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Abstract 

Background: Pervasive translation is a widespread phenomenon that plays a critical 
role in the emergence of novel microproteins, but the diversity of translation patterns 
contributing to their generation remains unclear. Based on 54 ribosome profiling (Ribo-
Seq) datasets, we investigated the yeast Ribo-Seq landscape using a representation 
framework that allows the comprehensive inventory and classification of the entire 
diversity of Ribo-Seq signals, including non-canonical ones.

Results: We show that if coding regions occupy specific areas of the Ribo-Seq land-
scape, noncoding regions encompass a wide diversity of Ribo-Seq signals and, con-
versely, populate the entire landscape. Our results show that pervasive translation can, 
nevertheless, be associated with high specificity, with 1055 noncoding ORFs exhibit-
ing canonical Ribo-Seq signals. Using mass spectrometry under standard conditions 
or proteasome inhibition with an in-house analysis protocol, we report 239 micropro-
teins originating from noncoding ORFs that display canonical but also non-canonical 
Ribo-Seq signals. Each condition yields dozens of additional microprotein candidates 
with comparable translation properties, suggesting a larger population of volatile 
microproteins that are challenging to detect. Our findings suggest that non-canonical 
translation signals may harbor valuable information and underscore the significance 
of considering them in proteogenomic studies. Finally, we show that the transla-
tion outcome of a noncoding ORF is primarily determined by the initiating codon 
and the codon distribution in its two alternative frames, rather than features indicative 
of functionality.

Conclusion: Our results enable us to propose a topology of a species’ Ribo-Seq 
landscape, opening the way to comparative analyses of this translation landscape 
under different conditions.
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Background
All organisms undergo molecular innovation to adapt to their environment. Typically, 
molecular innovation involves the creation of novel products (i.e., genes, proteins) or 
the formation of novel interactions between already existing products. The former case 
implies the existence of a “reservoir” of neutrally and/or fast-evolving sequences, which 
allows for the sampling of extensive sequence spaces that could not be reached under 
natural selection. In theory, to ensure the efficiency of the functional processes that 
occur in the cell, this reservoir is expected to be locked (i.e., not expressed), to avoid 
unselected products that could interfere with established ones. Nevertheless, from an 
evolutionary perspective, the pervasiveness of biological processes (i.e., transcription, 
translation…) enables the expression of small fractions of novel sequence spaces, thereby 
exposing them to selection and allowing, from time to time, the passage from this reser-
voir to the world of established, and selected products.

In fact, noncoding regions can be seen as a reservoir of unselected sequences, hosting 
thousands of small Open Reading Frames (ORFs) that could give rise to novel products 
if translated [1–6]. Precisely, OMICS technologies have provided a huge amount of data 
revealing the “omnipresence” of biological noise which has turned out to result from the 
pervasiveness of biological processes. As a matter of fact, noncoding regions have been 
shown to be pervasively transcribed and translated, exposing non-genic sequences to 
selection.[4, 7–26]. Notably, hundreds of novel peptides or microproteins resulting from 
presumed noncoding regions have been confirmed by proteomics [19, 27–35]. Finally, 
many studies report examples of de novo gene birth from noncoding regions in eukary-
otic species [24, 36–61]. These de novo genes exhibit clear regulation patterns, may be 
subject to purifying selection, and have reported function for some of them, confirm-
ing that they could undoubtedly be associated with the coding world [37, 38, 46, 60, 62, 
63]. If different models of de novo gene emergence have been proposed so far, most of 
them share the hypothesis of an early stage as a protogene or small peptide that results 
from the translation of noncoding regions [10, 20, 21, 47, 50, 53, 57]. These models con-
sequently attribute an important role to pervasive translation in de novo gene birth. 
Indeed, pervasive translation constitutes somehow the last step for a noncoding ORF to 
reach the protein state, a prerequisite, though not sufficient, to enter the coding world. 
All the aforementioned studies, therefore, (i) reveal that the passage from the noncod-
ing to the coding world is much more frequent than previously thought and (ii) place 
the noncoding genome, but also pervasiveness at the center of the emergence of genetic 
novelty enabling, from time to time, the passage from unselected products to functional 
and selected ones.

Each RNA molecule contains three reading frames, each hosting distinct ORFs that 
encode different amino acid sequences. In coding regions, translation is strongly reg-
ulated to ensure the production of the functional product. This regulation results in a 
highly specific translation process biased towards the frame hosting the coding sequence 
(CDS). Consequently, ribosome profiling (Ribo-Seq) reads exhibit a remarkable triplet 
periodicity, with the two alternative frames of the CDS being substantially depleted 
in reads. As such, the canonical Ribo-Seq patterns of regulated translation are easily 
detectable by Ribo-Seq analysis tools. However, in noncoding regions undergoing perva-
sive and, therefore, nonregulated translation, the diversity of Ribo-Seq patterns remains 
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elusive, while key to apprehending their potential for novel protein products. Yet, perva-
sive translation is usually studied with methods tailored to coding regions, and the focus 
is put on canonical Ribo-Seq signals that resemble those of coding sequences under-
going regular translation. Nonetheless, the discarded non-canonical Ribo-Seq signals 
might hold valuable insights, potentially uncovering translation events associated with 
de novo products.

Therefore, we inventoried and characterized the entire diversity of Ribo-Seq patterns 
associated with the noncoding regions of Saccharomyces cerevisiae, with the aim to fur-
ther explore the extent to which pervasive translation can give rise to novel protein prod-
ucts. To do so, we devised a representation framework that maps all the ORFs lying in 
ribosome-associated RNAs onto a 2D plane, irrespective of their translation status. Each 
ORF is mapped based on the fractions of reads in its frame and the two alternative ones 
without any  a priori  on its translation outcome, providing a comprehensive inventory 
and a rational classification of all detected ribosome footprints of an ORFeome of inter-
est. As such, we characterized the Ribo-Seq patterns associated with both yeast non-
coding regions and coding ones (i.e., CDSs and their alternative frames). The Ribo-Seq 
signals of coding regions not only served as a reference for studying the characteristics 
of pervasive translation but also allowed us to reveal non-canonical translation events 
in coding regions. We then conducted mass spectrometry (MS) to investigate whether 
the different types of Ribo-Seq signals that we identified, including non-canonical ones, 
could be associated with a protein product. Finally, we examined the properties of non-
coding ORFs with respect to their Ribo-Seq patterns to better understand the rules that 
dictate their translation outcome and that, ultimately, underlie pervasive translation.

