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Background: The COVID-19 pandemic has induced historic
educational disruptions. In April 2021, about 40% of U.S.
public school students were not offered full-time in-person
education.

Objective: To assess the risk for SARS-CoV-2 transmission
in schools.

Design: An agent-based network model was developed
to simulate transmission in elementary and high school
communities, including home, school, and interhousehold
interactions.

Setting: School structure was parametrized to reflect average
U.S. classrooms, with elementary schools of 638 students and
high schools of 1451 students. Daily local incidence was varied
from 1 to 100 cases per 100000 persons.

Participants: Students, faculty, staff, and adult household
members.

Intervention: Isolation of symptomatic individuals, quaran-
tine of an infected individual's contacts, reduced class sizes,
alternative schedules, staff vaccination, and weekly asymp-
tomatic screening.

Measurements: Transmission was projected among students,
staff, and families after a single infection in school and over an
8-week quarter, contingent on local incidence.

Results: School transmission varies according to student age
and local incidence and is substantially reduced with mitigation
measures. Nevertheless, when transmission occurs, it may be
difficult to detect without regular testing because of the sub-
clinical nature of most children's infections. Teacher vaccination
can reduce transmission to staff, and asymptomatic screening
improves understanding of local circumstances and reduces
transmission.

Limitation: Uncertainty exists about the susceptibility and
infectiousness of children, and precision is low regarding the
effectiveness of specific countermeasures, particularly with
new variants.

Conclusion: With controlled community transmission and
moderate mitigation, elementary schools can open safety, but
high schools require more intensive mitigation. Asymptomatic
screening can facilitate reopening at higher local incidence
while minimizing transmission risk.

Primary Funding Source: Centers for Disease Control and
Prevention through the Council of State and Territorial
Epidemiologists, National Institute of Allergy and Infectious
Diseases, National Institute on Drug Abuse, and Facebook.
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During the spring 2020 outbreak of COVID-19, all 50
states recommended or mandated public school

closures, affecting at least 124000 U.S. schools and 55.1
million students (1). Reopening has proven challenging,
and as of April 2021, only about 60% of students in kin-
dergarten through 12th grade (K-12) were offered full-
time, in-person learning (2). This percentage has nearly
doubled since December 2020; however, where in-
person education is offered, many families continue to
opt out, including 43% in Boston Public Schools and
65% in New York City Public Schools (3, 4). Nevertheless,
many parents and advocates have objected strongly to
school closures (5), and the Biden administration has
stated a priority to facilitate safe, in-person school
reopening (6).

Debates around school reopening have been heated
and often invoke seemingly contradictory evidence about
safety. For example, many well-studied cases in school set-
tings have found minimal secondary transmission (7–9).
Nevertheless, school clusters have also been documented,
particularly in Israel and parts of the United States (10–12),
and some observational studies have suggested that school
closures may have substantially reduced transmission
(13, 14). Proponents of reopening schools point to evidence
that COVID-19 is most often mild in children (15), although

others have expressed concern about transmission to staff,
families, and the community. The discord plays out similarly
on amacro scale:Many Asian and European countries reop-
ened schools with physical distancing when community
transmission was low and reported negligible increases in
transmission (16, 17). Some, including France, the United
Kingdom, and Ireland, kept schools open during the fall
wave and reversed surging transmission by closing other
sectors, although additional closures have occurred since
the emergence of variant B.1.1.7 (18, 19). Other countries,
such as Austria, the Czech Republic, and South Korea,
closed schools to address rising case burdens (18).

Nevertheless, there is little debate that the benefits
of in-person education are substantial, particularly amid
reports of high levels of remote absenteeism; increased
depression, anxiety, and suicidality; and parent concerns
around educational quality (20–22). Beyond educational
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and mental health outcomes, opening schools also
improves access to social services for children and labor
market outcomes for working parents, especially women
(23–27). To reopen safely, it is critical to take a compre-
hensive account of the full array of evidence and identify
procedures to minimize risks.

