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Background
The general insight in systems biology is that genes and proteins act together in intricate 
networks, rather than in isolation [1]. Networks are widespread in biomedicine, such as 
the gene co-expression network, regulatory network metabolism network and protein-
protein interaction network [2]. A key step in the analysis of large genome-wide gene 
expression datasets is the grouping of genes into co-expression modules using module 
detection methods [3]. Genes are represented by nodes, and connecting the node genes 
which are significantly co-expressed across appropriately chosen samples [4].
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To construct and analyse a gene co-expression network, it is necessary to assess the 
interactions between two genes. Such interactions are measured by calculating the 
correlation coefficients of different gene expression profiles. Detecting and evaluating 
dependencies between variables usually requires the definition of ‘ distance’ or ‘similar-
ity’ [5]. In the gene co-expression network, the overall shapes of gene expression pat-
terns (or profiles) are of greater interest than the individual magnitudes of each feature 
[6]. The gene modules obtained by gene co-expression network analysis should repre-
sent highly correlated genes which are also called co-expressed genes [7]. Therefore, we 
should apply a metric between the gene based on ’similarity’ measure rather than using 
’distance’ depending on the gene co-expression network. There are many methods to cal-
culate the correlation coefficients between genes, with the most popular being Pearson 
correlation and Spearman’s rank correlation. Pearson correlation measures the strength 
of the linear relationship between two random variables, whereas Spearman’s rank cor-
relation evaluates how well the correlation between two variables can be formulated by a 
monotonic function [8, 9]. However, linear and monotonic dependence are not the only 
ones observed in a real biological system, there are many other complex relationships 
observed in biological systems. Therefore, if the method of correlation measure is lim-
ited to linear dependence measures in the construction of gene co-expression networks, 
the ability of gene co-expression networks to recreate the accurate network and identify 
the appropriate gene modules will also be limited. To overcome this barrier, additional 
appropriate methods are needed to measure the complex relationships between genes.

The Pearson correlation coefficient is the most common default measure among 
gene co-expression network analysis methods [10, 11]. Several assumptions made with 
respect to Pearson correlation limit its effectiveness. (i) The Pearson correlation coeffi-
cient is usually not suggested for non-normally distributed data [12]. (ii) Pearson correla-
tion, which only captures linear relationships between two given components, measures 
the degree of a linear relationship between two real-valued variables [13]. That is, the 
linear relationships between two variables should be known, after which Pearson cor-
relation can be used to assess how well the relationship between the two variables can be 
described by a linear equation. However, the relationships between genes are complex, 
and only partly explained by linear relationships. (iii) The Pearson coefficient is sensi-
tive to outliers. For example, if one sample has a very high expression for two genes, the 
Pearson correlation coefficient can approach +1 due to just one outlier, falsely indicating 
a strong correlation, when in fact it does not exist [14]. (iv) A zero value for the Pearson 
coefficient reveals there isn’t a linear correlation between the variables, however, it does 
not show that the variables are independent. A classic example is to define Y = X2 where 
X is a random variable on [−1, 1] . X and Y are not independent, but the value for the 
Pearson correlation coefficient between X and Y is zero.

A robust alternative to the Pearson correlation coefficient is the Spearman correla-
tion coefficient which can be applied to non-normally distributed data since it is more 
robust to outliers. As the Spearman correlation coefficient has less statistical power than 
the Pearson coefficient, the Pearson coefficient is recommended if the data are normally 
distributed [15]. Moreover, since gene data are continuous, Spearman correlation must 
convert continuous into rank data, leading to a loss of the original information. For con-
tinuous data, Spearman correlation has lower accuracy than Pearson correlation.
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There are many other metrics in addition to the Pearson correlation coefficient and 
Spearman correlation coefficient, such as the maximal information coefficient (MIC) 
[16] and distance correlation [17]. Maximal information component analysis (MICA), 
which combines MIC with an Interaction Component Model, has been proposed in [18]. 
This algorithm can obtain improved modules when the networks contain confounding 
factors. However, it has been indicated that there are no mathematical arguments for 
MIC, and its results are based solely on the analysis of simulated data in the literature 
[19–21]. In practice, MIC may provide a high score for two variables even if they are not 
correlated, thus creating a false correlation between two variables.