Results
Collection of Ribo‑Seq experiments

Ribo-Seq involves sequencing, after RNA digestion, the fragments protected by the 
translating ribosomes (i.e., reads), thereby identifying the RNA regions that were bound 
by ribosomes [8]. High-quality Ribo-Seq experiments can detect the translation signal 
at the single nucleotide resolution, allowing for the precise detection of the translated 
codons and, therefore, of the translated RNA frame. In coding regions, since the cod-
ing frame is known, the translated frame is straightforward to detect, even when deal-
ing with intermediate or poor-quality Ribo-Seq experiments. In contrast, in noncoding 
regions, identifying the translated frame requires high-quality Ribo-Seq data since there 
is no prior knowledge of the frame that is translated [64]. Detecting pervasively trans-
lated ORFs is challenging due to their short size and typically low expression levels. 
Furthermore, these ORFs are not expected to be expressed constitutively but, instead, 
are likely to be translated in only a few experiments. To increase the ribosome profiling 
signal and capture both occasional and constitutive translation events, we assembled a 
significant collection of 89 publicly available Ribo-Seq datasets from yeast. Specifically, 
we focused on datasets performed under standard conditions on the wild-type S288C 
or BY4741 strains of S. cerevisiae so as not to be biased by experimental conditions or 
mutants that could induce translation deregulation. After filtering out poor-quality 
datasets that could affect our conclusions, we retained 54 high-quality datasets (see the 
“Methods” section).
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Representation framework

In this study, we aimed to capture the full diversity of Ribo-Seq footprints associated 
with noncoding regions without prior knowledge of their translation status. This diver-
sity may encompass canonical Ribo-Seq signals indicative of highly specific transla-
tion, as previously reported in [21, 22, 26, 33, 64]. It may also include Ribo-Seq patterns 
reflecting varying translation specificities or scanning ribosomes without translation 
outcome. As a reference, we also aim to examine the ribosome footprints associated 
with coding regions, including CDSs and the ORFs lying in their alternative frames 
(aORFs). CDSs and aORFs are anticipated to show a limited diversity of Ribo-Seq pat-
terns. Indeed, CDSs are expected to display canonical Ribo-Seq patterns characterized 
by consistent in-frame read triplet periodicity (see the metagene of ORF “a” in Fig. 1). In 
contrast, aORFs are likely to exhibit shifted periodicity with reads predominantly lying 
in the + 1 or + 2 frames, reflecting the translation of the overlapping CDS (see metagenes 
of ORFs “b” and “c” in Fig. 1). Comparing the ribosome footprint diversity of coding and 
noncoding regions will comprehensively characterize the ribosome activity associated 

Fig. 1 Construction of the Ribo-Seq landscape. Left: example of calculation of the fractions of F0, F1, and 
F2 reads of one CDS (a in orange) and two aORFs (b and c in blue). Each Ribo-Seq read (vertical bars) can be 
assigned to a unique nucleotide according to its genomic coordinates and associated with a specific frame. 
For each considered ORF, we calculate its metagene, reflecting the distribution of reads over the ORF’s F0, F1, 
and F2 frames, as well as the read fractions in the three frames (see Methods). The ORF is then represented 
on a 2D graph according to its fractions of reads in its F0 and F1 frames (the fraction of reads in its + 2 frame 
(F2) can be calculated as F2 = 1 − (F0 + F1)) (middle—top part). As such, the CDS a is associated with the 
coordinates (85,9). In contrast, the aORF b whose metagene exhibits a + 2 shifted read periodicity will be 
associated with the coordinates (10, 8). Right: The same is done for inter-CDS regions. Theoretically, scanning 
ribosomes are expected to lead to reads evenly distributed across the three frames, leading approximately 
to F0 = F1 = F2 = 33%. Above 33% of in-frame reads, ORFs are considered enriched in in-frame reads. 
Despite this enrichment, we do not pretend that all these ORFs are translated. ORF Ribo-Seq status (low-, 
intermediate-, and high-FIR) are defined according to the fractions of reads in their F0 frame, reflecting 
different levels of enrichment for F0 reads (middle—bottom part)
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with these distinct genomic regions. Therefore, we categorized the yeast genome into 
two genomic classes: (i) coding regions, comprising the yeast’s 6669 CDSs and the 
96,873 aORFs hosted in their alternative frames, and (ii), noncoding regions, consist-
ing of 78,989 ORFs (referred to as iORFs) located in the inter-CDS regions, and which 
do not overlap any annotated feature of S. cerevisiae genome (see “Methods” section). 
Consistent with our previous work and to ensure enough statistical power for the analy-
sis of Ribo-Seq read patterns or other feature analyses, both aORFs, and iORFs have a 
minimum size of 20 codons (see the “Methods” section). Additionally, to detect non-
canonical translation initiation events, iORFs, and aORFs are not required to start with 
ATG codons, and are defined from STOP to STOP.

All reads extracted from the 54 Ribo-Seq runs were pooled together and mapped to the 
CDSs, aORFs, and iORFs with our pipeline ORFribo (see Methods and Additional file 1: 
Fig. S1). The 90th percentile of them has fewer than 49 reads. Since we aim to describe 
non-canonical patterns, we need the best possible description of their read distribu-
tion along the ORF. Therefore, we decided to focus on the 10% of iORFs with the most 
information and retained all the ORFs associated with at least 50 reads, regardless of the 
frame, and whose read codon coverage was above 30%. This allowed us to ensure enough 
signal to estimate the read distribution along the ORF and discard cases where reads 
accumulate on very few codons that may reflect sequencing and/or library artifacts. For 
each ORF, we calculated its fraction of in-frame reads (reads mapping to the frame of the 
ORF, named by convention frame 0 (F0)), and that of its out-of-frame reads mapping to 
its + 1 and + 2 frames (F1 and F2, respectively) (Fig. 1). We then devised a representation 
framework that provides the Ribo-Seq landscape of a set of ORFs of interest. In this 2D 
Ribo-Seq landscape, each ORF is positioned according to its fractions of reads in the 
F0 and F1 frames with no a priori on its translation outcome (Fig. 1). It is worth noting 
that the fraction of F2 frame reads can be directly deduced from those of F0 and F1 with 
F2 = 1 − (F0 + F1). The x-axis is divided into three equivalent regions to distinguish (i) 
high-FIR ORFs (i.e., high fraction of in-frame reads) whose reads are mostly in-frame, 
reflecting ORFs translated with high specificity (e.g., CDSs), and (ii) low-FIR ORFs 
whose reads are mostly out-of-frame, which, in theory, reflect untranslated ORFs over-
lapping translated ones (e.g., aORFs). They may nevertheless be associated with a few 
in-frame reads due to misassignment of the translated frame. Finally, the third category, 
(iii), corresponds to intermediate-FIR ORFs that display enrichment in in-frame reads 
compared to a random distribution of reads along the RNA (F0 fraction ≥ 0.33), though 
this enrichment is lower than that of ORFs translated with high specificity. As such, the 
x-axis reflects the specificity of an ORF’s Ribo-Seq reads, while the y-axis illustrates the 
ribosome occupancy in its two alternative frames. Overall, the resulting Ribo-Seq land-
scape offers a rational and comprehensive representation of the diversity of the Ribo-Seq 
footprints of an ORFeome of interest that can be associated with translation outcomes 
or not. This landscape offers a promising representation for exploring the relationship 
between overlapping ORFs, as exemplified in Fig. 1, with CDSs and aORFs.

Ribo‑Seq landscape of coding regions

As expected, most of the read-associated CDS (5404—93%) fall within the high-
FIR region of the Ribo-Seq landscape (F0 ≥ 0.66), highlighting their highly specific 
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translation (Fig. 2A, Additional file 1: Table S1). Their metagene profile further supports 
their translation specificity, with reads predominantly accumulating in their F0 frame 
(Fig.  2B). Conversely, 97% (76,416/78,428) of the read-associated aORFs exhibit high 
fractions of out-of-frame reads (F0 < 0.33) and are located at the two left extremities of 
the Ribo-Seq landscape. The out-of-frame reads of aORFs are likely not indicative of a 
translation outcome but instead mirror the translation of the overlapping CDSs since 
the profiles of overlapping ORFs are inherently correlated (Fig. 2B). Overall, the three 
extremities of the Ribo-Seq landscape highlight RNA regions associated with an unbal-
anced ribosome occupancy between the three RNA frames in favor of that of the CDS.

