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Abstract: This paper proposes a new method of mixed gas identification based on a convolutional
neural network for time series classification. In view of the superiority of convolutional neural
networks in the field of computer vision, we applied the concept to the classification of five mixed
gas time series data collected by an array of eight MOX gas sensors. Existing convolutional neural
networks are mostly used for processing visual data, and are rarely used in gas data classification and
have great limitations. Therefore, the idea of mapping time series data into an analogous-image matrix
data is proposed. Then, five kinds of convolutional neural networks—VGG-16, VGG-19, ResNet18,
ResNet34 and ResNet50—were used to classify and compare five kinds of mixed gases. By adjusting
the parameters of the convolutional neural networks, the final gas recognition rate is 96.67%. The
experimental results show that the method can classify the gas data quickly and effectively, and
effectively combine the gas time series data with classical convolutional neural networks, which
provides a new idea for the identification of mixed gases.

Keywords: MOX gas sensors; mixed gas identification; convolutional neural networks; time series
classification; analogous-image matrix data

1. Introduction

The electronic nose is an electronic system that uses the response pattern of a gas sensor array
to identify gases. The electronic nose is mainly composed of a gas sensor array, signal preprocessing
and pattern recognition, the core of which is the gas sensor array. Gas sensors can be classified into
metal oxide type, electrochemical type, conductive polymer type and so on. Currently the most widely
used are metal oxide gas sensors called MOX gas sensors [1]. MOX gas sensors have the advantages of
small volume, fast response speed, low cost and long service life. Therefore, they are widely used in
the field of detection of gases such as industrial exhaust gases, flammable and explosive gases, and the
analysis of smells in terms of the intensity of the smell or hedonic quality, etc. [2–6]. MOX gas sensors
cause a change in resistance by physicochemical reaction with the gas to be measured, and convert
information about gas type and concentration into a single signal output [7]. The sensor array can
obtain multi-path response signals, which provides a feasible means for detecting and analyzing the
composition of mixed gases. The types and number of sensors used is determined by the nature of the
gas being measured [8,9].
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For the identification of mixed gas components, the pattern recognition method largely determines
the recognition accuracy. Therefore, the mixed gas component can be effectively detected by an
improved identification method. The existing methods for identification of mixed gases are roughly
divided into three types: (1) Gas chromatography-mass spectrometry (GC-MS) method; it utilizes
the physical properties of multi-component gases to identify them with high sensitivity and high
separation efficiency, and any gas mixture having high reproducibility can be accurately identified
both quantitatively and qualitatively, but the technique has limitations due to the expensive apparatus
needed, the huge time required for the analysis, and the need for a specialized operator [10]. (2)
Data-driven approach. It is a method of applying technical methods such as statistics or machine
learning for classification [11]. The structure of shallow neural networks is relatively simple, and is
generally determined by empirical methods, which will cause the problem of gas recognition accuracy
to be reduced to some extent. The number of support vectors in SVM increases linearly as the number
of training samples increases, the sparsity of the model will be greatly reduced, the parameters need to
be optimized to achieve the best recognition rate, and the process of parameter optimization greatly
increases the amount of calculation. (3) Fusion method. A variety of statistical or machine learning
methods are combined to classify signals, which can improve the classification accuracy to a certain
extent [12]. Table 1 summarizes the advantages and disadvantages of the three methods for identifying
components in a gas mixture. However, the gas time series data has complex features, large dimensions,
and data implicit patterns are difficult to mine. The above algorithms are computationally intensive,
and the ideal effect cannot be achieved in a big data environment.

Table 1. The advantages and disadvantages of each method of identifying components in the
gas mixture.

Advantages Disadvantages

GC-MS Accurately identified Expensive apparatus, time consuming,
and specialized operator

Data-driven Convenience and efficiency Low accuracy for complex data
Fusion Effectiveness and high accuracy Process complicated and unstable result

In recent years, with the continuous development of deep learning technology, some deep learning
models have gradually been applied to the study of classification problems [13–16]. The deep learning
model is a deep neural network model with multiple nonlinear mapping levels, which can abstract
the input signal layer by layer and extract features to dig deeper potential laws. Among many deep
learning models, convolutional neural networks have good effects in image classification and other
applications, but they are limited in the field of gas classification [17–19]. Reference [20] first proposed
the idea of using the deep convolutional neural network (DCNN) for gas classification and designed a
neural network called GasNet. Reference [21] uses a simpler LeNet-5 network for gas classification.
Reference [22] presents a novel one-dimensional deep convolutional neural network (1D-DCNN) for
automatically extracting features. These deep learning models applied to classify gas data have a simple
structure, a small amount of input data, and directly operate on the acquired two-dimensional time
series data. However, due to the limitation of input data, some models such as VGG and Google-Net
for image classification cannot be directly applied to classified mixed gas data.

Therefore, this paper will design a method to classify mixed gas by using the existing convolutional
neural networks (CNN) model. That is, mapping the original gas time series data into an
analogous-image matrix and using the existing classical CNN model to extract features. Then,
the purpose of classifying the mixed gas is achieved. The proposed method can not only overcome
the problem that the traditional classification method does not accurately identify the time series data
category pattern, but also can use the convolution operation of CNN to extract more comprehensive
features of matrix data, and provide a new idea for sensor mixed gas classification. The contributions
of this paper can be summarized as follows:
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(1) Mapping the gas raw data from the time series data to the analogous-image matrix, and
transforming the mapping manner to form four sample sets 1 to 4 for experiment;

(2) Using the Visual Geometry Group-16 (VGG-16), Visual Geometry Group-19 (VGG-19), Residual
Network 18 (ResNet18), Residual Network 34 (ResNet34) and Residual Network 50 (ResNet50)
in the CNN models to classify the analogous-image matrix data. The accuracy of the proposed
method was verified by five categories of CO, methane and ethylene mixed gases with different
concentrations of the different components.