We simulated SARS-CoV-2 transmission dynamics in el-
ementary and high schools, characterizing how school
transmission may occur as either isolated or sustained out-
breaks. Although several recent articles have discussed the
effect of school reopening on local transmission under dif-
ferent mitigation strategies (28–30), our work focused on
the risk that transmission will occur on a school campus
and spread to household members (31, 32). We empha-
sized uncertainty in transmission risk (rather than focusing
on the average) as well as the observability of infections to
school and public health staff, reconciling apparent contra-
dictions in evidence.We evaluated outcomes under varying
combinations of local incidence, in-classroom mitigation
efforts, testing practices, and staff vaccination.

METHODS

Analytic Overview
We developed an age-specific, agent-based network

model of COVID-19 transmission in elementary and high
school communities (Appendix Figure, available at Annals.
org). We incorporated interactions within schools and
homes, as well as those between households outside
school. Because data are inconclusive on transmission
among middle school–aged children, we did not model
middle schools explicitly; accumulating evidence suggests
that middle schoolers may be more similar to high school-
ers than elementary schoolers with respect to susceptibility
and infectiousness (33, 34).

Strategies
We simulated combinations of interventions, incorpo-

rating strategies that target the following 3 axes: general
infection control in schools, COVID-19–specific counter-
measures, and scheduling and cohorting. Parameters for
the model and strategies are detailed in the Appendix
Table (available at Annals.org) (35–54).

General Infection Control in Schools
Low uptake. Schools implemented no or minimal

general infection control measures, such as masking and
distancing.

Medium uptake. Schools implemented masking and
distancing, and adherence was moderate, such that the
risk for transmission given infectious contact was two
thirds that in a school with low uptake.

High uptake. Schools implemented masking and dis-
tancing, and adherence was high, such that the risk for
transmission given infectious contact was one third that
in a school with low uptake.

COVID-19–Specific Countermeasures
Symptom-based self-isolation (“symptomatic isola-

tion”). Individuals in the school were screened for
symptoms daily, and those who developed clinically

recognizable symptoms did not attend school. In setting
guidance for symptom-based isolation, schools balance
between expansive symptom definitions that lead to
many unnecessary missed days andmore restrictive defi-
nitions that may miss subtle presentations of COVID-19
(55, 56). Our primary source for this parameter defined
symptoms triggering isolation as fever; respiratory illness
(such as cough or shortness of breath); gastrointestinal
symptoms; and new loss of smell or taste, which affect
about 20% of child and adolescent cases (37).

Diagnostic testing plus classroom notification (“class-
room quarantine”). Individuals who developed symp-
toms were isolated and immediately tested. The school
received results within a day, and all classrooms associ-
ated with a person who tested positive were notified and
closed for 10 days, following guidelines from the
Centers for Disease Control and Prevention (34).

Teacher vaccination with an infection-blocking vac-
cine (“staff vaccination”). In addition to classroom quaran-
tine, teacher susceptibility was reduced to 33% of
baseline, roughly assuming that 75% of teachers receive
an infection-blocking vaccine with 90% effectiveness
(48, 49, 57).

Weekly asymptomatic screening (“weekly screen-
ing”). In addition to classroom quarantine, asymptomatic
students and staff at each school were tested weekly to
reduce asymptomatic and presymptomatic transmission.
We assumed that schools used a polymerase chain reac-
tion test with either saliva or a swab of the anterior nares
and that results were available within 24 hours. We fur-
ther specified 90% uptake and 90% test sensitivity. This
reflected the sensitivity of polymerase chain reaction
tests, although some studies also suggest that antigen
tests may reach 90% sensitivity during the infectious pe-
riod (with a faster turnaround time) (50–54). On receipt of
a positive result, infected individuals isolated outside
school for 10 days on the basis of guidelines from the
Centers for Disease Control and Prevention, and siblings
and classroom members of a person who tested positive
were notified and quarantined for 10 days.