Interestingly, 3% of CDSs (176 cases) fall within the intermediate- and low-FIR regions 
of the Ribo-Seq landscape (F0 < 0.66). 66% of them are specific to Saccharomyces sensu 
stricto (Fig. 2C), among which 48% overlap on the same strand, another CDS that is older 
and specifically translated. We can hypothesize that these young or emerging ORFs have 
not yet acquired the regulatory elements necessary for efficient expression (e.g., tran-
scription or translation levels). However, 66% of the CDSs associated with high fractions 

Fig. 2 Ribo-Seq landscape of coding regions. A Ribo-Seq landscape of the coding regions’ ORFs, including 
CDSs and aORFs, colored orange and blue, respectively. Each ORF with at least 50 reads and 30% of codon 
coverage is represented as a dot on the Ribo-Seq landscape according to its fractions of F0 reads (x-axis) 
and F1 reads (y-axis). B Metagenes of the three extremities of the Ribo-Seq landscape. Each metagene is 
calculated for the first 20 codons from all the ORFs associated with a given Ribo-Seq area (see the “Methods” 
section) and represents the average number of reads per nucleotide over all the ORFs of the metagene. 
The corresponding Ribo-Seq landscape areas are colored on the schematic Ribo-Seq landscapes of each 
plot. Nucleotide positions that are covered by in-frame reads relative to the ORFs of the metagene are 
colored in orange or blue, while positions covered by out-of-frame reads (F1 and F2) are colored in gray. 
C Ribo-Seq landscape of the CDSs colored with respect to their evolutionary age (in Mya) as estimated 
by phylostratigraphy (see the “Methods” section). D Top: Metagene of the CDS YNL046W representing the 
number of reads of each nucleotide summed over the 54 Ribo-Seq datasets. Positions that are covered by 
reads in frame with the CDS YNL046W are colored in orange, while those covered by reads in its + 1 and + 2 
frames are colored in blue. Bottom: Colored rectangles represent the CDS (orange) and its aORFs (blue). The 
start and stop codons of aORF chrXIV:542,365–542,502 (surrounded in red) are indicated by an “M” and a star, 
respectively
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of out-of-frame reads do not overlap another CDS. We carefully analyzed their individ-
ual metagene profiles and present an illustrative example where the ribosome footprints 
are shared between a CDS and one of its aORFs (Fig. 2D). Interestingly, if in-frame reads 
cover the whole sequence of the CDS YNL046W, reads in the + 1 frame accumulate 
between the codons 21 and 67. This region precisely corresponds to the genomic coor-
dinates of the aORF chrXIV:542,365–542,502, which is enriched in in-frame reads (frac-
tion of F0 reads: 55.6%). The first peak of the in-frame reads of the aORF lies at an ATG 
codon and probably indicates the translation initiation. The fact that the high density of 
the out-of-frame reads of the gene YNL046W overall correlates with the borders deline-
ated by the first ATG and the STOP codon of the aORF strongly supports the translation 
of this aORF. In fact, a significant portion (~ 38%, 67/176) of the low- or intermediate-
FIR CDSs overlap aORFs associated with intermediate or high fractions of in-frame 
reads, which could indicate an alternative translation outcome, although this remains 
to be fully demonstrated. It is unclear whether these cases reflect different RNA mol-
ecules that are independently translated or a competition occurring at the translation 
level between overlapping ORFs. Nonetheless, our results suggest that despite their low 
fractions of in-frame reads, these ORFs might be associated with a translation outcome 
and, therefore, warrant further investigation.

Detection of translated products with mass spectrometry

To determine whether CDSs and aORFs with intermediate or low fractions of in-
frame reads could be associated with a protein product, we conducted MS experi-
ments under standard conditions or conditions where the proteasome is inhibited 
(see the “Methods” section). aORFs are short, may encode unstable peptides, and 
if translated, the abundance of their resulting peptides is expected to be very low, 
thereby rendering their detection very challenging. Inhibiting the proteasome should, 
therefore, increase the detection of unstable and/or short-lived peptides that are 
typically rapidly degraded by the proteasome. Furthermore, these low-abundance 
peptides are typically very difficult to detect with classical MS analysis protocols, 
especially when the database being screened (all read-associated aORFs in this case) 
is much larger than the number of anticipated candidates [65, 66]. Indeed, we recall 
that most aORFs, despite being associated with reads, are likely not actually trans-
lated but instead reflect the translation of the overlapping CDS. Consequently, the 
proportion of truly expressed aORFs detectable by MS is expected to be very low. 
To address this, we devised a two-step procedure that involves an initial search on a 
large database composed of all candidates associated with Ribo-Seq reads. This step is 
then followed by a second search on a much smaller database, primarily consisting of 
candidates identified in the first round (see the “Methods” section for details). Doing 
so, our MS experiment identified 3505 CDSs, 2785 of which were detected under 
both conditions. The latter are associated with higher read counts and translated in 
almost all Ribo-Seq experiments, indicating highly and constitutively expressed CDSs 
that are easy to detect with MS (Additional file 1: Fig. S2). By inhibiting the protea-
some, we could identify an additional 627 CDSs. The latter exhibit lower half-lives 
than those detected in standard conditions (Additional file  1: Fig. S2). This likely 
explains our difficulty in detecting them when the proteasome is active and presents 
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proteasome inhibition as promising for detecting short-lived products. Nine CDSs 
with intermediate and low fractions of in-frame reads were also detected, revealing 
that non-canonical Ribo-Seq patterns may occasionally be linked to a protein prod-
uct (Fig.  3A). Interestingly, all of them were detected with proteasome inhibition, 
with only 2 being also detected under standard conditions. We then extracted protein 
abundances from the PaxDb database [67], a curated meta-resource that integrates 
multiple mass spectrometry datasets for which abundances were reprocessed, uni-
fied, and scored (Fig. 3B). 80% of the low- and intermediate-FIR CDSs were detected 
in the MS data of PaxDb. Although they display lower abundances than high-FIR 
CDS (median comparison empirical P-value < 1e − 04—see the “Methods” section for 

Fig. 3 A Ribo-Seq landscape of the aORFs and CDSs observed in our MS data. Same representation as 
Fig. 2A, but aORFs and CDSs for which we detected a peptide product are colored in dark blue or dark 
orange, respectively. B Ribo-Seq landscape of the CDSs colored according to their protein abundance in 
ppm as provided by PaxDb [67]. C Venn diagram of the number of aORFs detected with MS by the two 
experimental conditions, standard (left) and inhibited proteasome (right). D Number of codons of aORFs 
detected with MS experiments (blue) and aORFs that were not detected (light blue). E Number of Ribo-Seq 
datasets in which an aORF has been observed for detected (blue) and not detected aORFs (light blue). F 
Reads per kilobase of exon model per Million mapped reads (RPKM) computed over all datasets for detected 
(blue) and not detected aORFs (light blue). G Distribution of the reads across the three overlapping frames 
for the aORFs detected in MS (top) and aORFs not detected in MS (bottom). H RPKM computed over all 
datasets of CDSs that overlap aORFs detected with MS (orange) and CDSs whose overlapping aORFs were 
not detected (light orange)
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details), these results strengthen the hypothesis that low fractions of in-frame reads 
may reflect effective translation.