Distance correlation is a statistical measure of the correlation proposed by Szkely et al. 
[17]. In contrast to Pearson correlation, which can only detect linear relationships, dis-
tance correlation measures the degree of all types of possible relationships between two 
genes. Generally speaking, compared with classical Pearson correlation, distance cor-
relation has some distinct advantages: it does not assume normality, it can measure a 
nonlinear relationship between two variables, the presence of outliers has a reduced 
influence on distance correlation, and the distance correlation is zero only if the ran-
dom vectors are independent. Distance correlation is a valuable, practical, and natural 
tool in data analysis [17]. Inspired by MICA, we incorporated distance correlation into 
WGCNA to construct a distance correlation-based WGCNA (DC-WGCNA) algorithm 
for gene co-expression analysis. In DC-WGCNA, the correlation coefficients between 
the gene expression profiling data are calculated by distance correlation, and the other 
process of DC-WGCNA is identical to the traditional WGCNA except for the different 
correlation coefficients. To illustrate the performance of distance correlation, the three 
most popular used and representative correlation coefficients were selected for com-
parison: Pearson product-moment correlation, Spearman’s rank-order correlation, and 
maximal information coefficient (MIC) based on information entropy.

In this study, we mainly used four datasets, macrophage [22–24] and liver [25, 26] 
datasets were from microarray datasets. The data were normalized by the robust multi-
array average (RMA) method. Here, we used the macrophage dataset comprising 329 
samples, for which 3611 genes were retained. Simultaneously, the liver dataset com-
prised 288 samples and 3089 genes. Cervical cancer and pancreatic cancer datasets were 
RNA-seq datasets derived from The Cancer Genome Atlas (TCGA). These datasets are 
transformed logarithmic and RSEM normalized. We selected 3808 genes in 308 samples 
for the cervical cancer dataset. For the pancreatic cancer dataset, there are 3029 genes in 
183 samples.

Results
In this section, we first illustrate that distance correlation is suitable for measuring the 
correlation between two genes. Simultaneously, distance correlation is compared with 
the other three typical correlation analysis methods named Pearson correlation, Spear-
man correlation, and MIC. Then, we construct a distance correlation-based WGCNA 
(DC-WGCNA) algorithm for gene co-expression analysis by replacing the Pearson cor-
relation in WGCNA with distance correlation. Finally, we validate the performance of 
the new algorithm based on scale-free topology (SFT) fit, clustering results, enrichment 
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analysis, and module stability by analysing gene expression profiles using four datasets 
from microarray data and RNA-seq data. In Fig. 1, we provide a flowchart of this study.

Distance correlation is distribution free

A normal distribution is not a requirement for using the Pearson correlation coeffi-
cient, but the testing for statistical significance of the correlation may be reduced, so 
the Pearson correlation coefficient is usually not suggested for non-normally distributed 
data [12, 15, 27, 28]. The gene data we used were usually log-transformed to achieve 
a normal distribution. However, most genes are in fact not normally distributed even 
after log transformation. To verify that the data were normally distributed, we show the 
normal quantile-quantile (QQ) plots of the gene expression profile obtained from the 
macrophage and cervical cancer datasets in Fig. 2. Each sub-figure of Fig. 2 is a normal 
QQ plot of one gene expression profile. A normal QQ plot comparing a gene expres-
sion profile on the vertical axis to a standard normal population on the horizontal axis is 
shown. In the QQ plots, normally distributed data appear as an approximately straight 
line. The GPHN gene shown in Fig. 2a is approximately normally distributed. However, 
in Fig. 2b, c, the points are not clustered on the 45◦ line, but rather follow a curve, sug-
gesting that the genes are not normally distributed. The data for these two microarrays 

