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    I N T R O D U C T I O N 

 Mutations in bestrophin-1 are responsible for several 

retinopathies, including Best vitelliform macular dys-

trophy ( Marquardt et al., 1998 ;  Petrukhin et al., 1998 ), 

adult-onset macular dystrophy ( Seddon et al., 2001 ), 

autosomal-dominant vitreochoidopathy ( Yardley et al., 

2004 ), autosomal-recessive bestrophinopathy ( Burgess 

et al., 2008 ), and canine multifocal retinopathy ( Guziewicz 

et al., 2007 ). There is considerable evidence that bestro-

phins are Cl  �   channels (for review see  Hartzell et al., 

2008 ). Expression of a variety of different bestrophins 

in HEK293 cells induces novel Cl  �   currents ( Sun et al., 

2002 ;  Qu et al., 2003, 2004, 2006a, 2006b ;  Tsunenari 

et al., 2003, 2006 ;  Qu and Hartzell, 2004 ;  Barro Soria et al., 

2006 ;  Chien et al., 2006 ). Furthermore, mutation of cer-

tain amino acids alters the permeability and conduc-

tance of the channel ( Qu et al., 2004, 2006b ;  Qu and 

Hartzell, 2004 ), and sulfhydryl reagents alter the prop-

erties of cysteine-substituted channels in characteristic 

ways ( Tsunenari et al., 2003 ;  Qu and Hartzell, 2004 ;  Qu 

et al., 2006b ). However, the idea that bestrophin-1 is a Cl  �   

channel has been seriously questioned ( Marmorstein 
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et al., 2004a, 2004b, 2006 ;  Rosenthal et al., 2005 ; 

 Marmorstein and Kinnick, 2007 ). This challenge is 

based largely on several observations, the most compel-

ling of which is that Cl  �   currents in retinal pigment 

epithelial cells are not abolished in mouse bestrophin-1 

(mBest1) knockout mice ( Marmorstein et al., 2006 ). 

Furthermore, it is not clear that the Cl  �   channel func-

tion of bestrophin can explain the human disease pheno-

types ( Hartzell et al., 2008 ). These questions, coupled 

with the observation that human bestrophin-1 (hBest1) 

can regulate voltage-gated Ca 2+  channels ( Rosenthal 

et al., 2005 ;  Yu et al., 2008 ), has led to the suggestion that 

hBest1 is not a Cl  �   channel but is rather a channel reg-

ulator ( Marmorstein et al., 2006 ;  Hartzell et al., 2008 ). 

 We have previously concluded that  Drosophila  bestro-

phin-1 (dBest1) is a Cl  �   channel that is dually regulated 

by Ca 2+  and cell volume and mediates regulatory vol-

ume decrease (RVD) in  Drosophila  S2 cells ( Chien and 

Hartzell, 2007 ). We showed that fi ve different dBest1 

RNAi constructs abolished endogenous Cl  �   currents ac-

tivated by intracellular Ca 2+  or by cell swelling. The loss 

of these currents could be rescued by overexpression of 

wild-type dBest1. However, the rescue experiment alone 

does not formally prove that dBest1 is the pore-forming 
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 Solutions 
 The standard extracellular solution (E300) used for patch clamp-
ing S2 cells contained 115 mM NaCl, 2 mM CaCl 2 , 1 mM MgCl 2 , 
5 mM KCl, 10 mM HEPES (pH 7.2 with NaOH), and 48 mannitol 
to achieve 300 mosmol kg  � 1 . The intracellular solution (I300) con-
tained 110 mM CsCl, 10 mM EGTA, 8 mM MgCl 2 , 10 mM HEPES, 
pH 7.2, and 45 mannitol to achieve 300 mosmol kg  � 1 . I340 inter-
nal solution was prepared by adding 40 mM mannitol to the I300 
solution to achieve 340 mosmol kg  � 1 . Osmotic pressure differ-
ences are expressed as  �  mosmol kg  � 1  (intracellular osmolality 
minus extracellular osmolality). Unless indicated otherwise, the 
osmotically sensitive Cl  �   current was routinely activated by  � 40 
mosmol kg  � 1  osmotic pressure (E300/I340). These combinations 
of solutions set the E rev  for Cl  �   currents to 0 mV, whereas cation 
currents carried by Cs +  or Na +  would have very negative or positive 
E rev , respectively. The major cation in the intracellular solution 
was Cs + , whereas the standard extracellular cation was Na +  unless 
specifi ed otherwise. Stock solutions of 100 mM 2-trimethylammo-
nioethylmethanethiosulfonate, bromide salt (MTSET + ) and 
sodium (2-sulfonatoethyl) methanesulfonate (MTSES  �  ) (Toronto 
Research Chemicals) were prepared in water and stored at  � 80 ° C. 
Aliquots of the MTS stock solution were thawed and kept on ice 
for no longer than 10 min. 1 mM of working solution was prepared 
by diluting the stock with the external recording solution immedi-
ately before use. Working solutions of dithiothreitol (DTT; Sigma-
Aldrich) were prepared freshly from frozen 1-M stock solutions. 
To determine relative cation + /Cl  �   permeabilities, we used a high 
Ca 2+  intracellular solution containing 150 mM CsCl (or NaCl), 
10 mM HEPES (pH7.2 with NMDG), and 5 mM Ca-EGTA-NMDG, 
and extracellular solutions containing different CsCl (or NaCl) 
(150, 100, 50, 20, or 10 mM), 10 mM HEPES, and 1 mM CaCl 2 . 
All solutions were pH 7.2 and adjusted to 304 mosmol kg  � 1  
with mannitol. 