This paper is organized as follows: Section 2 analyzes the existing deep learning methods for
mixed gas classification and describes the overall procedure of mixed gas classification. Section 3
introduced the original data set and the specific steps of three mapping methods of mapping the time
series data to the analogous-image matrix. Section 4 introduces the model principle and characteristics
of convolutional neural networks and recurrent neural network, and Section 5 presents performance
evaluation results that verify the superiority of the proposed method. Finally, Section 6 describes the
conclusions of this study and our future research plans.

2. Related Works

Regarding the study of mixed gas classification, the most commonly used research methods are
machine learning methods. For example, Krivetskiy used a random forest, support vector machine
and shallow multi-layer perceptron algorithm to selectively detect the presence of low concentrations
of individual gases [23], Fonollosa proposed the so-called inhibitory support vector machines method
to identify whether ethylene is present in a mixed gas [24]. The idea of classifying mixed gases using
deep convolutional neural networks was proposed by Pai [20], who applied the “deep” learning model
to gas classification for the first time. Based on this idea, Wei used the existing LetNet-5 model which
applied to the handwritten dataset to classify the mixed gas [21]. Zhao present a novel one-dimensional
deep convolutional neural network (1D-DCNN) for comprehensively and automatically extracting
features and classifying mixture gases [22].

In [20], a deep convolutional neural network called GasNet was proposed for gas classification.
The network has 38 layers, including six convolution blocks, global average pooling layer, and a fully
connected layer. Each of the convolution blocks consists of six layers, including two convolutional
layers, two bulk normalization layers, and two rectification linear unit (ReLU) layers to extract
representative features. The classification results are obtained using a fully connected layer with
multiple types of neurons and Softmax activation function.

In [21], a new LeNet-5 gas recognition convolutional neural network structure for electronic
noses was proposed. LeNet-5 is a typical and widely adopted model that has been proposed by the
predecessors. The authors apply this network to the field of gas identification and reduce convolutions
to speed up calculations. The original data size is 480 × 12, the input data is extracted every 40 points
of the sensor samples, and the final input data size is 12 × 12. The output layer contains three neurons
based on the target, corresponding to three target categories.

In [21,22], a novel one-dimensional deep convolutional neural network (1D-DCNN) was proposed.
The original input data (16 × 100) was expanded into a one-dimensional vector, so the new input
data is a one-dimensional vector with size of 1 × 1600. And the feature was extracted by using a
one-dimensional filter (1 × 16 × 8, 1 × 3 × 64, 1 × 3 × 64 and 1 × 3 × 128). The 1D-DCNN with
multi-label way not only significantly reduces the label dimension but also quantifies the probability
of each component in mixed gases.

The above convolution deep neural networks for gas recognition are basic models, and there are
the following problems in application. First, the original data size is m × n, where m is the number of
sampling points, and n is the number of sensors. Generally, m is much larger than n, which cannot be
directly used as input data, and m-dimensional data needs to be extracted. The extracted data will lose
a lot of valid information, which is easy to produce large errors. Second, such input data cannot use
the CNN model with more complex network structure.
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In this paper, in view of the above problems, we propose a new method for mapping the raw data
into analogous-image matrix data and then using the advantages of convolutional neural networks
in image classification for gas recognition. First, the deep learning model is quite different from the
traditional machine learning approach. Traditional machine learning methods assume that sample
feature representations are given and that specific machine learning algorithms are designed. However,
the important idea of deep learning is “end-to-end” learning, that is, there is no need to think about
sub-problems in the whole learning process. Furthermore, when mapping the original time series data
into analogous-image matrix data, it is not necessary to reduce the data dimension, and the feature
information of the data can be retained to the greatest extent without considering the complexity of
the model. In addition, the convolution operation of the CNN model can be used to extract more
comprehensive feature information in the data and improve the classification accuracy.

The overall processing procedure of the proposed method is shown in Figure 1. First, the original
time series data set is introduced in “Original gas datasets”, and the nonlinearity of the data is analyzed.
Then three data mapping methods are proposed in “Data mapping”, and mapping the sequence data
into an analogous-image matrix. “New Datasets” are four new sample sets after data mapping, which
used as experimental data and divided training and test samples. The training sets are trained with
five kinds of Convolutional Neural Networks including VGG-16, VGG-19, Resnet18, Resnet34 and
Resnet50 in “Training”. The test sets are classified in “Testing”, and finally the model is evaluated with
loss function and confusion matrix in the “Model evaluation”.
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0.4 m wind tunnel facility with two gas sources (labeled as gas source 1 and gas source 2). Each gas 
source is independently controlled to release gas at different flows, gas source 1 releases ethylene, 
and gas source 2 releases methane or CO. Thus, a mixture of “methane and ethylene” or “CO and 
ethylene” is formed. The sensor array is placed in a wind tunnel where the wind turbine generates a 
gas stream that is naturally mixed along the air stream to produce a gas mixture of different 
concentration levels at the location of the sensor array. And constantly replace the mixed gas to the 
exhaust port [24]. 

Figure 1. Overall processing procedure.

3. Data Processing

3.1. Original Gas Datasets

The experimental data is based on the UCI public data set "Gas sensor array exposed to turbulent
gas mixtures data set". The experimental device for data acquisition was a 2.5 m × 1.2 m × 0.4 m
wind tunnel facility with two gas sources (labeled as gas source 1 and gas source 2). Each gas source
is independently controlled to release gas at different flows, gas source 1 releases ethylene, and gas
source 2 releases methane or CO. Thus, a mixture of “methane and ethylene” or “CO and ethylene” is
formed. The sensor array is placed in a wind tunnel where the wind turbine generates a gas stream
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that is naturally mixed along the air stream to produce a gas mixture of different concentration levels
at the location of the sensor array. And constantly replace the mixed gas to the exhaust port [24].