Scheduling and Cohorting
Five-day schedule. This scenario simulated a tradi-

tional 5-day, in-person learning schedule, allowing for
classroom contacts, brief staff–staff interactions (10 per
day), and random contacts between school members
(20 per day). Related arts and special education teachers
had revolving contact with 5 classrooms per day.

Cohorting. This scenario again assumed 5 days of in-
person learning for all students, but with restricted out-
of-classroom contacts, including separation of classes for
lunch and recess. Students and primary teachers continued
to have sustained classroom contacts. We assumed a 50%
decrease in the number of out-of-classroom contacts dur-
ing the school day and remote teaching of related arts.

Half class sizes. All students attended school 5 days
per week but in classes of half their typical size. To accom-
modate this, the number of teachers was doubled. Limited
contacts as in the cohorting strategy were alsomaintained.

Hybrid (A/B) scheduling. Classes were subdivided
into 2 cohorts, and students attended school for 2 days
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per week, either Monday and Wednesday or Tuesday
and Thursday. Elementary school children in the same
household attending the same school were sorted into
the same cohort. All staff were physically present each
instructional day. In sensitivity analyses, we considered
alternative hybrid schedules. Limited contacts as in the
cohorting strategy were also maintained.

Model Structure
We generated a set of synthetic households from

U.S. population data (58), including students, staff, and
adult household members (Supplement, available at
Annals.org). We simulated an average-sized elementary
school of 638 pupils from 492 households, of which 134
had more than 1 child in the school. We set 5 classes per
grade level, an average class size of 21 children, and 1
teacher per class. We also incorporated 30 additional
staff to reflect such roles as administrators, counselors,
cafeteria staff, custodians, special education teachers,
and teachers of related arts (or “specials,” such as
music and art). These were assigned either rotating in-
classroom roles (n= 15) or out-of-classroom roles (n= 15).

We simulated an average-sized high school of 1451
students in 1223 households, of which 210 hadmore than
1 student in the school (35). Students rotated among 8
class periods per day (23 students and 1 teacher), and the
distribution of students to class periods was chosen ran-
domly within grade levels but repeated daily for the full
simulation. The high school had 45 additional staff with
out-of-classroom roles and 15 with in-classroom roles. In
both elementary and high schools, teachers were mod-
eled to have additional staff contacts per day (for exam-
ple, contacts in break rooms or offices).

To reflect social interactions and out-of-school childcare,
our base case assumed that each family interacted with 1
additional family on each day they did not attend school,
randomly reassorted each day. We varied this number in
sensitivity analyses from 0 to 9 families per day out of school.
We assumed that when families mix, no more than 2 adults
attend at a given time, who are randomly selected.

Transmission
At each daily time step, wemodeled dyadic interactions

between individuals according to household, classroom,
school, and childcare relationships, drawing parameter val-
ues from the distributions specified in the Appendix Table.
A person infected with SARS-CoV-2 transmitted to suscepti-
ble individuals according to contact type and length (such
as home or school), infectiousness and susceptibility (adult
vs. child), symptom status, and an individual dispersion
factor.

Secondary Attack Rate
The secondary attack rate for SARS-CoV-2 (the prob-

ability that a person infected with SARS-CoV-2 transmits
it to a person they contact) varies by contact type—in this
case, household, classroom, random school, and out-of-
school social or childcare contacts. Although household
attack rates vary substantially across geographic loca-
tions, corresponding to cultural norms and precautions
adopted, we assumed, based on 2 meta-analyses, a

household adult–adult secondary attack rate of 20% over
the full duration of an infection, translating to approxi-
mately 4% per day (38, 39).

For school-based transmission, we allowed full school-
day adult–adult attack rates from symptomatic infections to
reach up to 3% per day for scenarios with low uptake of
masks and distancing, a downward adjustment from the
household attack rate to account for less close contact in pro-
fessional settings. Transmission was further scaled to reflect
duration of contact, symptom status, and mitigation. We
developed the scale of reductions in transmission from miti-
gation measures in line with observations from household
settings with high prevention measures (33, 59) and based
on effectiveness analyses for measures like masks (60, 61).
We discuss comparisons to observed SARs and outbreaks in
the Supplement.