Define a gene co-expression similarity 
Goals: evaluate the identification ability of 
different relationship and the efficiency of
distance correlation

Methods: ROC curves, outliers analysis and gene 
pairs stability analysis

Choose the soft-thresholding power

Goals: investigate the scale-free topology of the correlation 
coefficients

Methods: scale-free fit index

Identify network modules (clustering)
Goals: Evaluate the gene co-expression networks 
constructed by different correlation coefficients

Methods: enrichment analysis and stability analysis

Input gene expression profiles data
Goals: verify the distribution of gene expression profiles data

Methods: QQ plot and Shapiro-Wilk test

Fig. 1  Flowchart of the study. This flowchart presents a brief overview of the evaluation goals and methods 
for distance correlation in each main steps of WGCNA
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show skewness and a bimodal distribution, respectively. These distributions were also 
observed in the RNA-seq data for cervical cancer, where the results shown in Fig.  2d 
are approximately normally distributed, in Fig. 2e show a skewness distribution, and in 
Fig. 2f show a bimodal distribution.

Using the Shapiro-Wilk test [29], we calculated the percentage of genes with a p-value 
greater than 0.01, which were considered to be normally distributed. In the macrophage 
dataset, approximately 34.26% of genes were normally distributed, while this value was 
30.88% in the liver dataset, 37.65% in the cervical cancer dataset, and 23.21% in the pan-
creatic cancer dataset. Thus, most of the genes in these four datasets were not normally 
distributed. Since distance correlation does not require any distributional assumption 
[17], testing for the statistical significance of distance correlation will not be less even if 
the data are non-normally distributed, which differs from the Pearson coefficient. Thus, 
a reasonable measurement value is given by the distance correlation, making distance 
correlation more suitable for measuring the dependence between two genes.

Distance correlation better fits complex relationships

Complex relationships between genes are pervasively observed in biological systems. 
In Fig. 3, we provide several examples of relationships observed between pairs of genes 
from microarray data and RNA-seq data. These relationships of gene pairs were selected 
based on the Pearson correlation values, the distance correlation values, and the differ-
ence between them. Specifically, a small distance correlation value indicates an almost 
independent relationship. A small difference between the Pearson and distance correla-
tion values might associate with linearity. A greater Pearson coefficient than distance 
correlation value indicates the potential for outliers in the direction of the regression 
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Fig. 2  Normal QQ plot of gene expression profiles obtained from the macrophage and cervical cancer 
datasets. The gene distribution is not only normal but also includes other types of probability distribution
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(c) Power function in macrophage
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(f) Independent in cervical cancer
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(h) Power function in cervical cancer
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Fig. 3  Complex relationships observed between pairs of genes and corresponding ROC curves (sample size 
n = 30). The distance correlation can well-represent complex relationships between genes
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line of the normal data. A smaller Pearson coefficient than the distance correlation value 
indicates a nonlinear relationship or outliers in the normal direction of the regression 
line.

s shown in Fig. 3a, the relationship between the two genes was approximately inde-
pendent. Figure 3b shows a linear and monotonic relationship between the two genes. 
In Fig. 3c, a significant power function relationship can be observed between the two 
genes, suggestive of a non-linear and monotonic relationship. Figure  3d, e show the 
threshold and quadripartite relations, respectively, which are nonlinear and non-mono-
tonic. For RNA-seq data cervical cancer, independent, linear and power function rela-
tionships can also be observed in Fig. 3f–h. Figure 3i shows the parabolic relation, which 
is nonlinear and non-monotonic. To evaluate the identification ability of different corre-
lation coefficients, we correspondingly show the receiver operating characteristic (ROC) 
curves of the four methods (sample size of 30) in Fig. 3. Table 1 provides the areas under 
the ROC curves obtained by applying each method for every gene relationship corre-
sponding to Fig. 3. For each varied sample size n ( n = 15, 30, 60 ), we applied the statisti-
cal tests (null hypothesis: two variables independent, alternative hypothesis: dependent). 
The ROC curves were constructed by repeating the above procedure 1000 times. In the 