Among them, the sensor array consists of eight commercial MOX gas sensors (Figaro USA Inc.,
Glenview, IL, USA) of six types. The sensor information of the sensor array is shown in Table 2 [24].
Among them, there are two TGS2602 andTGS2620 sensors, and one of the other types of sensor. The
target gases and sensitivity of the sensors are different. The TGS2602 has high sensitivity to low
concentration gases, and TGS2620 can detect methane and ethylene at the same time with different
sensitivity. Because of the different locations of the sensors, the response values of the same sensors
also vary. Table 3 is a sample of the original data (high concentration of ethylene and zero concentration
of CO), and the data before 3 s is omitted. These MOX gas sensors rely on changes in the resistance of a
semiconductor oxide film to react with gas molecules to detect gases. Therefore, when two gas sources
release reducing gases (ethylene, methane and CO), the sensor response will be different. Moreover,
the sensor response has a nonlinear characteristic in single and mixed gases. That is, the response
output of the sensor to the mixed gas is not equal to the sum of the responses of the sensor to the two
target gases respectively. Therefore, for the characteristics of sensitive materials of MOX gas sensors,
it is not possible to obtain the exact information of the target gas type and concentration through
the output of the sensor. It is necessary to cooperate with the signal processing method to reveal the
information of the target gas contained in the response signal. Figure 2 shows the response curve of
the TGS2600 sensor for single ethylene, CO and a mixture of the two samples.

Table 2. MOX sensors information in the sensor array.

Sensor Type Number of Units Channel Target Gases

TGS2600 1 1 Hydrogen, carbon monoxide, methane
TGS2602 2 2,3 Ammonia, hydrogen sulfide, toluene
TGS2610 1 8 Propane, isobutane
TGS2611 1 7 Hydrogen, methane, isobutane
TGS2612 1 5 Methane, propane
TGS2620 2 4,6 Hydrogen, carbon monoxide, methane

Table 3. A sample of the original data.

Time(s) TGS2600 TGS2602 TGS2602 TGS2620 TGS2612 TGS2620 TGS2611 TGS2610

3 331 273 518 572 566 700 629 719
3.1 331 274 518 571 566 700 630 719
3.2 333 273 518 571 566 701 630 719
· · · · · ·

299.7 355 280 547 597 682 858 723 822
299.8 355 280 548 598 681 856 721 821
299.9 357 281 547 597 681 856 721 821
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These MOX gas sensors produce a time-dependent multivariate response to different gases. The
operating temperature of the sensor is controlled by a built-in heater that maintains a constant voltage
of 5 V. The inspection platform also includes temperature and relative humidity sensors.

The concentration of gas released at the two sources is constant, 2500 ppm for ethylene, 1000 ppm
for methane and 4000 ppm for CO, respectively. Under the action of the wind current generated by
the wind turbine, the gas released by the gas source flows at different flow rates, causing the gas
concentration to be diluted to varying degrees. When the gas reaches the sensor, it mixes with each
other at different concentrations. Finally, the average concentration levels measured at the sensor array
locations for three gases at four different wind speeds (zero, low, medium and high) are provided, as
shown in Table 4.

Table 4. Average concentration levels of three gases.

Concentration Level CO (ppm) Methane (ppm) Ethylene (ppm)

zero 0 0 0
low 270 51 31

medium 397 115 46
high 460 131 96

Based on the gas concentrations shown in Table 4, a total of 30 kinds of the mixture configuration
with different concentrations were formed: 15 kinds of a mixture of CO and ethylene mixtures, 15 kinds
of a mixture of ethylene and methane. Each configuration was repeated six times for a total of 180 sets
of raw data. For each mixed configuration, when the concentration of one is zero, it becomes a single
gas. Therefore, the classification aims to identify five gases, namely pure CO, pure methane, pure
ethylene, CO-ethylene, methane-ethylene. Each measurement lasts for 300 s in the following manner:
initially no gas is released and clean air flows along the wind tunnel. At 60 s, both gas sources begin to
release the corresponding gas at the specified flow rate for 180 s. Finally, the system achieved a 60 s
baseline recovery. The signal of one sensor is acquired every 100 ms, so a sequence of 3000 is acquired
for 300 s. Eight sensors produce eight sequence, so each sample size is 3000 × 8.

3.2. Data Mapping

The raw data A is a two-dimensional sequence matrix of size m × n, as in Equation (1), where
m = 2970 is the number of sampling points (the values of the first three seconds are omitted), n = 8
is the number of sensors, and element aij in A is the response value of the j-th sensor at time t. In
addition, a time factor is added to the general two-dimensional matrix, such as the formula (2). That
is, at+1,j is the value of the next moment of aij, and the order of the two cannot be changed. For such
a matrix, m and n have a relationship as shown in Equation (3), and the difference in the size of m
and n causes a serious imbalance between the rows and columns of the matrix. When the feature
extraction is performed on the original data by using the deep learning algorithm, the m-row data
needs to be reduced, which will inevitably lead to the loss of effective information. If the original data
is completely preserved, the application of the classical CNN models will be limited. Therefore, this
paper proposes to map the original time series data into analogous-image matrix data, and extract more
comprehensive features in the data through the convolution operation of CNN, thereby improving the
accuracy. Specific steps are as follows:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

a31 a32 · · · a3n

· · · · · · · · ·

am1 am2 · · · amn


2970×8

(1)

(a1, j, a2, j, . . . , at−1, j, at, j, at+1, j, . . . , a2970, j) (2)
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m >> n (3)

Step 1. The response value of the sensor array is mapped to the analogous-image matrix which is
converted from 2970 × 8 to 640 × 480. The mapping process is as follows: First, designing an empty
matrix B with size of 640 × 480, and dividing the horizontal axis into 2970 parts. Then extracting the
maximum value M in the original data, dividing the vertical axis into M parts. Second, fill the element
aij in A to the bt(aij) position of the empty matrix. That is, mapped to a new two-dimensional matrix
B1. Third, normalizing the elements with values in B1 to 0~255, which represents the gray level in the
analogous-image matrix. Finally, the elements with no values in the matrix B1 are set to 255.