 Electrophysiology, Cell Volume Determination, 
and Data Analysis 
 S2 cells were allowed to adhere to the bottom of the recording 
chamber for  � 10 min and were then washed and incubated with 
extracellular solution for  � 10 min before whole cell recording. 
Fire-polished pipettes pulled from borosilicate glass (Sutter In-
strument Co.) had resistances of 2 – 3 M Ω  when fi lled with intracel-
lular solution. For whole cell recording, cells were voltage clamped 
with  � 1-s duration ramps from  � 100 to +100 mV run at 10-s inter-
vals ( Chien and Hartzell, 2007 ). Whole cell recording data were 
fi ltered at 2 – 5 kHz and sampled at 5 – 10 kHz by an Axopatch 200A 
amplifi er controlled by Clampex 8.2 via a Digidata 1322A data 
acquisition system (MDS Analytical Technologies). Data were not 
corrected for liquid junction potentials, which were calculated to 
be  < 0.6 mV when quantifying relative Cs/Cl permeability. For 
NaCl solutions, the liquid junction potential was calculated and 
corrected using Liquid Junction Potential utility in pClamp (the 
maximum liquid junction potential for 150 mM NaCl inside and 
10 mM NaCl outside was  � 12.6 mV). Series resistance compensa-
tion was not routinely used. Relative X/Cl permeability was deter-
mined by measuring the shift of E rev  upon changing the solution 
on the extracellular side of the membrane from the one contain-
ing 150 mM XCl to 100, 50, 20, and 10 mM. The relative X/Cl 
permeability ratio was then estimated by fi tting the measured mean 
E rev  differences with the Goldman-Hodgkin-Katz (GHK) equation 
(Hille, 2001), assuming that the movement of anions is indepen-
dent of cations, 

   P /P  = exp( E F/RT),X Cl revD    

 where  � E rev  is the difference between the reversal potential with 
the test XCl concentration and that observed with symmetrical 
[XCl] (E rev  = 0 mV), and F, R, and T have their normal thermodynamic 

subunit of the S2 volume-regulated anion channel (VRAC) 

because overexpression of an essential regulator or acces-

sory subunit of the channel could have the same effect. 

Here, we address this issue directly by rescuing VRAC in 

dBest1 RNAi-treated S2 cells with dBest1 mutants that 

have altered biophysical properties. Residue F81 (F80 in 

vertebrates;  Drosophila  has an extra amino acid at position 

14) was chosen for this purpose because F81 is invariant 

among all bestrophins and has been implicated as an im-

portant residue in ionic selectivity ( Qu et al., 2006b ). 

 Here, we have rescued the VRAC current in S2 cells 

abolished by dBest1 RNAi by expressing dBest1-F81C. 

The rescued current is cell volume sensitive but differs 

from the wild-type current in the shape of the I-V curve, 

the responsiveness to methanethiosulfonate (MTS) rea-

gents, and anion – cation selectivity. This fi nding pro-

vides strong evidence that dBest1 is indeed the channel 

pore and is the volume-sensitive Cl  �   channel in S2 cells. 

However, VRACs are normal in peritoneal macrophages 

from mice with both bestrophin-1 and bestrophin-2 dis-

rupted, suggesting that bestrophins are not the classical 

mammalian VRAC. 