Table 1  Areas under the ROC curves for different relationships obtained by each method

Type of association Sampling 
number

Pearson Spearman MIC Dcorr

Independent in macrophage 15 0.497640 0.490286 0.452818 0.473846

30 0.497310 0.490880 0.466964 0.476830

60 0.471582 0.455186 0.441598 0.427666

Linear in liver 15 0.885432 0.870752 0.777636 0.876410

30 0.978370 0.977436 0.894208 0.974430

60 0.999530 0.999334 0.967184 0.999214

Power function in macrophage 15 0.951840 0.879982 0.812880 0.958504

30 0.996426 0.983466 0.953426 0.997150

60 1.000000 0.999616 0.995276 0.999992

Threshold in macrophage 15 0.639518 0.614368 0.642340 0.730636

30 0.739068 0.724708 0.833202 0.871750

60 0.890084 0.872332 0.946704 0.976500

Complex in liver 15 0.580804 0.546426 0.636092 0.816852

30 0.559342 0.567496 0.860154 0.930690

60 0.533458 0.626920 0.955248 0.991334

Independent in cervical cancer 15 0.488086 0.486846 0.447234 0.476932

30 0.486354 0.484166 0.468006 0.457722

60 0.467092 0.458260 0.408864 0.389114

Linear in cervical cancer 15 0.867518 0.864164 0.777916 0.861502

30 0.974396 0.980996 0.889826 0.975538

60 0.999226 0.999606 0.964436 0.999472

Power function in cervical cancer 15 0.957340 0.903698 0.840232 0.952058

30 0.997856 0.985916 0.959978 0.997838

60 1.000000 0.999926 0.996460 0.999998

Parabolic in cervical cancer 15 0.564414 0.574200 0.557816 0.641100

30 0.556910 0.643414 0.714194 0.744158

60 0.531748 0.756100 0.831724 0.877858
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ROC curves, the x-axis denotes the significance level (P-value), and the y-axis denotes 
the proportion of the rejected null hypothesis. The ROC curves show the proportion 
of the rejected null hypothesis on different significance levels. When the two variables 
are dependent, the higher the proportion of rejected null hypothesis, the stronger is the 
correlation coefficient identification ability at the same significance level. Then, if the 
power curve of the measure increases rapidly, the responding area close to 1 denotes 
high power. A ROC curve close to diagonal 45◦ or an area under the ROC curve close to 
0.50 is equivalent to random decisions [28].

Next, we will discuss the ability of the four correlation methods to identify the rela-
tionship of various variables by using the ROC curves in Fig. 3 and the areas under the 
ROC curves in Table  1. The results shown in Fig.  3a is the independent relationship 
in the macrophage: the ROC curve of each algorithm is close to the diagonal 45◦ and 
the area under the curve is close to 0.5. All four methods failed to identify any associa-
tion, which correctly reflected the independent relationship between the two genes. The 
results are shown in Fig. 3b is the linearity in the liver: the Pearson, Spearman, and dis-
tance correlation could quickly identify a linear correlation, but the MIC was relatively 
weaker in terms of identifying a linear relationship. Figure 3c shows the power function 
relationship in the macrophage: Pearson and distance correlation were the most power-
ful methods to identify this relationship, while Spearman was the second most powerful 
and MIC the weakest. It should be noted that the Pearson coefficient, which is gener-
ally considered to have a strong ability to recognize linear relationships, in this case, 
Fig. 3c can identify the non-linear monotonic relationships with high power. Figure 3d, e 
respectively show thresholds relationship in macrophage and quadripartite relationship 
in the liver, both of which were non-linear and non-monotonic. For these kinds of rela-
tionships, distance correlation has the strongest identification ability, followed by MIC 
and Pearson and Spearman as the weakest (lowest power). For RNA-seq cervical cancer 
data, independent, linear and power function relationships are also observed in Fig. 3f–
h. The ability to identify the relationship is consistent with the microarray data. Figure 3i 
reflects the parabolic relationship, which is non-linear and non-monotonic. For this kind 
of relationship, distance correlation has the strongest identification ability, followed by 
MIC, Spearman, and Pearson as the weakest (lowest power).