Relative Susceptibility and Infectiousness in Children
Household contact tracing studies suggest that

adults are likely more susceptible to COVID-19 and
more apt to transmit it when infected than children,
although data, particularly for the latter, are equivocal
and limited by availability and timing of testing (62).
Several sources indicate that any differences wane by the
teenage years, possibly as early as age 10 (8, 10, 33, 63,
64). We assumed that elementary school children were
half as susceptible as adults and that high school chil-
dren and adults were equally susceptible. Data are simi-
larly limited to inform transmission from children with
COVID-19. We further specified that elementary school
children were half as infectious as adults and high school
students were equally as infectious as adults (33, 63). We
discuss the data underlying these assumptions in the
Supplement, and we varied these assumptions in sensi-
tivity analyses.

Asymptomatic Transmission andOverdispersion
We assumed that persons with fully asymptomatic dis-

ease transmit COVID-19 at half the rate of those with any
symptoms (36). Those who had mild, subclinical symptoms
but were not fully asymptomatic transmitted at the same
rate as those with clinical symptoms, although only the latter
were assumed to self-isolate. Although reported heteroge-
neity in transmission may be partially driven by differences
in contact rates, we sampled adult transmissibility according
to a lognormal distribution to allow for some variation by
individual characteristics (such as viral load) (40, 41).

Implementation and Clinical Outcomes
We first evaluated the downstream effect of a single

infectious person. We randomly designated 1 member
of the school (student or staff) as infected, starting on a
random day of the week. We assessed the spread of the
virus over 30 days because in most cases either all infec-
tions were resolved over that time horizon or the spread
was sufficiently large that additional public health meas-
ures (such as school closures) would likely be adopted.
For each scenario, we ran our model 2000 times and
summarized the mean number of infections generated in
the school over 30 days after the index case, the percent-
age of scenarios without transmission from the index
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case, and the percentage of scenarios with more than 5
in-school transmissions. We also describe the composi-
tion of secondary cases (proportion occurring in stu-
dents, staff, and family members of students or staff).

Second, we quantified SARS-CoV-2 infections among
the school community across a typical school quarter,
given a constant local incidence. On each day over 8
weeks, every susceptible person had a probability of
becoming spontaneously infected outside school that
was equivalent to a community per capita daily inci-
dence adjusted for age (with children and adoles-
cents at half the probability of adults), distinct from
their contact-dependent risk within the school community.
Local incidence is intended to reflect reported case
counts, and thus we assumed that cases are underre-
ported by a factor of 3 (65). When schools were remote,
we assumed (similar to the analysis of hybrid schedules)
that each family interacted with 1 additional family on
each day they did not attend school. For each scenario,
we summarized cumulative incidence, as well as incre-
mental incidence compared with remote learning.

We defined a reopening strategy as controlling
transmission in a group (students, educators or staff, or
families) if it resulted on average in less than a 1-point
increase in the percentage of the group that was
infected, compared with remote learning. This threshold
is consistent with thresholds used by similar studies, with
the objective of minimal in-school transmission (30, 66).

The model was implemented in R, version 4.0.2 (R
Foundation). Model code is publicly available as an R
package at https://github.com/abilinski/BackToSchool2.

Role of the Funding Source
The funders had no role in the design or conduct of this

study or in the decision to submit this work for publication.

RESULTS

In-SchoolMitigation
In elementary schools with low mitigation and class-

room quarantine under a 5-day schedule, we projected
an average of 1.7 secondary cases over 30 days after
infection of a single index case patient (Figure 1, top
left). This decreased to 0.9 cases with mediummitigation
and further to 0.3 cases with highmitigation. Under class-
room quarantine, transmission was most reduced by
replacing the 5-day schedule with an A/B schedule (to
between 0.1 and 0.4 secondary cases depending on
uptake of in-school prevention). With high mitigation,
an average of less than 0.5 secondary transmissions
occurred per case over 30 days in all scenarios.