We detected a total of 209 aORFs under standard conditions and/or with protea-
some inhibition. Equivalent amounts of aORFs were detected by each experiment, 
with 74 identified under both conditions (Fig.  3C, Additional file: Table  S2). Even 
though the portion of aORFs detected under both conditions is significant (~ 50% 
of the aORFs detected under each condition), this portion is lower than what was 
observed for CDSs (~ 80%). This probably results from the difficulty in capturing 
such short, lowly abundant, and volatile ORFs whose expression may be inconsist-
ent across experiments. Interestingly, the aORFs detected under a single condition 
display similar properties to those identified under both conditions while being sig-
nificantly distinguishable from those that were not detected. Notably, the detected 
aORFs are longer (median comparison empirical P-value < 1e − 04) (Fig.  3D). While 
this may increase their number of theoretical tryptic peptides and thus lead to more 
false identifications, their longer size may also contribute to greater overall stability, 
further enhancing their detectability. Interestingly, they also exhibit distinct Ribo-Seq 
properties compared to other aORFs. They are detected in more Ribo-Seq experi-
ments (median comparison empirical P-value < 1e − 04) (Fig. 3E). They display higher 
RPKM values, are associated with more reads than the other alternative frame, and 
overlap CDSs also characterized by higher RPKM values (median comparison empiri-
cal P-values all < 1e − 04) (Fig. 3EH, Additional file 1: Fig. S3, Fig. S4 for the analysis 
per condition). Finally, we applied our proteomic analysis pipeline to another dataset 
[68]. We found 99 aORFs, among which seven were also detected in our data. While 
the overlap is smaller than that of the two conditions tested in the present study, it is 
unlikely to happen by chance (during the proteomic search, we screened a database of 
76 k aORFs, see Methods). In particular, the 99 ORFs detected in He et al. [68] exhibit 
similar properties to those detected in our experiment (Additional file  1: Fig. S5). 
While confidently confirming the detection of such volatile and low-abundance non-
canonical ORFs is a non-trivial task, these observations altogether seem to further 
support their detection and suggest that we may be underestimating their numbers. 
Overall, these results suggest that (i) benefiting from the higher expression of their 
overlapping CDS, these aORFs may be translated at higher rates, and (ii) regions with 
high expression activity may be more likely to produce, through pervasive expression, 
microproteins in sufficient quantity to be detected with proteomics. This leads us to 
hypothesize that regions of high expression activity are more likely to generate novel 
coding products. However, the relationship between the quantity of a microprotein 
and its capacity to ensure a biological role and ultimately to be fixed requires further 
investigation. For instance, these aORFs are not more conserved among yeast’s neigh-
boring species than the others (ORF age median comparison empirical P-value > 0.05), 
suggesting that their detection does not reveal emerging ORFs but may rather result 
from the high expression of their overlapping CDSs. Finally, 96% of these aORFs are 
located in the low-FIR area of the Ribo-Seq landscape, again supporting that this 
region can occasionally be associated with translation outcomes (Fig.  3A). Never-
theless, this result does not imply that all low-FIR ORFs are translated. Indeed, their 
metagenes strongly suggest a non-translational outcome for the majority of them, as 
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observed for most aORFs of the gene YNL046W (Fig.  2D). Our MS data, however, 
seem to indicate that a small fraction of them is translated in enough quantities to be 
detected at the protein level.

Ribo‑Seq landscape of noncoding regions

We identified 6814 iORFs with at least 50 reads and a read codon coverage of 30%. Con-
trarily to coding regions, noncoding regions are associated with a wide diversity of Ribo-
Seq signals that populate the entire yeast Ribo-Seq landscape. Specifically, we reveal a 
continuum in the Ribo-Seq signals that is absent from coding regions and appears to 
be a hallmark of the pervasive expression of noncoding regions (Fig. 4A). Higher densi-
ties of iORFs are nonetheless observed at the three extremities of the Ribo-Seq land-
scape, suggesting RNA regions translated with high specificity. Notably, we report 1055 
high-FIR iORFs and 2262 low-FIR iORFs located at the two left extremities of the Ribo-
Seq landscape. The metagene of the former is typical of canonical CDSs, while those 
of the latter resemble those of aORFs, and rather mirror the translation activity occur-
ring in their alternative frames (Fig. 4BDF). 33% of read-associated iORFs fall within the 
intermediate-FIR region. Theoretically, scanning ribosomes are expected to be associ-
ated with reads evenly distributed across the three frames (i.e., fractions of reads in F0, 
F1, F2 ~ 0.33). Interestingly, this twilight zone also includes iORFs enriched in in-frame 
reads, which may reflect translation. Their metagene reveals in-frame reads that prevail 
over the other frames, though the contrast is less pronounced than for high-FIR iORFs 
(Fig.  4E). These iORFs precisely recall the hundred CDSs observed in the same Ribo-
Seq landscape region that were translated with a detectable protein product despite 
their intermediate translation specificity (Fig.  3AB). The remaining area corresponds 
to low-FIR ORFs, with intermediate fractions of F1 and F2 reads that mostly overlap 
intermediate-FIR iORFs (0.33 ≤ [F1, F2] < 0.66)(Additional file  1: Fig. S6). Similar to 
intermediate-FIR iORFs, their metagene profile is less contrasted than that of the other 

Fig. 4 Ribo-Seq landscape of noncoding regions. A Ribo-Seq landscape of iORFs. Each read-associated 
iORF is represented as a purple dot according to its fractions of F0 reads (x-axis) and F1 reads (y-axis). Cyan 
dots correspond to iORFs detected with MS. B–F Metagenes of the five regions of the Ribo-Seq landscape 
representing the average number of Ribo-Seq reads of each nucleotide for the first 20 codons. Nucleotide 
positions covered by in-frame reads (F0) for the considered iORFs are represented in purple, while those 
covering reads in the + 1 and + 2 frames are colored in gray
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low-FIR iORFs (Fig. 4C). We also refer to this region as the twilight zone. Finally, our 
MS experiments enabled us to detect 30 iORFs considering both standard and inhibited 
proteasome conditions, among which 10 were detected under both conditions (“Meth-
ods”, Fig.  4A and Additional file  1: Table  S2). Interestingly, these iORFs include high-, 
intermediate-, but also low-FIR ORFs. They tend to be longer and associated with more 
reads than their counterparts. However, the trend does not hold when normalizing by 
the ORF length, possibly due to the lack of statistical power (Additional file 1: Fig. S7). 
Again, these iORFs are not more conserved among yeast species (one-proportion z-test 
for every age group, all P > 0.05), suggesting that the majority of these products may not 
be functional but are probably linked to specific properties (i.e., physico-chemical and/
or abundances) that enabled their detection.