Distance correlation is robust to outliers

In statistics, an outlier is a data point that differs significantly from other observations 
[30]. We selected four pairs of genes from the liver and cervical cancer dataset to observe 
the effect of outlier points on correlation coefficients. In Fig. 4a, b, d, e, the values of four 
correlation coefficients with and without outliers are shown, respectively. In Fig. 4a, a 
point in the bottom left corner was determined as the outlier using the local outlier fac-
tor (LOF) algorithm [31]. The LOF algorithm is implemented using the ‘lofactor’ Func-
tion in the R package ‘DMwR’ [32]. All the correlation values decreased when the outlier 
points were removed, and the correlation coefficients became larger when the outliers 
were in the direction of the regression line of the normal data. In Fig. 4b, five points in 
the bottom right corner were determined as outliers using the LOF algorithm. Moreo-
ver, these outliers were in the normal direction of the regression line and maintained a 
good distance from it. The correlation coefficients with outliers were smaller than those 
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without outliers. By comparing the two pairs of data, the Pearson coefficient changed the 
most, while the other three correlation coefficients did not vary as sharply. These results 
indicate that Pearson correlation is too sensitive to outliers even if there are few, but dis-
tance correlation and other correlation coefficients are not as sensitive. Researchers may 
incorrectly identify the correlation of two genes if the analysis is performed only accord-
ing to Pearson coefficient values in the presence of outliers. From the ROC curve shown 
in Fig. 4c corresponding to Fig. 4b, the correlation identification ability of distance cor-
relation is strongest, while the Pearson coefficient is weakest in the presence of gene cor-
relations and outliers.

The phenomenon in which outliers lie in the direction of the regression line and in the 
normal direction can also be found in the RNA-seq data for cervical cancer (see Fig. 4d, 
e). This conclusion was consistent with the microarray data. Pearson correlation is too 
sensitive to outliers, and the correlation identification ability of distance correlation is 
strongest.

For most cases shown in Table 1, if two genes were dependent, the probability of type 
I error decreased as the sample size increased, the probability of rejecting H0 increased, 
and the area under the curve increased. As a result, relationships between genes become 
easier to recognize when the samples size is increased. However, in the case of outliers 
in Table 2, the area under the curve obtained by the Pearson coefficient decreased with 
increasing sample size. Thus, the ability of the Pearson coefficient to identify the rela-
tionship between genes decreased because the probability of sampling outliers will be 
higher with increasing sample size. The Pearson coefficient was too sensitive to outliers; 
thus, its ability to identify the correlation between two genes was weakened. For the four 
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datasets used in this paper, when outliers existed, the distance correlation was robust to 
the outliers, and the ability to identify correlations between genes was strongest.

Based on the above findings, distance correlation seemed more appropriate than 
other correlation coefficients for the identification of relationships between genes. In 
this paper, distance correlation was applied to construct the gene co-expression net-
work, so we will discuss the difference between distance correlation and the classical 
Pearson coefficient, which is used in WGCNA. Additionally, the difference between DC-
WGCNA and WGCNA is also compared and analysed.

Effects of distance correlation on different datasets

Szekely et al. [33] verified that the value of the distance correlation is always less than 
the absolute value of the Pearson correlation for bivariate normal data. Nevertheless, the 
difference between the two values is small. From the discussion in “Distance correlation 
better fits complex relationships” section, the identification capabilities of the linear and 
monotonous relationships between genes in the Pearson correlation and distance cor-
relation were similar. Therefore, we could estimate that a complex relationship existed 
between two random variables if the distance correlation value was larger than the Pear-
son correlation. Here the complex relations refers to the non-bivariate normal data and 
non-linear and non-monotonic relations. Generally, the correlation value greater than 
0.8 is described as strong correlation while the value less than 0.5 is described as weak 
correlation [34]. To measure the proportion of complex relationships in the microarray 
and RNA-seq datasets, we selected pairs of genes with distance correlation coefficients 
greater than 0.5 from the four datasets. Next, we analysed the distribution of Pearson 
correlation coefficients of the reserved pairs of genes. Of the total gene pairs, 9.98% had 
Pearson correlation coefficients less than 0.5 in the macrophage dataset (Fig. 5a). More-
over, the ratios in the liver dataset, (Fig.  5b), the cervical cancer dataset (Fig.  5c) and 
pancreatic cancer dataset (Fig. 5d) were 10.61%, 6.09% and 12.35%, respectively.