Step 2. In order to highlight the difference of different sensors, the gray image is converted
into RGBA image with size of 640 × 480 × 4. The RGBA image is converted into a RGB image
with different size for different networks. The time series data of eight sensor arrays are displayed
in one analogous-image and represented by different colors. As shown in Figure 3, in different
analogous-image, the data of the same sensor is represented by the same color. The numerical value
of the original data reflects the position in the analogous-image. The relative position of the large
value is on the upper side, and the relative position of the small value is lower (the horizontal axis of
Figures 3–7 represent the seconds that be multiplied by 10, that is number of sampling points. The
vertical axis of Figures 3–7 represents the response value of the sensor).
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Since this experiment adopts the convolutional neural network analysis method, and does not 
directly classify the sensor data, it is necessary to explore whether the “Baseline value” has an 
impact on the experimental results. Table 5 is the standardized data of Table 3.  

Table 5. The standardized data. 

Time TGS2600 TGS2602 TGS2602   TGS2620 TGS2611 TGS2610 
3 0 0 0  0 0 0 

3.1 0 0.003663 0  0 0.00158983 0 
3.2 0.0060423 0 0  0.00142857 0.00158983 0 
3.3 0 0 0  0 0.00158983 0 
          

299.61 0.07250755 0.02564103 0.05598456  0.22571429 0.14785374 0.143255 
299.7 0.07250755 0.02564103 0.05598456  0.22571429 0.14944356 0.143255 
299.8 0.07250755 0.02564103 0.05791506  0.22285714 0.14626391 0.141864 
299.9 0.078549849 0.029304029 0.055984556  0.222857143 0.146263911 0.1418637 

Figure 4. Analogous-image of low concentration of Ethylene (a) Unfixed range of response values;
(b) Fixed range of response values.
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It can be seen from Figure 3 that 0 to 60 s is the "preparation time" of the sensor. At this stage, air
is input and the data is smoothly changed. We start to release the mixture at 60 s and this lasts for
180 s, the two gas sources began to release the corresponding gas, and the sensor response value is
gradually increased. The magnitude and speed of the increased vary depending on the type of sensor.
Moreover, the law of fluctuations is also different. This period is the "response time" of the sensor. The
gas is stopped for 240 s to 300 s, which is the "recovery time" of the sensor, and the sensor returns to
the baseline value.

Step 3. Change the mapping method of the original data, such as changing the relative position of
the original value in the analogous-image, unifying the sensor baseline and changing the direction of
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the data develops in the analogous-image. Different sample sets were formed by different mapping
methods for comparison experiments.

3.2.1. Fixed Range of Response Values

The range of sensor response values is different, such as in Figure 3a it is 200 to 1200, and in
Figure 3b it is 300 to 900. Taking the gray curve as an example, the values are different but the height
positions of the curves in the picture are very similar. The effect of the sensor response value on
the category is not well reflected, and the feature gap between the categories is reduced. Therefore,
the impact of response values on the height of the analogous-image needs to be considered in data
mapping. By statistics, all sensor response values are between 200 and 1200, so the range of sensor
response values of all samples is fixed at 200 to 1200. Figure 4b is the analogous-image after fixing the
response values range of Figure 4a. We set the sample set of the fixed range as Sample-set 2.

It can be seen from the comparison between Figure 4a,b that the position of each curve has
changed in the image, but the relative positions of the curves is constant. The effect of the sensor
response value on the position of the curve in the image is shown between different pictures. The color
of the curve remains the same, eliminating the influence of the curve color on the classification result.

3.2.2. Sensor Baseline Standardization

The difference in baseline values for different sensors is slightly larger. In order to eliminate the
impact of the baseline on the data and ensure the reliability of the data, the general pattern recognition
algorithm first take the standardized operation to the data [12]. The method is as shown in Equation (4),
where XStandard value is the value obtained after subtracting the baseline treatment, which we call:
“standard value”, XResponse value is the true value of the sensor during the response, XBaseline value is
the baseline value of the sensor in air or standard gas. That is, the “Standard value” is equal to
the difference between “Response value” and the “Baseline value” divided by the “Baseline value”.
The “Standard value” data can effectively eliminate the impact of the environment and minimize
environmental errors:

XStandard value =
XResponse value − XBaseline value

XBaseline value
(4)

Since this experiment adopts the convolutional neural network analysis method, and does not
directly classify the sensor data, it is necessary to explore whether the “Baseline value” has an impact
on the experimental results. Table 5 is the standardized data of Table 3.

Table 5. The standardized data.

Time TGS2600 TGS2602 TGS2602 · · · TGS2620 TGS2611 TGS2610

3 0 0 0 0 0 0
3.1 0 0.003663 0 0 0.00158983 0
3.2 0.0060423 0 0 0.00142857 0.00158983 0
3.3 0 0 0 0 0.00158983 0
· · · · · ·

299.61 0.07250755 0.02564103 0.05598456 0.22571429 0.14785374 0.143255
299.7 0.07250755 0.02564103 0.05598456 0.22571429 0.14944356 0.143255
299.8 0.07250755 0.02564103 0.05791506 0.22285714 0.14626391 0.141864
299.9 0.078549849 0.029304029 0.055984556 0.222857143 0.146263911 0.1418637

Figure 5 is a comparison chart before and after standardization. It is observed from the figure that
the basic trend of the curve has not changed, but the relative position of each curve has changed. For
example, the positions of the yellow and blue curves are relatively elevated, while the position of the
red curve is decreased. This change will cause a corresponding change in the characteristics of the
category to which the image belongs.
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After the standardization operation, the observed sample set have four unusual images as shown
in Figure 6, which do not meet the “preparation time”, “response time” and “recovery time” that
a normal sample should have. The entire response process is cluttered. This may be caused by
environment factor, possible damage or non-calibration of the sensor itself. If the unusual image is
placed in the training sample, it will affect the effect of classification, so they need to be eliminated.
The sample set after normalization and denoising is the Sample-set 3.