Robustness of Ribo‑Seq signals across Ribo‑Seq datasets

We investigated the contribution of each dataset to the global Ribo-Seq landscape. Fig-
ure 5A shows the distribution of the fractions of datasets in which the CDSs, aORFs, and 
iORFs of the global Ribo-Seq landscape were detected. For each dataset, an ORF was 
retained if it was associated with at least 20 reads, regardless of the frame (Additional 
file 1: Fig. S8). If a threshold of 50 reads may be too strict to identify lowly translated 
ORFs, 20 reads should ensure enough statistical power to estimate fractions of in-frame 
reads reliably. Most datasets display high coverage for the CDSs present in the global 
Ribo-Seq landscape, each detecting, on average, 80.2% of them (Fig.  5A). In contrast, 
this coverage drops significantly to 26.4% and 6.8% for aORFs and iORFs, respectively. In 
fact, only 11 ×  106 reads are necessary to detect 90% of the CDSs of the global Ribo-Seq 
landscape, while it requires at least 107 ×  106 and 163 ×  106 reads to cover 90% of the 

Fig. 5 Robustness of Ribo-Seq signals across individual datasets. A Distributions of the fractions of datasets 
in which the ORFs present in the global Ribo-Seq landscape were detected. Distributions for iORFs, aORFs, 
and CDSs are colored purple, blue, and orange, respectively. B Cumulative fractions of the ORFs of the global 
Ribo-Seq landscape that were detected when cumulating the reads of the different datasets. Fractions for 
iORFs, aORFs, and CDSs are colored purple, blue, and orange, respectively. Datasets are ranked according to 
their number of reads. C Distributions of the Euclidean distances calculated between the 2D coordinates of 
an ORF in the individual datasets
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global Ribo-Seq landscapes of aORFs and iORFs, respectively (Fig. 5B). This emphasizes 
the importance of pooling multiple datasets to characterize pervasive translation events 
typically associated with low read levels. Since ORFs are detected in individual samples 
based on their associated reads, irrespective of the frame, aORFs provide a means to 
partially deconvolute the impact of ORF length on their detection. Indeed, although 
the latter are associated with the reads of the overlapping CDS, they are detected in 
far fewer datasets than CDSs. Their lower detection, therefore, likely results from their 
shorter size, suggesting that the detection of iORFs in individual datasets is signifi-
cantly underestimated. Indeed, iORFs are typically short and lowly expressed, affecting 
their detection in individual samples, particularly when the sequencing coverage of the 
experiment is low (Fig.  5B, Additional file  1: Fig. S8). Altogether, these findings show 
that while using multiple Ribo-Seq datasets is relevant for qualitative analyses aimed at 
uncovering the diversity of Ribo-Seq signals, caution is warranted for accurate estima-
tion of the frequency of translation of lowly expressed short noncoding ORFs across 
datasets. Finally, we examined the robustness of the ORF localization across the indi-
vidual samples (Fig. 5C). As expected, the localizations of CDSs and aORFs are highly 
conserved across the datasets, reflecting the strong optimization of CDSs’ translation to 
ensure the production of the coding product (all Euclidean distance median compari-
son empirical P-values < 1e − 04). Interestingly, the localization of iORFs is also not ran-
dom, being significantly conserved across the experiments compared to what would be 
expected by chance (gray distribution) (Euclidean distance median comparison empiri-
cal P-values < 1e − 04). Overall, these results suggest that, even if associated with perva-
sive expression, the Ribo-Seq signals of iORFs are consistent under standard conditions.

Rules determining the translation signal in pervasive translation

To elucidate the rules that determine the Ribo-Seq signal of iORFs and assess whether 
iORFs translated with high specificity indicate emerging functional ORFs, we examined 
several sequence and structural properties previously identified as relevant signatures of 
de novo gene emergence [21, 42, 54]. iORFs translated with high specificity are not more 
conserved across neighboring species and do not distinguish themselves according to 
their length, Kozak scores, or foldability potential (Additional file 1: Fig. S9). However, 
they display slightly higher GC content and are slightly more abundant outside UTRs 
than intermediate-FIR ones, but the effect is small and likely does not account for the 
overall increase in their translation specificity (median comparison empirical P-val-
ues < 1e − 04, one proportion z-test (two-sided), P = 7.3e − 14, respectively—Additional 
file 1: Fig. S9). We then undertook dN/dS analyses and identified only three iORFs with 
significant evidence of purifying selection, similar to the findings reported by Wacholder 
et al. [22]. While two of them are classified as high-FIR, this result overall suggests that 
high-FIR iORFs probably do not reflect emerging functional ORFs or are too young to 
bear a detectable selection signature. We then investigated whether the sequence com-
position or genomic context could affect the Ribo-Seq patterns of iORFs. Interestingly, 
while the different iORF categories display comparable amino acid compositions, high-
FIR iORFs are significantly enriched in methionine (Additional file 1: Fig. S10). Methio-
nine being an efficient translation start, we sought to identify iORF translation initiation 
codons.
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We predicted a start for nearly all high- and intermediate-FIR iORFs (98% and 94%, 
respectively), while this was the case for only 55% of the low-FIR iORFs. This further 
supports that although low-FIR ORFs may be associated with translation outcomes, 
a significant portion likely consists of untranslated ORFs overlapping translated ones. 
Overall, high-FIR ORFs exhibit a strong tendency to initiate with ATG or TTG, con-
sistent with previous reports [69–71] (49% and 10%, respectively) (Fig.  6AB). While 
intermediate-FIR iORFs mostly initiate with ATGs or near-cognate codons (62%), they 
display a wider diversity of start codons. Furthermore, a significant portion (32%) is pre-
dicted not to initiate with ATG or near-cognate codons. These cases may reflect noisy 
Ribo-Seq patterns not associated with translation, but they could also indicate errors 
in translation start prediction. These ORFs are associated with fewer reads than their 
counterparts, which may challenge the accurate prediction of the start codon (Addi-
tional file 1: Fig. S11). Finally, to further depict the impact of the genomic context of the 
start codon on translation specificity, we examined the codon content of the alterna-
tive frames of intermediate- and high-FIR iORFs. For each intermediate- or high-FIR 
iORF, we calculated the propensity of each codon to be in the iORF frame compared to 
its two alternative frames (see the “Methods” section). Additional file 1: Fig. S12 shows 
that high-FIR iORFs are enriched in ATG and TTG codons with respect to their over-
lapping frames, while the effect is less pronounced for intermediate-FIR iORFs. These 
results suggest that in noncoding regions, translation specificity results from the uneven 
distribution of ATGs across the different frames. We may hypothesize that during the 
scanning process of the 40S ribosomal subunit along the RNA, the three RNA frames 
are inherently in competition for translation, with iORFs enriched in ATGs compared to 
their alternative frames being more likely to be translated. Whether additional features 

Fig. 6 Impact of the initiation codon on the Ribo-Seq signals. A Ribo-Seq landscape of the iORFs for which 
we detected the translation initiation codon. iORFs are colored according to the type of the predicted start 
codon with dark blue, light blue, and gray dots corresponding to initiation with ATG, near cognate codons, 
or other codons, respectively. Densities of the three different types of codons with respect to the fraction 
of in-frame reads are represented on the top of the plot. B Barplots representing the frequencies of the 61 
codons at the predicted start codon for intermediate-FIR (salmon) and high-FIR iORFs (dark red). The small 
circles indicate the expected frequency of each codon according to its frequency in the intermediate- or high 
FIR iORFs. Codons that are significantly enriched at the predicted start codon are indicated with a star (one 
proportion z-test, P < 0.05). Near-cognate codons are represented in bold
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(e.g., RNA secondary structure, tRNA abundances…) are involved in the translation out-
come of iORFs deserves further investigation.