The cut-off threshold was used in the gene co-expression network [35, 36]. If 0.5 was 
used as the correlation coefficient cut-off threshold, approximately 10% of the complex 
correlated data information would be lost using the criterion that the Pearson corre-
lation coefficient must be greater than 0.5. In WGCNA, soft-thresholding power was 
used, which amplifies disparity between strong and weak correlations. When the Pear-
son coefficient was used, these complex relationships achieved a smaller value, which 
would be further weakened by the soft threshold, resulting in a small weight of the two 
genes and inaccurate clustering results.

Table 2  Areas under ROC curves in the presence of outliers using each method

Type of association Sampling 
number

Pearson Spearman MIC Dcorr

Outliers 2 in liver 15 0.948112 0.908492 0.850688 0.974058

30 0.879612 0.988404 0.954280 0.999168

60 0.707942 0.999900 0.993774 1.000000

Outliers 2 in cervical cancer 15 0.812824 0.740076 0.677720 0.814222

30 0.912892 0.891988 0.804872 0.948394

60 0.859602 0.984052 0.920278 0.995328
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Distance correlation shows evidence of SFT

Studies reported by Barabasi and Albert have suggested that the underlying topology of 
biological networks is approximately ’scale-free’ [37, 38]. It is important to identify hubs 
which dominate the SFT networks, such as genes, proteins, and metabolites, since they 
usually have great biological significance [39–42]. Therefore, we investigated the SFT of 
the two correlation coefficients for the four datasets.

Soft-thresholding powers are key parameters in the construction of a gene co-expres-
sion network. In Fig. 6, we plotted the scale-free fit index (y-axis) of the Pearson-based 
WGCNA (see Fig. 6a, c, e, g) and DC-WGCNA (see Fig. 6b, d, f and h) corresponding 
to the soft-thresholding power (x-axis) for the four datasets. The closer the scale-free 
fit index is to 1, the better is the scale-free network. It was previously recommended to 
choose the soft-thresholding power when the scale-free fit index first reaches 0.9 [37], 
which is represented by the red horizontal line.

For macrophage and liver datasets, SFT was achieved when we raised the simi-
lar matrix to the 4 power for both Pearson and distance correlation. Moreover, for the 
liver dataset, the scale-free fit index of the Pearson correlation was less than 0.9, and 
the scale-free fit index of the distance correlation was greater than 0.9 when the recom-
mended soft-thresholding power was 4. For the cervical cancer dataset, For both Pear-
son and distance correlation, after raising the correlation matrix to the power of 4, the 
SFT was achieved. The scale-free fit index of the Pearson correlation was greater than 
the distance correlation when the recommended soft-thresholding power was 4. Like-
wise, the pancreatic cancer dataset requires the power of 7 and 6. The scale-free fit index 
of the Pearson correlation was less than that of the distance correlation for the same 
soft-thresholding power.
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Fig. 5  Histograms of correlation coefficients for interactions with high distance correlation scores ( > 0.5 ). 
The red border in each panel represents the Pearson correlation, and the blue border represents the distance 
correlation. Approximately 10% of complex correlated data information would be lost using the criterion that 
the Pearson correlation coefficient must be greater than 0.5
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Fig. 6  Distance correlation returns a scale-free network structure. Pearson correlation and distance 
correlation both indicate a degree of SFT; however, distance correlation shows slight advantages in the 
scale-free fit index compared with Pearson correlation for the liver and pancreatic cancer dataset
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Generally for the datasets, Pearson correlation and distance correlation could both 
achieve SFT with no significant difference. However, distance correlation showed slight 
advantages in the scale-free fit index compared with Pearson correlation for the liver and 
pancreatic cancer datasets when using the same soft-thresholding power.