In high schools, we found greater potential for
larger outbreaks after a single introduction into the
school, particularly when uptake of in-school preven-
tion was low (Figure 1, bottom). For example, with low
mitigation and classroom quarantine under a 5-day
schedule, we projected 23 secondary cases in the
school community over a 30-day period (in the ab-
sence of additional public health responses like school
closure). High uptake of in-school mitigation reduced
this to 2.0 cases.

Quarantine, Teacher Vaccination, and Screening
In elementary schools, classroomquarantine had amod-

est effect on transmission, although its effect was greater if
children were as infectious as adults (Supplement Figure 1,
available at Annals.org). In high schools, classroom quaran-
tine reduced projected average transmissions by a factor of
0.3 under low mitigation but only by 0.86 with high mitiga-
tion.We found a small effect of teacher vaccination on overall
transmission but a substantial effect on transmission to teach-
ers. Specifically, teacher vaccination reduced secondary infec-
tions over 30 days to 91% and 97% of the average without
vaccination in elementary and high schools, respectively.
However, the reduction was slightly greater if the index case
patient was a teacher, and in both settings, it reduced staff
secondary incidence to about a third of its initial rate.

Weekly screening was projected to reduce second-
ary cases by a large degree compared with symptomatic
isolation, classroom quarantine, or teacher vaccination,
to an average of 0.3 to 0.8 cases with a 5-day schedule in
elementary schools (varying by uptake of in-school pre-
vention) and to 0.9 to 5.0 cases in high schools (Figure 1,
right). The effect of weekly screening after a single intro-
duced case was greatest for settings with low mitigation:
Weekly screening reduced average projected secondary
cases under classroom quarantine from 1.7 to 0.8 in ele-
mentary schools and from 23 to 5.0 in high schools.

Detection of School-Related Transmission
Across all scenarios, for elementary schools, we esti-

mated that 73% of secondary cases would occur in stu-
dents, 19% in families, and 8% in teachers and staff. For
high schools, 78% would occur in students, 19% in fami-
lies, and 4% in teachers and staff (Supplement Figures 2
and 3, available at Annals.org). Because children are less
likely than adults to have symptoms, we projected that
14% of all secondary infections in elementary school
communities and 15% in high school communities would
be clinically symptomatic and therefore detectable with-
out asymptomatic testing (Supplement Figure 4, avail-
able at Annals.org). With a more expansive definition of
any symptoms, these percentages increased to 28% and
29%, respectively.

Stochastic Variation in Secondary Transmission
Rerunning the simulation 2000 times with each set

of parameters, we observed considerable variability
across possible outcomes (Figure 2). Elementary
schools with high mitigation and classroom quarantine
under a 5-day schedule had a 79% chance of 0 second-
ary cases over a 30-day period (Figure 2, top right).
However, there was a 0.3% chance of more than 5 sec-
ondary cases. The chance of more than 5 secondary
cases was higher when mitigation uptake was lower
(Figure 2, top left and top center), reaching 52% of sim-
ulations with 0 secondary cases and 8.4% with 5 or
more under lowmitigation. In high schools with classroom
quarantine, the probability of no secondary cases ranged
from 18% to 51%, and the probability of more than 5
ranged from 12% to 61%, with long tails of outliers.
However, with any interventions, the long tail of large
outbreaks was substantially reduced.
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Transmissions Over the Course of the Semester
With any of the modeled scenarios (symptomatic

isolation, classroom quarantine, teacher vaccination,
and weekly screening), both 5-day and A/B schedules
increased transmission compared with remote learning.
This increase was greater when local incidence was
higher, especially considering infection risk among staff
(Figures 3 and 4). Assuming that additional measures,

such as school closure, were not taken, Figures 3 and 4
show the values of local incidence at which our prede-
fined threshold for “controlling transmission” was met. In
elementary schools with medium mitigation under a 5-
day schedule, all strategies with at least classroom quar-
antine met this threshold for all subgroups when local
incidence decreased to or below 10 reported cases per
100000 persons per day. With classroom quarantine,