Discussion
In this study, we characterized the Ribo-Seq landscape of all yeast ORFs of ribosome-
bound RNAs, revealing a continuum from non-translation outcomes to highly specific 
translation. This continuum encompasses a wide diversity of Ribo-Seq signals, including 
canonical and non-canonical ones. Interestingly, our proteomic analysis seems to indi-
cate that non-canonical Ribo-Seq signals could also lead to a protein product. Despite 
being associated with higher read levels and highly translated CDSs, aORFs detected 
with proteomics exhibited Ribo-Seq patterns similar to those of their untranslated coun-
terparts (Additional file 1: Fig. S13). While our work highlights the challenge of distin-
guishing untranslated ORFs lying on ribosome-associated RNAs from those translated 
with low specificity, it underscores the importance of considering the entirety of Ribo-
Seq signals. Precisely, we also considered ORFs with a priori no translation outcome 
under the studied conditions (most low-FIR ORFs), but which were nevertheless associ-
ated with ribosome-protected fragments. Indeed, their translation status may be unsta-
ble, as iORFs not translated today under standard conditions may become translated 
under other conditions or in the future. Moreover, it is worth noting that the population 
of untranslated iORFs is heterogeneous since untranslated iORFs located in ribosome-
bound RNAs are more likely to be translated later or under other conditions than those 
lying in RNAs that do not access the translation machinery, or worse, those that are not 
transcribed. In fact, we may hypothesize that if low-FIR iORFs may have lost the com-
petition for translation (if any) with their overlapping iORFs, they still participate in this 
competition and, therefore, may play a “passive” role in the translation outcome of the 
region. All these reasons support the need for characterizing the Ribo-Seq signals of all 
ORFs associated with ribosome-protected fragments (i.e., which access to the translation 
machinery) to delineate the translatome but also the translation potential of a species.

We introduce a topology of the Ribo-Seq landscape of pervasive translation that ena-
bles the rational delineation and classification of the entire diversity of associated Ribo-
Seq signals (Fig. 7). In particular, we unveiled a twilight zone that is highly populated in 
noncoding regions and appears to be a hallmark of pervasive translation. Our results 
suggest that an important fraction of the ORFs of this region are translated as supported 
by their metagenes and the MS data. We also highlighted three Ribo-Seq landscape areas 
of uneven ribosome occupancy reflecting RNA regions associated with high translation 
specificity. These areas are populated in both coding and noncoding regions. However, 
their status in these regions is not the same. While the translation specificity of CDSs 
mostly results from their regulation to ensure successful protein synthesis, the spec-
ificity of translation in noncoding regions is mainly due to the codon used to initiate 
translation and its surrounding genomic context. Consequently, if the translation status 
of CDSs is expected to be long-lasting throughout evolution, the one of iORFs, even if 
specifically translated, is expected to be less stable. Upon mutation, high-FIR ORFs may 
become poorly translated or untranslated and vice-versa. In other words, the specific 
translation of noncoding regions is a property that is “innate” and probably short-lived, 
contrary to the “acquired” and stable translation specificity of CDSs.
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Indeed, our findings suggest that, overall, the high translation specificity of an iORF 
does not result from the translation optimization of a functional product. Specifically 
translated iORFs are not characterized by features usually indicative of the emergence 
of function but instead display significant enrichments in ATGs and TTGs relative to 
their alternative frames. Whether iORFs enriched in ATGs compared to their overlap-
ping counterparts are more likely to reach the protein state and, therefore, to be fixed 
as novel coding products deserve further investigation. Indeed, our MS data seem to 
indicate that a microprotein could be detected for aORFs and iORFs associated with 
different Ribo-Seq landscape areas, highlighting the complex relationship between the 
specificity of translation and the likelihood of being detected with MS. Moreover, the 
aORFs that we were able to detect with our MS protocol displayed higher read levels 
regardless of their translation specificity (Fig.  3, Additional file  1: Fig. S4), suggesting, 
this time, a complex relationship between the quantity and the specificity of translation. 
Interestingly, the comparison of different MS datasets suggested a high degree of com-
plementarity, each uncovering new aORF detections. The detected aORFs shared com-
mon properties in terms of Ribo-Seq features, being associated with higher read levels 
and overlapping highly expressed CDSs. This finding suggests a homogeneous popula-
tion of volatile ORFs whose expression may be inconsistent across experiments, thereby 
affecting their identification from one experiment to another. Unlike CDSs, inhibiting 
the proteasome was not accompanied by an increase in non-canonical ORF detection. 
This raises questions about whether this reflects detection difficulty or uncovers an 

Fig. 7 Topology of the yeast Ribo-Seq landscape. Schematic representation of the entire diversity 
of Ribo-Seq signals that allows (i) their comprehensive and comprehensible classification and (ii) the 
identification of areas that are either specific to pervasive translation or present in both pervasive and regular 
translation
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alternative surveillance pathway. Overall, it is important to note that confidently assert-
ing the detection of non-canonical ORFs with proteomics remains very challenging. 
However, the fact that the aORFs we detected display specific Ribo-Seq patterns, which 
are derived from a technique independent of proteomics, can increase our confidence in 
their detection. Furthermore, a significant portion of aORFs was retrieved under both 
conditions, with each condition providing several dozen additional ORFs with compa-
rable properties. This further supports their identification, but it also suggests that the 
number of these volatile ORFs may be significantly underestimated. Finally, these aORFs 
are indistinguishable from the others according to sequence or structural properties 
typical of coding products, suggesting that most of them are not functional but simply 
result from the high translation activity of their overlapping CDS (Fig. 3). In fact, lead-
ing to a detectable product differs from being functional and selected, though the latter 
necessarily involves being produced at the protein level. Overall, these results show that 
the relationship between the expression features of an ORF (quantity and specificity), 
its capacity to reach the protein state, and its potential to be fixed remains unclear and 
deserves to be carefully investigated.

Conclusion
The fact that iORFs translated with high specificity, or aORFs and iORFs detected with 
proteomics, are indistinguishable from others, according to features indicative of the 
emergence of function, suggests that most pervasively translated products are not func-
tional (at least not in the traditional sense, i.e., not under selection). Nevertheless, we 
acknowledge that assessing whether an ORF is functional is experimentally and com-
putationally challenging. The former involves identifying the condition under which 
the ORF affects the phenotype. The latter implies that its function and the conditions 
under which it is functional persist sufficiently during evolution that we can detect evo-
lutionary traces of selection. Expressly, we do not exclude that our data include young 
emerging ORFs that do not exhibit traces of selection yet or short-lived ORFs that play 
a biological role in specific or ephemeral conditions like the evolutionarily transient 
sequences reported in Wacholder et  al. (2023) [22]. Here, we propose that iORFs and 
pervasive translation are functional “collectively,” providing the cell with the raw mate-
rial for selection. Of these, from time to time, a handful of functional products (i.e., that 
will last throughout evolution) may emerge, similar to the dozen candidates under selec-
tion identified in Wacholder et al. (2023) [22]. This collective function, which is mainly 
related to a process rather than individual ORFs, precisely relies on the quantity and 
diversity of the reservoir of freely evolving sequences that can be translated by pervasive 
translation. In line with Guerra-Almeida and Nunes-da-Fonseca (2020) [5], these results 
call for revisiting the concept of function in the context of the emergence of novel coding 
products. The landscape and diversity of pervasive translation under stress conditions or 
in tissues associated with the emergence of genetic novelty (e.g., testis or brain [72–75]), 
therefore deserves to be carefully investigated. Our representation framework precisely 
enables large-scale and quantitative analyses of the dynamics of the Ribo-Seq landscape 
of a species of interest upon condition changes or mutations and, hence, opens the way 
for future exciting comparative analyses.
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Methods
Extraction of CDSs, aORFs, and noncoding ORFs

All ORFs were extracted with our program ORFtrack [76] from S. cerevisiae strain 
S288C, based on the genome annotation of the Saccharomyces Genome Database 
(genome version R64-2–1) [77]. iORFs and aORFs are defined from STOP-to-STOP 
with a minimum size of 60 nucleotides. While relevant candidates may exist within 
smaller ORFs, very short sequences can lead to inaccuracies in Ribo-Seq or sequence 
and structure analyses since most analysis programs used in this study are designed for 
longer sequences. iORFs do not overlap any annotated feature (e.g., tRNA, rRNA, CDS) 
by more than 5% of their length. As such, we minimize the overlap between iORFs and 
CDSs which is essential to prevent any bias from CDSs when analyzing their different 
properties.