 M AT E R I A L S  A N D  M E T H O D S 

 Rescue in S2 Cells and Heterologous Expression 
  Drosophila  S2 cells were cultured in Schneider ’ s  Drosophila  medium 
(Invitrogen) supplemented with 10% heat-inactivated FBS (Invit-
rogen) and 50 U/ml penicillin and 50  μ g/ml streptomycin (Invit-
rogen) at room temperature. The open reading frame of dBest1 
was introduced into pAc5.1/V5-HisA  Drosophila  expression vector 
(Invitrogen) as described previously ( Chien et al., 2006 ;  Chien 
and Hartzell, 2007 ). Residue F81 was mutated to cysteine by a PCR-
based site-directed mutagenesis method (Quickchange; Strata-
gene). The F81C mutation was introduced by PCR primers (up: 
5 � - CATACCCCTGTCCTGCGTGCTTGGTTTC -3 � ; down: 5 � - GAA-
ACCAAGCACGCAGGACAGGGGTATG -3 � ). pAc5.1-dBest1ORF 
(open reading frame) was used as the template for high fi delity 
PCR amplifi cation with Pfu DNA polymerase. The methylated 
template was digested with the endocuclease Dpn-1, and the non-
methylated PCR product was transformed into XL-1 blue  Esche-
richia coli  for amplifi cation. DNA was sequenced to confi rm the 
mutation. For the rescue experiment, 2  ×  10 5  S2 cells were treated 
with 8.3  μ g of double-stranded RNA against the 5 �  untranslated 
region (UTR) of dBest1 (5UdB1) for 4 d ( Chien and Hartzell, 
2007 ). The RNAi-treated cells were then transfected with a mix-
ture of pAc5.1-dBest1 or dBest1-F81C cDNA and pAc5.1-EGFP in 
a 2:1 ratio using calcium phosphate. Green cells were recorded 
2 – 4 d after transfection. Possible off-target effects of 5UdB1 RNAi 
have been described in detail previously ( Chien and Hartzell, 
2007 ). HEK-293 cells were used for heterologous expression of 
wild-type dBest1 and F81C. HEK-293 cells (American Type Cul-
ture Collection) were cultured in Eagle ’ s minimum essential 
medium with  l -glutamine (CellGro), 10% heat-inactivated FBS 
(Invitrogen), and 50 U/ml penicillin and 50  μ g/ml streptomycin 
(Invitrogen) in 5% CO 2 /95% O 2  at 37 ° C. Transfection was per-
formed as described by  Qu et al. (2004) . In brief, pcDNA3.
1-dBest1 or dBest1-F81C cDNA and pEGFP (Invitrogen) were co-
transfected in HEK cells in a 4:1 ratio using Fugene-6 reagent 
(Roche). Green cells were recorded during the third to fourth 
day after transfection. 
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pressed by transient transfection. Both the native and 

rescued VRAC current was  < 300 pA under isosmotic con-

ditions ( Fig. 1 A ) but was activated when the extracellu-

lar solution was 40 mosmol kg  � 1  hyposmotic relative to 

the internal solution (I340/E300) ( Fig. 1 B ). As expected, 

the dBest1-F81C current had different properties than 

the native VRAC current. The native VRAC current had 

an outwardly rectifying, S-shaped I-V curve, whereas the 

F81C current was inwardly rectifying ( Figs. 1 B and 3 D ). 

This inwardly rectifying I-V of F81C was similar to the 

Ca 2+ -activated dBest1-F81C current expressed heterolo-

gously in HEK cells ( Chien et al., 2006 ). Transfection 

with the F81L mutant produced no current (67.0  ± 26.3 

pA;  n  = 5). In contrast, F81C currents increased with time 

coordinately with cell swelling over several minutes. Im-

mediately after patch break, the F81C currents were 0.4  ±  

0.1 nA at +100 mV. The currents then activated slowly to 

a mean plateau amplitude of 1.0  ±  0.3 nA ( n  = 7) with an 

average half-time of  � 1.5 min ( Fig. 1 C ). The activation 

of the F81C current was coupled to cell swelling. On av-

erage, F81C cells swelled 33.6  ±  0.7% ( n  = 7) when their 

currents were fully activated with  � 40 mosmol kg  � 1  os-

motic pressure ( Fig. 1 D ). F81C currents were volume sen-

sitive because the current failed to activate under isosmotic 

conditions ( � 0 mosmol kg  � 1 , E300/I300) and remained 

 < 0.3 nA ( n  = 6) throughout  � 5 min of recording. Cell 

swelling was not observed with these cells in isosmotic 

solutions. Instead, their volume decreased 13.8  ±  2.7% by 

the end of the recording. 

 Opposite Effects of MTSET +  on dBest1-F81C 
and Native dBest1 
 Additional evidence that dBest1 forms the VRAC pore was 

provided by the fi nding that MTSET +  had opposite effects 

on the native VRAC current and the rescued dBest1-F81C 

current. I-V curves and the time course of current devel-

opment are shown in  Fig. 2 .  MTSET +  caused a mean  � 35% 

reduction in the amplitude of the native dBest1 VRAC 

currents ( Fig. 3, A and B ) over 8 – 10 min.  The effect of 

MTSET +  on native cells was not reversible by 5 mM DTT. 

In contrast, MTSET +  caused a dramatic augmentation in 

the F81C current. On average, the current was tran-

siently increased 15-fold, followed by a gradual decline 

to a level that was still elevated approximately four- to sev-

enfold compared with the F81C currents before MTSET +  

( Fig. 3, A and B ). The stimulation by MTSET +  was at least 

partly reversible by DTT. In addition to stimulating the cur-

rent, MTSET +  converted the F81C current from slightly 

inwardly rectifying to slightly outwardly rectifying and 

shifted E rev  1.9  ±  0.7 mV in the positive direction ( Fig. 3 C ). 

Although this shift was small, it was in the opposite direc-

tion to the shift produced by MTSES  �   (see below). 

 MTSES  �   Increases the Cation Permeability of dBest1-F81C 
 The effect of MTSES  �   on the I-V relationships of native 

and F81C-rescued cells is shown in  Fig. 4 (A and B) .  

meanings. All data were analyzed using pClamp 8.2 software and 
Origin 7.0 and are expressed as mean  ±  SEM. Two sample  t  tests 
(independent tests) were performed with signifi cance levels of 
0.05 or 0.01 for statistical analysis. 