3.2.3. Changing the Arranged Direction of Data

The biggest difference between the time series data and the general visual data is that the time
series data have a time label, while the general picture does not contain the time information and
changing the arrangement direction of data will not affect the shape of the object in the image, but
for time series data, a change the direction of data development can lead to large changes in curve
trends and locations. Therefore, when classifying analogous-image matrices by CNN, it is necessary to
consider the influence of the arranged direction of data on the experimental results. Figure 7a is an
analogous-image in which the data is arranged horizontally, the horizontal axis is the number of data
points, and the vertical axis is the sensor response value. The size of the analogous-image is 640 × 480
× 3. Figure 7b is an analogous-image in which the data is vertically arranged. Currently, the horizontal
axis is the sensor response value, the vertical axis is the number of data points. In order to conform to
the order of the convolution operation, the time -series of the vertical axis is set from top to bottom.
The size of the analogous-image becomes 480 × 640 × 3. Let the sample set which the data is vertically
arranged be the Sample-set 4.

The above are three ways to map time series data into class picture matrix, which considering
the characteristics of the sensor and the feature of time series data may affect the classification result.
Three data sets were created in three ways to find the most appropriate mapping method.

4. Gas Classification Method in Dynamic Mixtures

Convolutional neural networks are a special type of artificial neural network, which are different
from other neural network models, such as recurrent neural networks, Boltzmann machines, etc.
Their main feature is a convolution operation. Therefore, CNN perform well in the fields of image
classification and image segmentation. This section briefly introduces the structure of the CNN model,
including the input layer, output layer and hidden layer, as well as the typical architecture VGG, Resnet
of the CNN.

4.1. CNN Structure

CNN is a hierarchical model consisting of input and output layers and multiple hidden
layers [25–27]. Inputs are RGB images, audio data, and so on. CNN extracts high-level semantic
information from input data through layer-by-layer stacking of convolution, pooling and nonlinear
activation function mapping, and abstracts it layer by layer. This process is called “feedforward
operation”. Among them, different types of operations are generally referred to as “layers” in
convolutional neural networks, convolution operations correspond to “convolution layers”, pooling
operations correspond to “pooling layers”, and so on. Finally, the last layer of CNN formalizes the
target tasks (classification, regression, etc.) into objective functions. By calculating the error or loss
between the predicted value and the true value, the error or loss is fed back from the last layer by the
back-propagation algorithm [28]. The parameters of each layer are updated, and the feedforward is fed
again after updating the parameters until the network model converges, thus achieving the purpose of
model training. The overall structure of CNN is shown in Figure 8.
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In the entire CNN structure, the input of each neuron in the convolutional layer is connected to
the upper layer, and the local feature extraction is performed. After entering the pooling layer, the
commonly used pooling operations have average pooling and maximum pooling. This operation has
characteristic invariance, feature dimension reduction, and prevents over-fitting to a certain extent.
The convolutional layer and the pooled layer have different numbers in different scenarios. In order to
increase the expressiveness (non-linearity) of the entire network, an activation function is added after
the pooling layer to map the results of the previous linear operation layer into a nonlinear function.
The fully connected layer acts as a “classifier” throughout the CNN. Therefore, for the input graph,
various features are first extracted through the convolution layer, then the secondary feature extraction
is performed through the pooling layer, and the output of the pooling layer is mapped to more complex
nonlinear features through the activation function layer. Finally, the fully connected layer maps the
learned feature representations to the label space of the sample for prediction.

Compared with traditional neural networks, CNN has three major differences: local perception,
weight sharing and multi-convolution kernel. The traditional neural network adopts the method that
the input layer and the hidden layer are fully connected. When the image size is relatively large,
the full connection method increases the amount of calculation. Therefore, the CNN adopts a local
connection method in the convolutional layer, and obtains local information and local features of the
image by applying a convolution kernel or a filter of a certain size to the local image region. The
parameters of the convolution kernel are treated as weights, which apply not only to one local input,
but to all inputs at different locations. Therefore, weight sharing means that the entire image shares a
set of convolution kernel parameters, which can reduce the amount of calculation and improve the
calculation efficiency. A convolution kernel extracts a feature. To obtain more different feature sets, the
convolutional layer has multiple convolution kernels to extract different features.

4.2. CNN Implementation Architecture

4.2.1. VGG-Nets

VGG-Nets [29–31] was proposed by the Visual Geometry Group (VGG), a well-known research
group at Oxford University in the UK. Due to its good generalization performance, VGG-Nets can
improve classification accuracy by using pre-trained model on ImageNet dataset. Typical are VGG-16
and VGG-19, with the difference being the number of convolution layers. Taking the VGG-16 network
as an example, the network architecture is shown in Figure 9. The “16” means a 13-layer convolutional
layer and a 3-layer fully-connected layer. In order to increase the network depth, and then increase
the model capacity and model complexity, small convolution kernels (3*3) are commonly used in
VGG-16. And the size of input data of network is 224 × 224 × 3. The ReLU function [32,33] be used as
an activation function, which is better than the tanh and sigmoid functions. The function expression
such as Equation (5), where x is the independent variable:

ReLU(x) = max{0, x} =
{

xx ≥ 0
0x < 0

(5)
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Compared to other activation functions, ReLU has the following advantages: For linear functions,
ReLU is more expressive, especially in deep networks; for nonlinear functions, Since the gradient of
ReLU is constant in the non-negative interval, there is no vanishing gradient problem, which keeps the
convergence speed of the model in a stable state.

4.2.2. Resnet

The depth and width of the neural network are two core factors that characterize the complexity
of the network. The depth is more effective than the width in increasing the complexity of the network,
but as the depth increases, the training becomes more difficult. This is mainly because in the network
training process based on stochastic gradient descent, the multilayer backpropagation of the error
signal can easily lead to the gradient “dispersion” or the gradient “disappear”. Moreover, there is
a phenomenon that the training error increases as the depth increases [34,35]. In order to solve this
problem, a residual network [34] appeared. Because the residual network solves the problem of
training difficulty caused by network depth, its network performance (accuracy and precision) far
exceeds the traditional network model. Figure 10 shows the residual learning module [34], which has
two branches, one is the left residual function F(x) and the other is the identical mapping “x” of input.
After the two branches are integrated by the corresponding elements, they are subjected to nonlinear
transformation (ReLU activation function) to form the entire residual learning module. A network
structure in which a plurality of residual modules is stacked is called “residual network”. Typical
residual networks include Resnet18, Resnet34, Resnet50, and so on.
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5. Experimental Results

Table 6 summarizes the performance evaluation environment. The performance evaluation
program was implemented using Python.