Ribosome profiling analyses

From the Sequence Read Archive [78], we manually collected 89 Ribo-Seq datasets of 
wild-type S. cerevisiae (strain S288C or BY4741) that were conducted under stand-
ard conditions (see Additional file 2 for the complete list—i.e., 104 technical replicates 
from 89 biological datasets). Ribo-Seq raw data were processed using our own pipeline 
ORFribo from our ORFmine suite (Additional file 1: Fig. S1). Adapter sequences were 
removed using cutadapt [79]. The trimmed reads were separated into ribosome profil-
ing footprints (RPFs) ranging from 25 to 35 nucleotides and mapped to the CDSs using 
both HISAT2 [80] and Bowtie2 [81] (default parameters, with only one mismatch being 
allowed). While read lengths of 28–30 nucleotides generally ensure efficient P-site iden-
tification, the optimal read length may vary with the sample and nuclease digestion 
method. Considering alternative read lengths can provide more comprehensive infor-
mation. However, beyond the 25–35 nucleotide range, confidence in ribosome activity 
decreases, making data more uncertain. Furthermore, Bowtie2 typically detects a small 
portion of additional reads that are not identified by HISAT2 (1.6% of all the considered 
reads in the present study, but this value depends on the dataset and can be higher). 
Given that Bowtie2 is not very computationally expensive, we deemed it worthwhile 
to consider this additional information. For each dataset, we estimated the ribosome’s 
P-site of each RPF length using riboWaltz [82] and subsequently calculated the number 
of in-frame and out-of-frame reads of each CDS. For each dataset, only the RPF lengths 
with a median of CDSs’ in-frame reads exceeding 70% were retained [64] (Supplemen-
tary Data 1 and Additional file 1: Fig. S14). In doing so, we retained 54 datasets where 
at least one RPF length met this condition. All retained RPF lengths from the different 
datasets were then pooled together and realigned on the whole genome this time. Then, 
for each read, the translated codon was estimated according to the previously predicted 
P-site for that read length (RPF length) in the dataset it originated from. The number of 
in-frame and out-of-frame reads was subsequently computed for each iORF and aORF.

Calculations of metagenes

Metagenes were calculated for different subsets of ORFs (e.g., intermediate-, high-FIR 
ORFs…) as follows: for each ORF of a given subset, we summed over the 54 Ribo-Seq 
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datasets, the number of reads associated with each nucleotide (i.e., reads whose pre-
dicted P-site corresponds to the position of the considered nucleotide). We then aver-
aged the count of reads per nucleotide position over all the ORFs of a given subset. The 
resulting metagene, therefore, represents the read number average per nucleotide.

Calculation of sequence and structural properties of the peptides encoded in noncoding 

ORFs

The HCA foldability score was calculated using the pyHCA tool [83–86] from our pro-
gram ORFold [76]. We estimated the evolutionary ages of the CDSs by phylostratigraphy 
using our ORFdate program. Half-life data was extracted from the SGD database [77]. 
Thus, BLASTp [87] searches with the CDSs of S. cerevisiae (i.e., the focal species) were 
performed against the complete proteomes of 10 saccharomyces (see Additional file 1: 
Fig. S15 for the complete list and the associated phylogenetic tree). We retained BLASTp 
high scoring pairs (HSPs) with an e-value less than 0.001 and a minimum query cover-
age of 70%. For each CDS, we identified the most distant species with respect to the 
focal that was associated with a positive HSP match. Since horizontal gene transfers are 
rare events in Eukaryotes, we defined the CDS origination node, the last node shared by 
the focal and the outgroup species with a positive HSP. This node is then used to esti-
mate the CDS’s age according to TimeTree [88, 89] (Additional file 1: Fig. S15). As we 
are interested in the early ages of CDSs, the node shared by S. cerevisiae and S. pombe 
is considered as the upper limit for the age estimation, and all CDSs with a match in 
S. pombe are associated with the same upper bounded age regardless of the fact that 
the CDS could have additional matches with more distant species. Since iORFs evolve 
faster than CDSs, we estimated their age, focusing on the Saccharomyces sensu stricto 
(Additional file  1: Fig. S15). BLASTp were performed with the iORFs of S. cerevisiae 
(focal) as queries and those of the Saccharomyces sensu stricto species as targets using 
the same parameters. The remaining steps for age estimation were the same as those 
used for CDSs. Kozak scores were calculated as follows: CDSs were first used to derive 
a reference scoring table of position-specific nucleotide frequencies. To do so, we com-
puted for each position around the start codon (positions − 5 to 6 excluding the start 
codon) the nucleotide frequencies and calculated the odd ratios between the observed 
and background frequencies. The latter are calculated as the position-independent rel-
ative frequencies of the same sequences. We then calculated the Kozak score of each 
evaluated iORF by adding the individual position-specific values of all nucleotides 
observed for each position. To detect iORFs under selection, we defined their ortholo-
gous sequences among the neighbor species using the RBH method (aligner:Diamond v2 
[90], e-value ≤ 10 − 3, query coverage ≥ 70%) and ran multiple CODEML branch models 
(from the PAML package) [91]. We followed the protocol of Zhang (2019) [55] although 
with a distinct subset of trees for the two-ratios models. This subset was populated with 
all possible tree versions where a single branch or a single clade is labeled. The label indi-
cates a distinct ratio from the rest of the tree. We corrected the chi-squared test p-values 
with the Bonferroni method and applied a significance threshold of 0.05.

The propensity of each codon in iORFs with respect to their alternative frames 
is defined as the log ratio of the codon frequency in the frame of the ORF versus its 
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frequency in the ORF’s two alternative frames (± 30 nucleotides around the considered 
ORF). It is calculated as follows:

Prediction of the first translated codon

The translation start codon typically exhibits a distinct peak of reads. Since in noncoding 
regions the number of reads per codon is generally low, we defined as the start codon, 
the first 5′ codon with a peak of at least 5 in-frame reads and for which the two sur-
rounding codons had a lower number of reads.

Statistical analyses

All statistical analyses were performed in R (4.0.3) [92]. To address P-value issues with 
large samples [93], we empirically estimate a global p-value for median comparisons 
in large samples using an iterative sampling strategy. This method involves repeatedly 
sampling from the data to calculate the proportion of instances where the median dif-
ferences from these random samples exceed the observed median difference. The pro-
cedure was applied when one group exceeded 1000 individuals as follows: we computed 
the observed difference (Dobs) between the medians of the two compared groups. For 
groups larger than 1000, we generated 10,000 samples of 1000 individuals each and 
pooled both groups. If one group had fewer than 1000 individuals, to overcome the 
imbalance between the two groups, we used the entire group for the smallest one and 
generated 10,000 samples from the larger group, matching the size of the smallest one. 
We then divided the pooled sample into two equal subsamples, calculated the difference 
(Dsamp) between sample medians, and derived the P-value as the proportion of Dsamp 
values exceeding Dobs.