 Phase contrast images of the cells were taken with a Photomet-
rics Cool-Snap camera and analyzed with MetaMorph Imaging 
software (MDS Analytical Technologies). The volume of the cell 
was calculated from the measured circumference assuming that 
the shape of S2 cells is spherical. Some duplicate measurements 
were performed blind. With an osmotic pressure difference of 
40 mosmol kg  � 1 , one would expect a 13% increase in cell volume 
if the cell were a perfect osmometer. However, we observed a 
larger change in cell volume than expected. This might be ex-
plained by the fact that cell swelling is not spherically symmetrical, 
as assumed. If cell swelling is constrained in the z-plane by me-
chanical pressure from the patch pipet, the change in cell volume 
may appear to be larger than it actually is. For this reason, the es-
timates of cell volume may be subject to some quantitative error. 
One would also expect that the cell volume would remain unchanged 
in isosmotic condition. However, we observed an  � 13% reduction 
instead. This could possibly be caused by dilution of cytoplasmic 
osmolytes into the recording pipet. 

 Measurement of VRAC in Peritoneal Macrophages 
 Peritoneal macrophages were isolated by peritoneal lavage. 5 ml of 
cold RPMI medium containing 10% FBS was injected intraperito-
neally into a mouse that had just been killed by an overdose of 
isofl urane anesthesia. The abdomen was massaged for several min-
utes, and the fl uid was withdrawn and plated onto glass coverslips 
and cultured at 37 ° C in a 5% CO 2 , 95% air environment. Round 
macrophages were patch clamped 2 h to 2 d after isolation at room 
temperature. The intracellular solution was 95 mM Cs-aspartate, 
40 mM CsCl, 1 mM MgCl 2 , 10 mM HEPES pH 7.4, 4 mM Na/
K-ATP, and 5 mM EGTA, and CaCl 2  was added to give  � 50 nM free 
Ca 2+ . The hyposmotic extracellular solution was 105 mM NaCl, 
6 mM CsCl, 1 mM MgCl 2 , 1.5 mM CaCl 2 , 10 mM HEPES, pH 7.4, and 
10 mM glucose (234 mosmol kg  � 1 ). Isosmotic and hyperosmotic 
solutions were made by adding mannitol to the hyposmotic solu-
tion to make 266-, 306-, and 326-mosmol kg  � 1  solutions. Recording 
pipets had 3 – 6 M Ω  of resistances when fi lled with intracellular 
solution, and the averaged cell capacitance was 12.73  ±  0.89 pF 
( n  = 20). Wild-type mice were C57B. The mBest1-mBest2 double 
knockout mice were made by breeding mBest1 knockout mice 
(Merck  &  Co.) with mBest2 knockout mice ( Bakall et al., 2008 ). 
The mBest1 knockout mice were generated by homologous re-
combination that resulted in deletion of exons 5 – 9 of mBest1. 

 R E S U LT S 

 Rescue of Volume-regulated Chloride Currents in S2 Cells 
by dBest1-F81C 
 To test if dBest1 is the VRAC in  Drosophila  S2 cells and 

not simply a regulator of an endogenous VRAC, we ex-

amined whether VRAC could be rescued by expressing 

a mutant dBest1 that had altered biophysical proper-

ties. To do this, endogenous dBest1 was first knocked 

down by double-stranded interfering RNA to a portion 

of the 5 �  UTR of dBest1, as described previously ( Chien 

and Hartzell, 2007 ). To verify that the dBest1 RNAi was 

effective in knocking down the current, RNAi-treated 

cells were patch clamped in each experiment ( Fig. 1 B ).  

Then, dBest1 (wild-type, F81C, F81E, or F81L) was ex-
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 Figure 1.   Rescue of the volume-regulated Cl  �   
current in S2 cells by expression of dBest1-F81C. 
Endogenous dBest1 in S2 cells was knocked 
down by RNAi that targeted the 5 �  UTR of 
dBest1 for 4 d. Cells were then transfected with 
dBest1-F81C and EGFP expression constructs 
and patch clamped in whole cell confi guration 
with 10-s interval voltage ramps from  � 100 mV 
to +100 mV from a holding potential of 0 mV. 
Currents recorded from native S2 cells, dBest1 
RNAi-treated S2 cells, and F81C overexpressed 
in dBest1 RNAi-treated S2 cells are labeled as 
native, RNAi, and F81C, respectively. (A) Current –
 voltage relationship of dBest1 currents in native 
and F81C-rescued cells recorded with  � 0 mosmol 
kg  � 1  isosmotic solutions. (B) Current – voltage re-
lationship of dBest1 currents in native, F81C-res-
cued, and RNAi-only S2 cells stimulated with  � 40 
mosmol kg  � 1  hyposmotic solutions. (C) Time 
course of activation of VRAC in S2 cells rescued 
with F81C. The currents shown were measured 
at  � 100 mV (open symbols) and +100 mV (solid 
symbols) under isosmotic (I300/E300, triangles; 
 n  = 6) and hyposmotic (I340/E300, circles;  n  = 7) 
conditions. (D) Mean current amplitudes at 
100 mV at the onset of whole cell recording 
(initial current, open bars) and after the cur-
rents had reached a peak (fi nal currents, fi lled 

bars) and the corresponding cell volume alterations (hatched bars) with hyposmotic ( � 40 mosmol kg  � 1 ) and isosmotic solutions. 
Changes in cell volume are expressed as percent change in cell volume from the initiation of whole cell recording to  � 3 – 5 min after 
patch break (isosmotic;  n  = 6) or when the currents had approached a steady value (hyposmotic;  n  = 7). Data are represented in mean 
 ±  SEM. *, signifi cantly different at P  <  0.05 and ** at P  <  0.01 level.   