Table 6. Performance evaluation environment.

Feature Contents

Experimental system Ubuntu16.04
CPU Inter®Core (TM) i7 3.6GHz
GPU NVIDIA Tesla p40 × 4

Memory 12GB × 2
Disk 2TB

Program language Python

5.1. Experimental Data

The configuration of 30 mixed concentrations of mixed gases and the number of measurements
for each configuration are presented in Section 3.1. The data is distributed in batches, consisting of
six measurements per batch, with the same configuration repeated for each measurement. Data is
distributed in batches, and each mixed concentration is configured as one batch. Each batch consists of
six measurements for a total of 180 measurements, each measurement repeats the same configuration.
The 180 measurements data is converted into analogous-image matrix data to form a sample set.
In Section 3.2, four sample sets are introduced, namely Sample-set 1, Sample-set 2, Sample-set 3 and
Sample-set 4 (Sample-set 1~sample-set 4 will be used to represent the sample set in the following
experiments). This experiment divides the 180 measurements in each sample set into five categories,
namely: methane, CO, ethylene, CO-ethylene, methane-ethylene. The corresponding labels are 1, 2,
3, 4, 5 (in the following experiments, labels 1-5 will be used to indicate the corresponding category).
By analyzing and comparing the test accuracy of different sample sets, the sample set with the highest
test accuracy is determined as the most suitable sample set. The gas concentration configuration and
total number of samples for each category are shown in Table 7. Where “N” represents 0 concentration,
“L, M, and H” represent low, medium, and high concentrations respectively. Therefore, each category
consists of a mixture of gases at different concentrations. The accuracy of each classifier was estimated
by the ability to correctly classify the five mixed gases using a test set that was not used during training.
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Table 7. Gas concentration configuration and number of samples for each category.

Category Mixed Composition Concentration Configuration Total Number
of Samples

1 Methane (L, M, H)Methane × (N)Ethylene 18
2 CO (L, M, H)CO × (N)Ethylene 18
3 Ethylene (N)CO × (L, M, H)Ethylene, (N)Methane × (L, M, H)Ethylene 36
4 CO + ethylene (L, M, H)CO × (L, M, H)Ethylene 54
5 Methane + ethylene (L, M, H)Methane × (L, M, H)Ethylene 54

The training set and the test set samples were determined by random selection of each concentration
of mixed gas at 5:1. The number of samples of the original dataset can be seen in Table 8. For categories
1 and 2, there are 15 samples of training data and three samples of test data. Fewer training samples will
affect the training effect. Therefore, we do random micro-float of the original data without changing
the characteristics of the data, expand each type of training data to 90 per class, and expand the test
data to 27 per class. The number of samples of the extended dataset which is used in subsequent
experiments also can be seen in Table 8.

Table 8. Original dataset and extended dataset.

Category Original Dataset Extended Dataset

Training Testing Training Testing

1 15 3 90 9
2 15 3 90 9
3 30 6 90 18
4 45 9 90 27
5 45 9 90 27

Five kinds of CNN: VGG-16, VGG-19, Resnet18, Resnet34 and Resnet50, were used for comparative
experiments, and the best experimental results were achieved by changing the network parameters.
We use the accuracy, loss function and confusion matrix to evaluate the performance of the network
at the same time. The model parameters corresponding to the experimental model are shown in
Table 9. The VGG and Resnet networks have been used to classify ImageNet datasets and obtain
weight parameters, which as the pre-training weights can greatly reduce training time. To use the
pre-training weights, the input analogous-images of VGG-16 and VGG-19 are 224 × 224 × 3, and the
input analogous-images of Resnet18, Resnet34, and Resnet50 are 640 × 480 × 3.

Table 9. Experimental results for different classification models.

Model Model Parameter

VGG-16 epochs = 100, batch_size = 128, img_size = 224 × 224 × 3, lr = 0.001, pretrained = True
VGG-19 epochs = 100, batch_size = 128, img_size = 224 × 224 × 3, lr = 0.001, pretrained = True
Resnet18 epochs = 100, batch_size = 64, img_size = 640 × 480 × 3, lr = 0.001, pretrained = True
Resnet34 epochs = 100, batch_size = 64, img_size = 640 × 480 × 3, lr = 0.001, pretrained = True
Resnet50 epochs = 100, batch_size = 64, img_size = 640 × 480 × 3, lr = 0.001, pretrained = True

The following sections describe the experimental results of different network models for different
sample sets, including two parts of the classification results of different sample sets and the classification
results of different network models. The most suitable data mapping method is determined by the
experimental results of different sample sets. Then, the classification effect and performance of each
model are compared to find the best performing experimental model, which is to find the most suitable
feature extraction method for gas data classification.
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5.2. Datasets Comparison

5.2.1. Sample-set 1 and Sample-set 2

In order to compare whether the stable range of response values influence the experimental results,
experiments were carried out using Sample-set 1 and Sample-set 2, and the experimental results are
shown in Table 10. For Sample-set 1 with unfixed range of response values, the accuracy of Resnet34 is
100%. Resnet50 increases the convolution layer than Resnet34, but the accuracy decreases with the
increase of the number of convolution layers, which may be over-fitting. The minimum accuracy of
VGG-16 is 40%, with an average of 73.998%. For Sample-set 2 with fixed range of response values,
Resnet50 has the highest accuracy of 96.67%, VGG-19 has the lowest accuracy of 60%, and the average
is 80.67%. By comparing the test results of Sample-set 1 and Sample-set 2 of each model, the following
conclusions are obtained: although the highest accuracy of Sample-set 2 is slightly lower than that of
Sample-set 1, the minimum accuracy of it is much higher, and the average accuracy of Sample-set 2 is
significantly higher than that of Sample-set 1.

Table 10. Test accuracy for different classification models.