Figure 1. Average number of total secondary transmissions over 30 days (outside the index case patient's household) after a single
introduction into a school.
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This figure displays the average number of secondary transmissions over 30 days following a single case introduction into a school. Estimates include
both transmission directly from the index case and that from secondary and tertiary cases. The top panel shows elementary schools, where children are
assumed to be less susceptible and less infectious than adults, and the bottom panel shows high schools. Note that axes differ across rows. The x-axes
vary the level in-school mitigation with “low” assuming minimal interventions and “high” assuming intensive interventions. A/B= hybrid. (This is not an
estimate of the effective reproduction number [Rt], which is shown in Supplement Figures 9 and 10 [available at Annals.org].)
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the control threshold for the full population was
exceeded only at 100 cases per 100000 persons per day
(cumulative incidence, 16%; increment, 1.4 percentage
points). However, among teachers, the control threshold
was not met with moderate mitigation when local inci-
dence was 25 cases or more per 100000 persons per
day (for example, total incidence of 7.0%; increment
of 2.2 percentage points with classroom quarantine at 25
cases per 100000), unless teachers were vaccinated.
With both high mitigation and teacher vaccination, strat-
egies met the control threshold among teachers at rates
up to 50 cases per 100000 persons per day.

In high schools, stronger mitigation or prevention strat-
egies would be required to meet the control threshold.
Under medium mitigation and local incidence of 100 cases
per 100000 persons per day, only weekly screening met
this threshold for the full population with 5-day attendance.
Under highmitigation, all strategies except symptomatic iso-
lation met this threshold through 10 cases per 100000 per-
sons and exceeded it by only a small increment through
100 cases per 100000 persons per day (maximum incre-
ment, 1.3 percentage points for classroom quarantine at
100 cases per 100000). For the teacher control threshold

in high schools, high mitigation combined with teacher
vaccination maintained the increase in teacher cumulative
incidence below the control threshold at 50 cases per
100000 persons per day.

Sensitivity Analyses
When we assumed that children were as infectious as

adults, the average number of secondary cases in elementary
schools over 30 days was 1.9 times higher than in the base
case; if adolescents were half as susceptible as adults, sec-
ondary cases in high schools were reduced by a factor of 0.3
(Supplement Figures 1 and 5, available at Annals.org). When
we repeated our analysis of elementary schools assuming
that children and adults have equivalent variation in individual
infectiousness, we found more instances of no onward trans-
mission and a lower average number of secondary infections
over 30 days, but also slightly larger outbreaks when they
occurred (Supplement Figures 1 and 5). After a single intro-
duction, all types of 2-day schedules (for example, Monday
and Tuesday vs. Wednesday and Thursday) led to similar
numbers of secondary infections overall, a similar chance of
any secondary infection, and similar numbers of secondary
infections among teachers and staff (Supplement Figures 1
and 5). Over the course of a quarter, the benefits of hybrid
scheduling generally persisted across increased levels of out-
of-school mixing (Supplement Figures 6 and 7, available at
Annals.org). For student and caregiver secondary infections
to be greater with an A/B model than a 5-day model in any
scenario, at least 9 families needed to interact on each day
out of school.

DISCUSSION

Although in-person education poses some COVID-19
transmission risk, the results of this simulation model under-
score that this risk can be offset with adequate precautions,
particularly in elementary schools and when community
transmission is well controlled. In elementary schools with
adherence to masking and distancing, our results show that
most cases introduced into a school would lead to little or
no onward transmission. Nevertheless, if transmission
occurs, it may be difficult to link to the school, and even
modeled scenarios that commonly lead to no in-school
transmission can occasionally generate larger outbreaks in a
school community. The risk for this is substantially higher in
high schools than elementary schools.