 Figure 2.   dBest1-F81C – rescued cells respond 
differently to MTSET +  modifi cation than native 
S2 cells. Whole cell VRAC currents were estab-
lished in hyposmotic solutions (I340/E300,  � 40 
mosmol kg  � 1 ) and were recorded with voltage 
ramps from  � 100 to 100 mV. 1 mM MTSET +  
was applied to the bath solution (E300) after the 
volume-sensitive current was fully activated. The 
bath was then replaced with 5 mM DTT to test if 
the effect of MTSET +  was reversible. (A and B) 
Current – voltage relationships in native (A) and 
dF81C-rescued (B) S2 cells before and after 
MTSET +  modifi cation. (C and D) Time course of 
the effect of MTSET +  modifi cation on native (C) 
and F81C-rescued (D) VRAC currents. These time 
course data were collected from the same cells 
shown in A and B.   

F81C currents activated by hyposomotic solutions were 

reduced  � 60% by MTSES  �  , compared with an  � 20% 

reduction for native dBest1 ( Fig. 3, A and B ). More im-

portantly, MTSES  �   consistently produced an E rev  shift of 

 � 19.9  ±  1.2 mV ( n  = 12) in F81C-rescued cells but not in 

native cells ( Fig. 3 C ). This negative shift in E rev  could be 

explained by a changed ionic selectivity of the channel. 

In these experiments, [Cl  �  ] was the same on both sides 
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shifted to  � 25.1 mV. When extracellular Na +  was re-

placed with Cs + , E rev  changed to 1.7 mV. Replacement of 

extracellular Cs +  with the impermeant NMDG +  produced 

an E rev  shift to  � 38 mV. These observations suggested 

that the F81C current had become more permeable to 

Cs +  and, less so, to Na +  after MTSES  �   modifi cation. 

 To quantify relative cation + /Cl  �   permeability, we per-

formed dilution potential experiments ( Franciolini and 

Nonner, 1987 ) for native dBest1, F81C, and F81E cur-

rents. For these experiments, we chose to activate the 

current by high intracellular Ca 2+  because the dBest1 cur-

rent activated by cell swelling often ran down after the 

current was fully activated, making several E rev  determi-

nations in the same cell problematic. In contrast, the 

of the membrane, so a pure Cl  �   current would have an 

expected E rev  = 0 mV. The internal solution contained 

primarily Cs +  and the external solution contained pri-

marily Na + . Therefore, the MTSES  �  -induced negative 

shift in E rev  could be explained by an increased permea-

bility to cations with P Cs   >  P Na . This hypothesis was quali-

tatively tested by replacing extracellular Na +  with either 

Cs +  or NMDG +  in the E300 solution while maintaining 

Cs +  as the major intracellular cation (I340). The result 

from a typical F81C-rescued cell is shown in  Fig. 4 C . 

Initially, F81C VRAC currents recorded with symmetri-

cal Cl  �   and Cs +  inside and Na +  outside had an E rev  of  

� 0 mV, as would be predicted if the F81C current were 

selectively carried by Cl  �  . After MTSES  �   was applied, E rev  

 Figure 3.   Summary of effects of mutations and 
sulfhydryl modifi cation. The percent change was 
calculated using the following equation: (I MTS   �  
I before ) / I before   ×  100% for steady-state VRAC cur-
rents measured at 100 (A) and  � 100 mV (B), 
respectively. The effect of MTSES  �   is shown in 
open bars, the peak stimulation after applying 
MTSET +  is shown as MTSET peak , and the stabi-
lized level in MTSET +  is shown as MTSET stable . 
(C) Effect of MTS treatment on E rev . The change 
in E rev  is the difference between E rev  before and 
after MTS treatment. The reversal potential of 
F81E currents (without MTS treatment) is shown 
with a cross-hatched bar. (D) Rectifi cation ratio 
of native, F81C, and F81E VRAC currents. The 
rectifi cation ratio was calculated as the absolute 
value of the VRAC current at +100 mV divided 
by the current at  � 100 mV for native, F81C, and 
F81E currents. Data are represented in mean  ±  
SEM. **, signifi cantly different at P  <  0.01 level.   

