, and the lines connecting the data are drawn 
for eye guide.

Figure 4 Cosolvent-induced change in the averaged solvation free 
energy (∂〈∆ν〉/∂c)/n plotted per monomer against the degree of aggre-
gation n, where c is the cosolvent concentration and the derivative with 
respect to c is taken at c=0 through Eq. 11. The lines connecting the 
data are drawn for eye guide.

Figure 5 (∂log10W/∂c) at c=0 against the degree of aggregation n, 
where c is the cosolvent concentration and W is the peptide concentra-
tion at which α% of the peptide molecules are in the aggregate form. 
Actually, (∂log10W/∂c) is independent of the percentage value α when α 
is fixed in the variation of c. The numerical value is expressed as a 
common logarithm (with base 10) only in this figure, and the lines con-
necting the data are drawn for eye guide.



Matubayasi and Masutani: Energetics of cosolvent effect 191

setting of the ϵc value.
In correspondence to Eq. 11, the cosolvent effects on the 

electrostatic, van der Waals, and excluded-volume com
ponents are described by (∂〈uelec〉/∂c), (∂〈uvdW〉/∂c), and  
(∂〈∆νexcl〉/∂c), respectively, where c is the cosolvent con
centration and the differentiation is done at c=0. These 
derivatives were obtained with the finite-difference approxi-
mation, and 〈...〉 denotes the average over the 50 struc-
tures of the solute sampled in pure-water solvent. Figure 6  
shows (∂〈∆uelec〉/∂c)/n, (∂〈uvdW〉/∂c)/n, (∂〈∆νexcl〉/∂c)/n, and  
(∂〈∆ν〉/∂c)/n against the degree of aggregation n; these 
energetic quantities are plotted per monomer as in Figures 3 
and 4 and the derivative of the free energy is provided for 
comparison. When the interaction components are com-
pared among the electrostatic, van der Waals, and excluded-
volume, the n dependence is the strongest for the van der 
Waals component. It was actually observed in Ref. [30] that 
the contributions from the cosolvent and water vary with n  
in compensating manner for the electrostatic and excluded-
volume components and that the van der Waals component 
depends on n in parallel with its cosolvent contribution. 
According to Figure 6, furthermore, the n dependence of  
(∂〈∆ν〉/∂c)/n is correlated most strongly to the van der Waals 
component among the three interaction components exam-
ined. The van der Waals interaction is most influential on the 
cosolvent-induced change in the solvation free energy, which 
determines the cosolvent effect on the aggregate formation 
in turn. The dominant role of the van der Waals component 

solvent. NACore is prepared in practice at concentrations of 
∼10−3 M [38], and Figure 5 indicates that the aggregation is 
prevented by urea or DMSO when it is added on the order 
of M. (∂log10W/∂c) is larger with urea than with DMSO. This 
means that DMSO is a weaker inhibitor of aggregation than 
urea, and corresponds to the computational result in Figure  
4 that the n dependence of (∂〈∆ν〉/∂c)/n is weaker with 
DMSO. Experimental reports have noted indeed that both of 
the urea and DMSO cosolvents can inhibit the aggregation at 
cosolvent concentrations of M scale, with the effect being 
stronger for the former [117–119].

The effect of solvation is determined by the cooperation 
and/or competition among a variety of intermolecular inter-
actions, and it is of interest to examine the roles of interaction 
components such as electrostatic, van der Waals (dispersion), 
and excluded-volume in the equilibrium of aggregate for
mation. The electrostatic and van der Waals interactions are 
usually operative as attractive components of the solute-
solvent interaction, and the former is more residue-specific. 
The excluded-volume effect refers to the free-energy penalty 
for displacing solvent molecules from the region to be occu-
pied by the solute. It is part of the repulsive component of 
solute-solvent interaction, and can play a decisive role in 
structure formation of biomolecules [87,93,120–122]. In the 
energy-representation formalism, the solvation free energy 
∆ν is expressed as

∆ν = uelec + uvdW + ∑
i  ∫ dϵi  f(ϵi)	 (22)

where ϵi is the pair energy of the solute with solvent species 
i (i is water, urea, or DMSO) and it is supposed that the inter-
molecular interaction between the solute and solvent is a 
sum of the electrostatic and van der Waals terms. In Eq. 22, 
the first and second terms are the electrostatic and van der 
Waals components of the average sum of the solute-solvent 
interaction energy in the solution of interest, respectively. 
They are obtained exactly (within the statistical error) under 
the used set of force field through a simulation of the solu-
tion system with fully coupled solute-solvent interaction. 
f(ϵi) describes the effect of solvent reorganization due to the 
introduction of the solute, and the excluded-volume compo-
nent ∆νexcl can be introduced by restricting the domain of 
integration in the third term of Eq. 22 to ϵi >ϵc as [86–88, 
90–93]

∆νexcl = ∑
i  ∫ϵc

∞
dϵi  f(ϵi).	 (23)

ϵc is a threshold value for specifying the excluded-volume 
domain and ϵi >ϵc is a high-energy region of pair interaction 
corresponding to the solute-solvent overlap. The value of  
ϵc is rather arbitrary with a requirement that a configura-
tion with ϵi >ϵc is practically inaccessible in the solution  
system and does not appear in the solution MD. We set 
ϵc=20 kcal/mol in the results shown below, while the fol
lowing discussion is valid irrespective of the (reasonable) 

Figure 6 Dependence per monomer on the degree of aggregation 
n of the derivative of the electrostatic component of the solute-solvent 
energy (∂〈uelec〉/∂c)/n, the derivative of the van der Waals component  
(∂〈uvdW〉/∂c)/n, the derivative of the excluded-volume component  
(∂〈∆νexcl〉/∂c)/n, and the derivative of the solvation free energy  
(∂〈∆ν〉/∂c)/n, where c denotes the cosolvent concentration and the 
energetic quantities are differentiated at c=0. (∂〈∆ν〉/∂c)/n is the same 
as that in Figure 4, and the lines connecting the data are drawn for eye 
guide.
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