Model Unfixed Range of Response
Values (Sample-set 1)

Fixed Range of Response Values
(Sample-set 2)

VGG-16 40% 63.33%
VGG-19 43.33% 60%
Resnet18 93.33% 90%
Resnet34 100% 93.33%
Resnet50 93.33% 96.67%

Mean 73.998% 80.67%

The experimental results illustrate the importance of fixed range of response values for the
classification results. At the same time, the test accuracy of the Resnet is much higher than that of the
VGG, indicating that for such a sample set which with small difference within the class, the Resnet can
extract more accurate features and better discrimination.

In order to compare the test results of each model more comprehensively, we draw the loss
function of different models for the same sample set. The loss function is used to estimate the degree of
inconsistency between the predicted and actual values of the model. It is a non-negative real-valued
function, usually represented by an L1 or L2 regular term. The loss function used by our network is
the cross-entropy loss function. The loss graph reflects the convergence speed of the model and the
proximity to the true value. The faster the convergence and the smaller the loss value, the better the
classification effect. Figure 11 shows the loss diagrams of Sample-set 1 and Sample-set 2. It is apparent
from both figures that the loss curves of all models gradually decrease and tend to be flat. Moreover,
the loss value of the Resnet is much lower than the loss value of the VGG, which is determined by the
network structure of the residual network. Residual network solves the problem that the gradient of the
VGG-Net disappears when the network depth is deepened. Therefore, the experimental error is greatly
reduced. This is consistent with the test accuracy in Table 10. At the same time, in Resnet, Resnet34
and Resnet50 have higher performance than Resnet18, and the convergence speed and minimum value
are better than Resnet18. Therefore, the subsequent experiment was performed with fixed range of
response values.
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5.2.2. Sample-set 2 and Sample-set 3

Based on the experimental results in Section 5.2.1, in order to compare whether the sensor
baseline influences the experimental results, the sensor response value corresponding to each sample in
Sample-set 2 is normalized, and the resulting value forms new analogous-image matrix with the same
size to formed Sample-set 3. The experimental results are shown in Table 11. The results show that
the minimum accuracy of Sample-set 3 is 46.67%, the highest is 96.67%, and the test accuracy of each
model of Sample-set 2 is greater or equal to Sample-set 3. The experimental results fully demonstrate
that the CNN can ignore the impact of the baseline of sensor on the data, making data processing easier.
And after standardization, the average recognition accuracy has decreased. It is worth noting that in
both sample sets, the test accuracy of VGG-16 is greater than the test accuracy of VGG-19. It might be
that as the depth of the network increases, network training is more difficult, and the phenomenon of
“disappearance” or “explosion” occurs, which increases the training error.

Table 11. Test accuracy for different classification models.

Model Sensor Baseline Standardized
(Sample-set 3)

Sensor Baseline
non-Standardized (Sample-set 2)

VGG-16 56.67% 63.33%
VGG-19 46.67% 60%
Resnet18 90% 90%
Resnet34 90% 93.33%
Resnet50 96.67% 96.67%

Mean 76% 80.67%

Figure 12 is a loss diagrams of Sample-set 2 and Sample-set 3. It can be seen from the figure that
the loss curves of the Resnet of the two graphs are very similar, while the loss curves of the VGG
are significantly different. For Sample-set 3, the loss value of VGG16 eventually drops to 1.3683. For
Sample-set 2, the loss value of VGG16 eventually drops to 1.1520, and the loss curve of VGG19 converges
a little faster. Therefore, a non-standardized approach was chosen for subsequent experiments.
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5.2.3. Sample-set 2 and Sample-set 4

Based on the experimental results in Section 5.2.2, in order to compare whether the data
arrangement direction influences the experimental results, each sample data in Sample-set 2 is
changed to a vertical arrangement to form Sample-set 4. The experimental results are shown in Table 12.
For Sample-set 4, Resnet50 has a maximum accuracy of 96.67%, while VGG-16 has a minimum accuracy
of 70% and the average is 82.668%, which is better than Sample-set 2.

Table 12. Test accuracy for different classification models.

Model Horizontal Arrangement of Data
(Sample-set 2)

Vertical Arrangement of Data
(Sample-set 4)

VGG-16 63.33% 70%
VGG-19 60% 70%
Resnet18 90% 86.67%
Resnet34 93.33% 90%
Resnet50 96.67% 96.67%

Mean 80.67% 82.668%

Figure 13 is the loss diagram of Sample-set 2 and Sample-set 4. It is obvious that the convergence
speed and minimum value of VGG16 of Sample-set 4 are significantly better than Sample-set 2.
For Sample-set 4, the loss function of Resnet34 and Resnet50 basically coincide, but the loss function of
Resnet50 converges faster, down to 0.1414 in 100 generations. For Sample-set 2, the loss function of
Resnet34 converges the fastest, eventually reaching around 0.1419.
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By comparing the experimental results with VGG-16, VGG-19, Resnet18, Resnet34 and Resnet50
of Sample-set 1~4, it is determined that Sample-set 4 is the best sample set, which is, the highest
recognition rate is 96.67% and the average recognition rate is up to 82.668% for Sample-set 4. The
experimental results show that the analogous-image matrix of gas sensor data mapping has the
following characteristics in data processing:

(1) For general image such as ImageNet classification, the position of the target object in the image
does not affect the category of the image, but for gas data, position information is an important
feature, which increases the difficulty of classification.

(2) When using general pattern recognition classification algorithms such as PCA, SVM, and shallow
neural networks for time series data classification, the original sensor data is analyzed, but the
baseline of each sensor is different. In order to eliminate the impact of the baseline on the data,
the data is first standardized. However, when using the convolutional neural network for feature
extraction, this step is not required, which not only simplifies the operation but also improves
the accuracy.

(3) Due to the particularity of the time series data, the data has a time stamp. Similarly, the convolution
operation of the convolutional neural network is also performed in a certain order. Experiments
have shown that a better classification effect can be obtained when the data arrangement direction
is consistent with the direction of the convolution operation.