Although determining the exact risk for these low-
probability but high-consequence events is difficult, local
transmission determines the number of cases that enter
a school, and therefore such rare but consequential out-
breaks become increasingly likely when local incidence
is high. The guidance from the Centers for Disease
Control and Prevention about K-12 education highlights
population-adjusted incidence as a core indicator (67),
and our results provide additional evidence supporting
use of this metric for school decisions in the absence of
in-school screening or surveillance data. Nevertheless,
although schools may decide that in-school transmission
risk is too high above certain levels of local incidence,
our results do not suggest that K-12 education with miti-
gation or modified schedules is likely to be a primary

Figure 2. Distribution of secondary transmissions when a single
case is introduced.
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into a school. The x-axis varies the level of in-school mitigation with
“low” assuming minimal interventions and “high” assuming intensive
interventions. Transmissions include both those directly from the index
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cated at the 99.5th quantile (i.e., all outcomes occur with a probability
≥1/200). A/B= hybrid.
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driver of sustained community transmission. In the event
that the effective reproduction number (Rt) at the com-
munity level exceeds 1, it may be possible to lower this
through targeted closure of high-risk venues and main-
tain an Rt below 1 while schools remain open.

Our results are compatible with global observations
about school outbreaks, in which numerous well-studied
index cases have produced no or minimal secondary
cases; however, larger outbreaks have also been recor-
ded, particularly in secondary schools (10, 68, 69).
Teachers and staff tend to be overrepresented in school
outbreaks relative to their presence in a school commu-
nity. At the elementary level, they often represent a third
or more of diagnosed secondary cases (7, 12). Because a
substantial fraction of staff may be at high risk for compli-
cations, schools must undertake precautions to prevent
transmission specifically among staff. Hospitals have sim-
ilarly found patterns of staff-to-staff transmission and
implemented such measures as reducing opportunities
for communal food consumption (70).

We predict that most in-school transmission will
occur in the classroom during sustained contact, and
interventions that reduce classroom transmission can
be highly effective, including distancing, masking, or

reducing class sizes. Reduced density can be achieved
through adding more staff and moving into previously
unused spaces, allowing families to opt out of in-person
learning while maintaining current staffing levels, priori-
tizing a subset of vulnerable students for limited in-
person slots, or implementing hybrid scheduling. Some
have raised concerns that a hybrid model could para-
doxically increase SARS-CoV-2 transmission in schools
by leading to greater out-of-cohort mixing on days when
children are not physically in school. However, we find
that the A/B schedule leads to fewer infections in the
school community than a 5-day schedule, a result that
persists even with an assumption of substantial out-of-
school mixing between families.

Weekly screening for asymptomatic SARS-CoV-2
infection is particularly valuable for facilitating 5-day
schedules in light of uncertainty in model parameters
and outcomes. There is still debate surrounding the
relative susceptibility and transmissibility of children
compared with adults; overdispersion of infectiousness;
and, in particular, the degree to which asymptomatic
children transmit infection—all of which have substantial
effects on transmission in a school setting. It may also be
difficult to ascertain local behavioral parameters, such as

Figure 3.Cumulative incidence over 8 weeks in elementary schools.
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adherence tomasking, distancing, and quarantine proto-
cols, which can vary across settings and over time.
Coupled with stochastic uncertainty in outbreak size and
a high proportion of subclinical illnesses in school popu-
lations, this variability may make it difficult to detect
transmission when it occurs. The low probability of clini-
cal disease for infected children means that transmission
chains in schools are likely to be only partially observed
and linked cases may be mistakenly classified as isolated
introductions. Regular screening can both improve these
data and prevent transmission through early detection;
however, at a minimum, schools should be on alert for
signs that an outbreak is brewing and consider screening
in response to the detection of cases without a clearly
identified source. Other factors not considered in this
work include changes in parent behavior and increased
out-of-home work when children return to school, partic-
ularly for mothers and single parents, as well as changes
in staff social interactions outside school (71, 72).