 Figure 4.   MTSES  �   increases the cation permeability of F81C currents. Current – voltage relationships from a typical native S2 cell 
(A) and a S2 cell rescued with F81C (B) before and after MTSES  �   modifi cation. Currents were activated with  � 40 mosmol kg  � 1  hyposmotic 
solutions. The arrow in B points out the reversal potential of F81C current after MTSES  �   treatment. (C) Changes in E rev  of F81C currents 
under different ionic conditions. The record begins after the dBest1 current had stabilized under hyposmotic solutions (I340/E300, 
 � 40 mosmol kg  � 1 ). MTSES  �   was then applied in the bath. Extracellular solution containing symmetrical Cl  �   and Na +  as the major cation 
(E300) was then replaced by solutions with Cs +  or NMDG +  as the major cations as indicated. The osmolality of all the extracellular solu-
tions was 300 mosmol kg  � 1 .   
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the GHK equation, assuming that Cl  �   was fourfold more 

permeable than Cs +  (P Cs /P Cl  = 0.25). dBest1-F81C, on 

the other hand, showed a shift in the opposite direction 

of  � 22.8  ±  2.3 mV with a 15-fold decrease in [CsCl] o  

( Fig. 5 D ,  � ), which was fi tted to P Cs /P Cl  = 2.38. The 

P Cs /P Cl  ratio in rescued cells overexpressing wild-type 

dBest1 was the same as the native S2 current regardless 

of MTSES  �   treatment (P Cs /P Cl  = 0.24; not depicted), in-

dicating that the switch in ionic selectivity in F81C cur-

rents was not due to an up-regulation of an endogenous 

cation channel. 

 The ionic selectivity of dBest1 was explored further by 

replacing the F81 residue with the negatively charged 

amino acid, glutamic acid (E). We discovered that the 

F81E current reversed at  � 9.4  ±  1.2 mV under conditions of 

symmetrical Cl  �   and Cs +  inside and Na +  outside ( Fig. 3 C ). 

This is signifi cantly different from the native current (0.2  ±  

0.2 mV). P Cs /P Cl  for F81E was calculated to be 1.33 from 

dilution potential experiments ( Fig. 5, C and D ). Further-

more, the F81E current inwardly rectifi ed ( Fig. 3 D ). The 

fact that F81E qualitatively recapitulated most of the 

properties of MTSES  �  -modifi ed F81C currents provided 

additional support that residue F81 is in vicinity to the ion 

selectivity fi lter of the dBest1 Cl  �   channel. 

 The dilution potential experiment was repeated with 

NaCl replacing CsCl. The native dBest1 channel was 

highly selective to Cl  �   relative to Na +  and was fi tted with 

a P Na /P Cl  ratio of 0.03 ( Fig. 5 D ). MTSES  �  -modifi ed 

F81C, on the other hand, was almost equally permeable 

to Cl  �   and Na +  (P Na /P Cl  = 0.83) ( Fig. 5 D ). 

Ca 2+ -activated dBest1 current does not run down signifi -

cantly for up to 10 min. The nature of this rundown and 

why it is only seen when dBest1 current is activated by 

hyposmotic cell swelling but not by Ca 2+  are not clear. 

Nevertheless, we chose to activate dBest1 current by in-

tracellular application of Ca 2+  to obtain data to avoid 

the possible interference of the rundown. Cells were 

treated with MTSES  �  , and E rev  was measured with 150 mM 

CsCl inside and various concentrations of CsCl outside. 

I-V curves from typical cells recorded with 10, 50, and 

150 mM external CsCl are superimposed in  Fig. 5 (A – C) .  

For native dBest1 currents ( Fig. 5 A ), E rev  moved toward 

positive values as external [CsCl] was decreased, as 

would be predicted if dBest1 is selectively permeable to 

Cl  �  . In addition, the conductance in the outward direc-

tion at +100 mV increased signifi cantly with increasing 

external [CsCl], consistent with Cl  �   carrying the ma-

jority of the outward current. In contrast, the E rev  of 

F81C shifted toward negative potentials with decreasing 

external [CsCl] ( Fig. 5 B ). This negative shift in E rev  

showed that F81C had become more selective to Cs +  

than to Cl  �   after MTSES  �   modifi cation. The augmented 

inward rectifi cation with increasing external [CsCl] was 

also consistent with a higher Cs +  conductance relative to 

Cl  �   after MTSES  �   treatment. 