5.3. Model Comparison

The samples of methane, CO, ethylene, CO-ethylene, methane-ethylene in Sample-set 4 are shown
in Figure 14. Next, the test results and the performance of each network model are analyzed. Table 13
shows the recognition rates of the five mixed gases in Sample-set 4 by VGG-16, VGG-19, Resnet18,
Resnet34 and Resnet50, as well as the average recognition rate of the algorithm and the average
recognition rate of the categories.
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Table 13. Identification results of VGG-16, VGG-19, Resnet18, Resnet50 and Resnet50.

Category Mixed Gas
Detection Sample Recognition Rate/%

VGG-16 VGG-19 Resnet18 Resnet34 Resnet50 Mean

1 Methane 100 100 100 100 100 100
2 CO 100 66.67 66.67 66.67 66.67 73.336
3 Ethylene 0 33.33 50 66.67 100 50
4 CO-Ethylene 77.78 66.67 100 100 100 88.89
5 Methane-Ethylene 88.89 88.89 100 100 100 95.556

mean — 73.334 71.112 83.334 86.668 93.334 —

The average recognition rate for each category from high to low is: methane > methane-ethylene >

CO-ethylene > CO > ethylene. Specifically, methane has the highest recognition rate and the recognition
rate of each model is 100%. The recognition rates of methane-ethylene and CO-ethylene are ranked
second and third respectively. The recognition rate of the Resnet with high model complexity is 100%,
while the recognition rate of VGG with simple network structure is slightly lower. The recognition
rate of CO ranks fourth, and the recognition rate of VGG-16 network is the highest. It may be that the
over-fitting phenomenon occurs when using a network with high complexity. The lowest recognition
rate of ethylene is because the sample of this category consists of two parts, namely ethylene at a
CO concentration of zero and ethylene at a methane concentration of zero. Each part contains three
concentrations of ethylene, and the sensor responds differently to each concentration. In the case of a
small sample size, accuracy will be greatly affected.

The average recognition rate for each model from high to low is: Resnet50 > Resnet34 > Resnet18
> VGG-16 > VGG-19. Among them, Resnet50 has an average recognition rate of 93.334%, and Resnet50
has a classification accuracy of 100% for mixed gas except CO. The average recognition rate of VGG-19
is 71.112%, and the recognition rate of ethylene by VGG-19 is only 33.33%. Moreover, it is found
that the recognition rate of Resnet is significantly higher than that of VGG. Because the Resnet model
not only solves the gradient explosion problem that occurs when the VGG increases depth, but also
extracts more comprehensive features of the gas data, thereby improving the accuracy.
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To further evaluate the classification performance of each model, we use the confusion matrix to
display the classification results. The confusion matrix is usually a specific matrix used to visualize
the performance of the algorithm. The accuracy of the classification results of all categories can be
displayed in a confusion matrix. As shown in Figure 15, since there are five categories, the confusion
matrix is divided into 25 parts, and the color in each part represents the relative relationship between
the real category and the predicted category. That is, the darker the color, the smaller the probability
that the real category is predicted to be the corresponding predicted category. Therefore, by observing
the color, the accuracy of each category can be intuitively perceived. That is, the lighter the color of the
main diagonal portion means that the higher the accuracy and the better the prediction effect.
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By analyzing the confusion matrix, VGG-16 completely recognizes ethylene gas as
methane-ethylene. VGG-19 also classifies some ethylene samples as methane-ethylene, while Resnet
18 classifies some CO samples and ethylene samples as CO-ethylene. It shows that mixing methane or
CO into ethylene has little effect on the sensor readings and the concentrations of gas in each category
include low, medium and high. The concentration also affects the response of the sensor, which makes
it difficult to identify the mixed gas. Resnet34 has improved the classification accuracy of ethylene.
Resnet50 only recognizes part of CO as CO-ethylene, and the classification accuracy of other mixed
gases reaches 100%, which directly proves that the classification performance of Resnet50 is optimal
among the five models.

6. Conclusions

In this work, we propose a method for classifying mixed gas analogous-image matrix using
convolutional neural networks. The proposed method applies the existing convolutional neural
networks, which are mostly applied to visual picture classification, to the classification of gas time
series data. This method provides a new research idea for mixed gas classification. Gas data is time
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series data which collected by the sensor that changes over timer. When considering multiple sequence
values of the sensor array, it will constitute a two-dimensional matrix of m × n, and “m” is much
larger than “n”. When extracting features directly from a matrix using convolutional neural network,
“m” must be extracted, but this will inevitably lead to the loss of effective information, resulting in a
decrease in accuracy. Therefore, this paper proposes to map the original two-dimensional time series
matrix into a three-dimensional analogous-image matrix, mapping the original data values into pixel
values in the analogous-image. And compare the impact of three mapping methods (fixed coordinate
upper and lower limits, sensor baseline standardization and change data arrangement direction) on
the classification results.

Compared with the general pattern recognition algorithm, the proposed method does not have
much requirements on the size and smoothness of the original data, and has good generalization.
Moreover, it also works well in a big data environment. When there is a large amount of mixed gas data,
there are more training samples correspondingly, so that more comprehensive features can be extracted,
and the network accuracy will be improved. More importantly, the convolution operation in the
proposed method can extract the deep features of the analogous-image and classify the mixed gas more
accurately. Five kinds of convolutional neural networks of VGG-16, VGG-19, Resnet18, Resnet34 and
Resnet50 were used for comparative experiments, the experimental results show that the Sample-set
4 with “fixed upper and lower limits of coordinate axes”, “sensor baseline non-standardization”
and “vertical alignment of data” has the best classification results, which achieved a recognition
rate of 96.67%. The performance of the network is further analyzed by the loss function and the
Confusion matrix.

Our method has obtained good experimental results in the existing data sets and provides new
ideas for the classification of mixed gas data. However, due to the insufficient number of samples,
some categories with inconspicuous feature patterns are often confused with other categories, resulting
in high error rates in some categories leading to a decrease in average accuracy. Therefore, in the future,
we will further study how to improve the accuracy in the case of a small sample size.
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