In addition, new variants of concern have recently
been identified that are more transmissible than the
strains that have previously dominated (73, 74). One vari-
ant, B.1.1.7, has been linked to a large outbreak in a pri-
mary school in the Netherlands and triggered a new

wave of school closures in Europe (19, 75). In areas
where these strains dominate in the United States, class-
room-based efforts at infection prevention, such as
masking and distancing, may be less effective at sup-
pressing attack rates. For instance, schools that have
achieved attack rates commensurate with medium
uptake of mitigation may find that the same measures
will result in attack rates reflecting low uptake. This shift
highlights the urgent need for data and underscores the
added value of routine asymptomatic screening.

Tradeoffs are inevitable between school disruption,
risk for in-school transmission, and resources required to
implement reopening strategies. We offer a quantitative
perspective on the way that in-school transmissions are
likely to occur, as well as the effect that proposed proto-
cols could have on that transmission risk. We emphasize
that, particularly among young children, schools seem to
be “mirrors” of local transmission rather than “amplifiers”
or “brakes.” Thus, a reliable way to ensure a low infection
risk in schools is to reduce infectious introductions by
keeping local incidence low. However, even when intro-
ductions occur, high adherence to in-school prevention
measures, complemented by regular asymptomatic test-
ing and teacher vaccination, can also permit return to in-

Figure 4.Cumulative incidence over 8 weeks in high schools.
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person education with controlled risk for COVID-19 trans-
mission in schools. Local, state, and federal agencies
should prioritize these effective interventions that permit
the benefits of in-person education while protecting the
safety of both students and educators.
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Appendix Figure.Model diagram.
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The model includes 3 primary domains (households, schools, and out-of-school social or childcare mixing) and incorporates a range of interventions to
prevent or reduce transmission.
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Appendix Table. Parameter Values

Parameter Value Source

Students in elementary school, n 638 Reference 35
Average students per elementary school class, n 21 Consistent with reference 35, 5 classes per grade
Adults who are not primary teachers in elementary school, n 30 Estimate via school websites and personal

communication
Students in high school, n 1451 Reference 35
Average students per high school class, n 23 Consistent with reference 35, 16 classes per grade
Adults who are not primary teachers in high school, n 60 Estimate via school websites and personal

communication
Probability of asymptomatic disease for adults 0.2 Reference 36
Probability of asymptomatic disease for children 0.4 References 8 and 10
Relative infectiousness of asymptomatic disease 0.5 Reference 36
Probability of subclinical disease for adults (includes asymptomatic) 0.4 Consistent with reference 36, set at upper bound of

estimates of asymptomatic disease
Probability of subclinical disease for children (includes asymptomatic) 0.8 Reference 37
Household attack rate, % 20 (�4 per day) References 38 and 39
Classroom attack rate, % 1–3 per day For adult–adult full-day symptomatic transmission,

with maximum benchmarked to be approximately
1/2 household attack rate over the course of
infection

Relative attack rate for random school contacts (vs. classroom) 0.13 Approximately 45 min
Relative attack rate for random staff contacts (vs. classroom) 2 Assuming staff congregate (e.g., in lunchrooms)
Relative attack rate for childcare contacts (vs. classroom) 2 Assuming fewer precautions
Distribution on viral load Lognormal (0.84, 0.3)/0.84 Produces overdispersion in viral load (40, 41)
Incubation period (from exposure to symptoms, if symptomatic) Gamma (5.8, 0.95) Estimated from references 42 and 43
Start of infectiousness relative to symptoms Normal (2, 0.4) References 44 and 45
Duration of infectiousness Lognormal (5, 2) References 40, 43, 46, and 47
Duration of isolation and quarantine, d 10 Reference 34
Teacher vaccination uptake, % 75 References 1 and 48
Vaccination effectiveness, % 90 Reference 49, assuming that vaccine blocks infec-

tions as well as prevents symptomatic illness
Test uptake, % 90 Assumed
Test sensitivity during infectious period, % 90 References 50–54
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