 Relative Cs + /Cl  �   permeability was calculated by fi t-

ting the plots of E rev  versus [CsCl] o  to the GHK equa-

tion. As shown in  Fig. 5 D , the mean E rev  in native S2 

cells shifted on average +33.3  ±  3.2 mV with a 15-fold 

decrease in [CsCl] o  ( � ). The data were well-fi tted by 

 Figure 5.   Quantifi cation of relative cation/chlo-
ride permeability. Current – voltage relationships 
of MTSES  �  -modifi ed native (A) and F81C (B) 
currents and unmodifi ed F81E currents (C) in 
response to different external [CsCl]. Whole 
cell currents were activated under isosmotic 
condition (304 mosmol kg  � 1 ) with high Ca 2+  in 
the pipet and symmetrical CsCl in the bath and 
pipet (150 mM). The extracellular solution was 
replaced by solutions containing different [CsCl] 
as indicated. (D) Changes in E rev  ( � E rev ) as a 
function of extracellular salt concentration.  � E rev  
is E rev  at the indicated salt concentration minus 
the E rev  with 150 mM extracellular salt. Salt is ei-
ther CsCl or NaCl as indicated. Each data point 
represents the mean E rev   ±  SEM of two to nine 
cells. Dashed lines were calculated from the GHK 
equation ( � E rev  = 25.7  ·  ln [([X + ] o  + [Cl  �  ] i   ·  P Cl /
P X ) / ([X + ] i  + [Cl  �  ] o   ·  P Cl /P X )]), assuming that 
the channel is exclusively permeable to Cl  �   (P X /
P Cl  = 0) or to the cation X +  (P Cl /P X  = 0). Filled 
symbols: CsCl solutions;  � , MTSES  �  -treated na-
tive dBest1 ( n  = 2 – 7);  � , MTSES  �  -modifi ed F81C 
( n  = 4 – 9);  � , F81E ( n  = 2 – 5). Open symbols: 
NaCl solutions;  � , MTSES  �  -treated native dBest1 
( n  = 3 – 5);  � , F81C ( n  = 3 – 8).   
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 D I S C U S S I O N 

 We have previously shown that the dBest1 current plays an 

essential role in RVD in S2 cells because RNAi knockdown 

of dBest1 largely eliminates RVD ( Chien and Hartzell, 

2007 ). Our previous data did not clearly establish that 

dBest1 formed the channel, however, because RNAi knock-

down of an essential regulator or  � -subunit of the chan-

nel would have the same effect as knocking down the 

channel itself. To establish that dBest1 is the channel it-

self, it was necessary to rescue the current with a channel 

that had a biophysical signature that was clearly different 

than the wild-type channel. Our results here provide solid 

support that dBest1 is indeed the VRAC in  Drosophila  S2 

cells because we were able to rescue the volume-regulated 

current by overexpressing a mutant dBest1 with altered 

biophysical properties. The rescued current is clearly 

sensitive to cell volume; in hyposmotic solution, the cur-

rent increases with time in parallel with cell swelling. 

The F81C mutant current has several hallmark features. 

(1) F81C exhibits altered rectifi cation. The rectifi cation 

ratio was  � 0.8 for F81C compared with  � 1.2 for native 

currents. (2) MTSES  �   modifi cation of the F81C chan-

nel altered the ionic selectivity of the channel so that the 

channel became more permeable to cations than to Cl  �  . 

(3) F81C current amplitude was stimulated by MTSET + , 

whereas the wild-type current was decreased slightly. 

These three distinguishing features show clearly that the 

rescued current is mediated by dBest1-F81C. It is diffi -

cult to imagine how dBest1 could produce these changes 

if it were merely a regulatory subunit of the channel. 

These results with F81C are strengthened by the obser-

vation that the F81E mutant also has an increased per-

meability to cations compared with the wild-type current. 

 The volume sensitivity of the rescued current (both 

wild-type and F81C) is slightly different than the native 

VRAC current. Typically, the native VRAC current im-

mediately after breaking the patch to initiate whole cell 

recording is  � 0.1 nA or less at +100 mV, whereas with 

the F81C mutant the current is  � 0.4 nA. Because the 

osmotic pressure difference develops only after the patch 

is broken, the observation that the initial F81C current 

is larger than native current suggests that the F81C cur-

rent is partially activated before patch break. Furthermore, 

the rescued currents seem to activate more quickly than 

the native current. We believe that these differences are 

an artifact of overexpression; the channel may be partially 

uncoupled from its regulatory mechanisms and exhibit 

a different  “ set-point. ”  This is supported by the observa-

tion that the apparent uncoupling is related to the level 

of overexpression. With high levels of overexpression of 

wild-type dBest1, currents are observed even under isos-

motic conditions. 

 Despite this rather compelling evidence that dBest1 is 

the VRAC in S2 cells, it seems unlikely that bestrophins 

constitute the VRAC family in mammals because VRAC 

 The role of dBest1 in forming the pore of the chan-

nel was further tested in HEK cells transfected with 

either wild-type dBest1 or F81C. The dilution potential 

experiment was repeated in transfected HEK cells either 

with or without MTSES  �   treatment ( Fig. 6 ).  Wild-type 

dBest1 in the presence or absence of MTSES  �   and F81C 

dBest1 in the absence of MTSES  �   exhibited similar 

P Cs /P Cl  ratios ( � 0.1). In contrast, the MTSES  �  -modifi ed 

F81C channel exhibited a signifi cantly elevated cation 

permeability (P Cs /P Cl  = 0.50). Despite the observation that 

the change in ionic selectivity is smaller in HEK cells than 

in S2 cells, MTSES  �   modifi cation still caused a signifi -

cant shift of ionic selectivity. We do not understand why 

there is a quantitative difference between HEK cells and 

S2 cells. It appears that there may be different factors or 

subunits in these two cell types that contribute to chan-

nel selectivity. 