Mass spectrometry experiments

Yeast strain BY4742 was grown under two different conditions, either in complete syn-
thetic media or in complete synthetic media with MG132 proteasome inhibitor. Cells 
were lysed in an extraction buffer containing 20  mM Hepes, 110  mM KoAc, 10  mM 
MnCl2, 0.5% triton, 0.1% tween and protease inhibitors. Lysates were cleared by centrif-
ugation and loaded on a gradient of 4% to 12% SDS-PAGE. Proteins were extracted from 
the gels and analyzed by mass spectrometry. For each condition, proteins were concen-
trated in a single band containing the whole sample or fractionated into 3 different mass 
regions (1–15 kDa, 15–35 kDa, and > 35 kDa). The bands of about 2 mm were subjected 
to in-gel trypsin digestion, as previously described in Szabo et al. [94], before submission 
to mass spectrometry analysis. Trypsin-generated peptides from the three separation 
regions of the gels were analyzed separately by nanoLC–MSMS using a nanoElute liquid 
chromatography system (Bruker) coupled to a timsTOF Pro mass spectrometer (Bruker). 
Peptides were loaded on an Aurora analytical column (ION OPTIK, 25  cm × 75  m, 
C18, 1.6 m) and separated with a gradient of 0–35% of solvent B for 100 min. Solvent A 
was 0.1% formic acid and 2% acetonitrile in water, and solvent B was acetonitrile with 
0.1% formic acid. MS and MS/MS spectra were recorded from m/z 100 to 1700 with 
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a mobility scan range from 0.6 to 1.4 V s/cm2. MS/MS spectra were acquired with the 
PASEF (Parallel Accumulation Serial Fragmentation) ion mobility-based acquisition 
mode using a number of PASEF MS/MS scans set as 10. MS and MSMS raw data were 
processed and converted into mgf files with DataAnalysis software (Bruker).

MS statistical validation of peptides resulting from iORF translation

We first applied an established standard protocol based on class-specific FDRs. To do so, 
the spectra were searched using the MASCOT search engine (Matrix Science, London, 
UK, [95]) against the CDS, aORF, and iORF databases separately. Since we have no cer-
tainty about the start codon, aORFs, and iORFs were provided as STOP-to-STOP, ATG-
STOP, and predicted START-to-STOP when different from the most 5’ ATG. Database 
searches were performed using trypsin cleavage specificity with two possible missed 
cleavages. Carbamidomethylation of cysteines was set as a fixed modification, and oxi-
dation of methionine as a variable modification. Peptide and fragment tolerances were 
set at 10 ppm and 0.05 Da, respectively. The procedure was applied to a total of four pro-
teomic runs: two conditions (standard and inhibited proteasome), each associated with 
two SDS-PAGE gel migration modes. Doing so, no candidates could be detected at 1% 
FDR. We were able to detect a peptide for only a few non-canonical ORFs (19 aORFs and 
5 iORFs) at the cost of substantially increasing local FDRs (Additional file 1: Table S3 for 
the number of detected ORFs in each migration and the corresponding FDRs). In fact, 
it is well-acknowledged that with large databases, strict filtering to avoid false-positive 
matches leads (i) to more false negatives and (ii) overestimating FDRs, as well-explained 
in Verbruggen et al. (2021) [65]. The issue of dealing with large databases in proteom-
ics is a complex and active research area, and numerous studies have highlighted the 
difficulty of estimating FDRs when searching large databases [65, 66, 96, 97]. The task 
becomes even more complicated when attempting to identify entities representing only 
a tiny portion of the searched database. Specifically, in our configuration, we are search-
ing an extensive database that includes all non-canonical ORFs that match our Ribo-Seq 
criteria without prior knowledge of whether they are indeed translated. We thus antici-
pate only a small portion of positives (i.e., translated microproteins abundant and sta-
ble enough to be detected) since the majority is not expected to be translated or, when 
translated, expected to be unstable and short-lived. This situation, therefore, differs from 
the classical one for which TDC has been initially proposed, where the portion of posi-
tives in the searched database is usually high compared to the matches in the decoy data-
base. In our configuration, FDRs are likely to be overestimated because of (i) the large 
dataset that will inherently be associated with a large number of decoy matches and (ii) 
the relatively small number of positives in non-canonical ORFs. We, therefore, devised 
a two-step protocol that first searches a large database combining all the CDSs and non-
canonical ORFs that match our Ribo-Seq criteria (see below) without any a priori. Then, 
a second search is realized on a much smaller database, resulting from the first screen, 
which places us in a more classical search context where more reliable FDRs can be esti-
mated. Each step combines two FDR-controlling procedures: Target-Decoy Competition 
(TDC) [98] and the Benjamini–Hochberg framework (BH) [99].

First step: the spectra were searched using the MASCOT search engine against the 
coding and noncoding databases. All CDSs, aORFs, and iORFs with at least 50 reads 
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and 30% read coverage were combined into a single Target database to avoid assigning a 
spectrum twice and mistakenly assigning a peptide to a non-canonical ORF when it actu-
ally comes from a CDS. Database searches were performed using the same parameters 
as the standard protocol (see above). We then applied separate TDC and BH procedures. 
TDC: besides screening the target database, we searched a database of decoys obtained 
by reversing each target sequence. Peptide Spectrum Matches (PSM) mascot scores 
were converted into p-values (p = 10-S/10). We retained all PSMs with a p-value ≤ 0.05 
and then retained the PSM with the higher score between the best-scoring target pep-
tide and the best-scoring decoy peptide. In case of ties, the PSM was excluded. BH: the 
total non-filtered PSMs were exported, and their p-values were adjusted using the BH 
procedure. PSMs were then filtered at 2.5% FDR. Finally, only PSMs validated by both 
methods were retained. This approach enabled us to exclude PSMs that the single BH 
procedure would retain, even though their associated spectrum scored better with the 
decoy database. A list of candidate ORFs was thus derived, requiring at least two distinct 
peptides for CDSs and one for non-canonical ORFs due to their small size. Raw data 
generated by MASCOT (without any filter) and our filtered final table are available as 
Supplemental Material.

Second step: the proteome of S. cerevisiae was supplemented with the aORFs and iORFs 
retained after the first search (270 and 35 ORFs, respectively), and the spectra were then 
screened against the expanded proteome using the same parameters as previously. It 
should be noted that the p-values depend on the searched database, and PSMs retained 
during the first step may be excluded in the second. TDC was applied to all PSMs with a 
p-value ≤ 0.05, resulting in FDRs of approximately 1% in each of the four proteomic anal-
yses (Additional file 1: Table S4). It is worth noting that the overall FDR is anticipated 
to be higher; however, combining TDC and BH procedures is expected to reduce FDRs 
further. Similar to step 1, PSM p-values were adjusted with the BH procedure, and PSMs 
were filtered at 2.5% FDR. The BH filtering appeared very stringent, removing 35% of the 
PSMs of the non-canonical ORFs retained with the TDC procedure alone.

As a control, we represented the scores of the retained PSMs for CDSs, aORFs, and 
iORFs after TDC or the combination of both TDC and BH procedures alongside those 
of the corresponding PSMs in the decoy database (Additional file 1: Fig. S16). We then 
represented the distribution of the difference between the scores of the retained PSMs 
for each ORF class and those of their corresponding best-scoring PSMs in the decoy 
database. While it was anticipated that target PSM scores would be higher than those 
of their corresponding decoys—given our filtering—the extent of the difference was 
not expected. Target PSM scores for non-canonical ORFs are clearly higher, generally 
about twice as high as those for their corresponding decoys, revealing a clear separation 
between their scores in the target and decoy databases. Additional file 1: Fig. S17 pre-
sents 30 spectra of different MASCOT score ranges.
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