 VRAC in Macrophages from Bestrophin Knockout Mice 
 To test whether bestrophins are responsible for VRAC in 

mammals, we measured VRAC in peritoneal macrophages 

from wild-type mice and mice that had both mBest1 and 

mBest2 disrupted ( Fig. 7 ).  VRAC in these cells was acti-

vated by changing extracellular osmolality from either 

306 mosmol kg  � 1  (isosmotic) or 326 mosmol kg  � 1  ( � 20 

hyperosmotic) to 266 mosmol kg  � 1  ( � 40 hyposmotic) or 

234 mosmol kg  � 1  ( � 70 hyposmotic). The amplitude of 

VRAC in the wild-type and knockout animals was statisti-

cally the same. These results show that mBest1 and mBest2 

are not required for VRAC in peritoneal macrophages 

and suggest that other kinds of channels are responsible 

for VRAC in mammalian cells. 

 Figure 6.   Quantifi cation of relative Cs + /Cl  �   permeability in 
HEK cells transfected with dBest1. Whole cell current was mea-
sured in wild-type dBest1 or dBest1-F81C – overexpressed HEK 
cells. Changes in E rev  ( � E rev ) as a function of extracellular CsCl 
concentration were plotted for cells with and without MTSES  �   
treatment. Each data point represents the mean E rev   ±  SEM of 
two to seven cells. Gray dashed line was calculated from the 
GHK equation assuming that the channel is exclusively perme-
able to Cl  �   (P Cs /P Cl  = 0). Filled symbols: MTSES  �  -treated;  � , 
F81C ( n  = 2 – 7);  � , wild-type dBest1 ( n  = 3 – 4). Open symbols: 
without MTSES  �   treatment;  � , wild-type dBest1 ( n  = 5);  � , 
F81C ( n  = 3).   
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regulation ( Nilius et al., 1996 ;  Strange et al., 1996 ;  Lang 

et al., 1998 ) or, possibly, that Cl  �   fl uxes associated with 

cell volume changes are not mediated by specifi c ion 

channels, but rather by Cl  �   -interacting proteins that have 

other primary functions. 

 The ability to change the anionic selectivity of dBest1 

from anionic to cationic by MTSES  �   modifi cation of a 

point mutant is surprising and may shed light on the 

mechanisms involved in ion permeation through be-

strophin channels. In S2 cells, the MTSES  �  -modifi ed 

F81C current exhibits a P Na /P Cl  ratio of 0.83 and a P Cs /

P Cl  ratio of 2.38. This suggests that the permeability 

sequence is P Cs   >  P Cl   >  P Na . This is supported by the ob-

servation that E rev  shifted to more negative potentials 

when extracellular Cs +  is replaced with the impermeant 

NMDG +  than with Na + . Other examples of ion channels 

where the charge selectivity has been reversed include 

the nicotinic ACh receptor ( Galzi et al., 1992 ), the GABA A  

receptor ( Wang et al., 1999 ), and the glycine receptor 

( Keramidas et al., 2000, 2002 ).  Keramidas et al. (2000, 2002)  

is unaffected in macrophages from mice with both mBest1 

and mBest2 knocked out. A less extensive examination 

of VRAC in microglia also revealed no obvious differ-

ence between wild-type and knockout (not depicted). 

Mice have three functional bestrophin genes, but it seems 

unlikely that VRAC in microglia and macrophages can 

be explained by the one bestrophin we have not knocked 

out. hBest1 and mBest2 have both been shown to ex-

hibit sensitivity to cell volume ( Fischmeister and Hartzell, 

2005 ), but if bestrophins are VRACs, one would expect 

that they would be expressed ubiquitously. But, the data 

on bestrophin expression suggests that they have rather 

restricted tissue expression. Publicly available microarray 

and electronic Northern data (http://www.genecards

.org) are limited, and published reports of bestrophin ex-

pression by RT-PCR, Northern, and immunoblotting or 

immunostaining are not always in agreement ( Hartzell 

et al., 2008 ). At this point in time, the most conservative 

interpretation is that bestrophins may be one of many 

different kinds of channels that play a role in cell volume 

 Figure 7.   VRAC in peritoneal macrophages 
from wild-type and mBest1  � / �  -mBest2  � / �   mice. 
(A, C, and E) Wild-type mice. (B, D, and F) 
mBest1  � / �  -mBest2  � / �   mice. The intracellular 
solution of all recordings was held constant at 
306 mosmol kg  � 1 , whereas the osmolality of the 
extracellular solution was altered to achieve differ-
ent osmotic pressures. (A and B) Current traces 
under isosmotic conditions. (C and D) Current 
traces in  � 40 mosmol kg  � 1  hyposmotic condi-
tions (266 mosmol kg  � 1  extracellular). (E and F) 
Average current – voltage relationships under  
� 70 mosmol kg  � 1  hyposmotic (open symbols; 
234 mosmol kg  � 1 extracellular) and  �  � 20 mosmol 
kg  � 1  hyperosmotic (fi lled symbols; 326 mosmol 
kg  � 1  extracellular) conditions.   
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the importance of the second transmembrane domain 

in bestrophin function. 
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