Cluster trees and modules

To illustrate the impact of the different correlation measures on the gene co-expres-
sion network, we assigned the same parameter for Pearson-based WGCNA and DC-
WGCNA with different correlation coefficients only. The cluster trees (dendrograms) of 
the two algorithms for the four datasets are shown in Fig. 7. The numbers of genes in 
each module are given in Additional file 1: Table S1.

In Fig. 7, modules are shown in different colours. For the macrophage dataset using 
Pearson-based WGCNA, 11 co-expression modules were constructed with 3,611 genes 
from 316 samples; however, this number was 9 using DC-WGCNA. For the liver data-
set using Pearson-based WGCNA, 13 co-expression modules were constructed with 
3,089 genes from 288 samples; however, this number was 10 using DC-WGCNA. For the 
cervical cancer dataset, using Pearson-based WGCNA, 7 co-expression modules were 
constructed with 3,808 genes from 308 samples; this number was 6 using DC-WGCNA. 
For the pancreatic cancer dataset, 12 co-expression modules were constructed with 
3,029 genes from 183 samples both using Pearson-based WGCNA and DC-WGCNA. 
Thereinto, the grey module composed of genes that were not assigned to any gene co-
expression module. The only obvious difference between these two algorithms was the 
correlation matrix when the input data and the other parameters were kept the same. As 
shown in Fig. 7, the number of modules identified by DC-WGCNA was usually less than 
that identified by Pearson-based WGCNA.

It can be intuitively seen that the cluster trees, module size, and cluster results 
obtained by the gene co-expression network analysis were completely different when the 
correlation coefficients were different and all other parameters identical. These findings 
indicate that the selection of correlation coefficients has a significant influence on the 
results of the gene co-expression network. Therefore, choosing an appropriate correla-
tion coefficient is very important for the construction of a gene co-expression network.

Gene enrichment comparison

Co-expressed genes are often involved in the same biological processes [43]. Therefore, 
the modules highly enriched for specific gene categories are more reasonable [18]. To 
compare the average enrichment score and stability of the algorithms, we assigned the 
appropriate values to the deepSplit and minClusterSize parameters in cutree-
Dynamic functions of the WGCNA package to make the module numbers obtained by 
WGCNA based on different correlation coefficients equal.

In the present analysis, we took the Top 3 enrichment scores in the Functional Anno-
tation Clustering of DAVID [44–46]. The higher the enrichment score, the lower the 
P-value, thus the greater was the enrichment. The enrichment score of modules is 
an important index to appraise the rationality of modules. We will discuss the aver-
age enrichment scores of the modules derived from the gene co-expression network 
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constructed with four different correlation coefficients to measure the enrichment 
degree of the co-expression network.

From Table 3, the modules from DC-WGCNA had a higher average DAVID enrich-
ment score for the three datasets. The DAVID enrichment score of each module can is 
given in Additional file 2: Table S2. The higher the DAVID enrichment score, the more 
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Fig. 7  Cluster trees corresponding to Pearson-based WGCNA and DC-WGCNA. The cluster trees identified by 
DC-WGCNA and Pearson-based WGCNA are different, so the modules differ
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reasonable is the module. Modules from DC-WGCNA had the highest average DAVID 
enrichment scores among the three datasets, second only to Pearson correlation in the 
liver datasets. Modules from MIC almost had the lowest average DAVID enrichment 
scores, which was consistent with the above analysis of statistical power.

For the liver dataset, the modules from WGCNA had a higher average DAVID enrich-
ment score. We considered this phenomenon to be due to the following two reasons. 
First, we observed many outliers in the liver dataset, similar to the result shown in 
Fig. 4a. In some cases, such an ‘outlier’ might actually be biologically meaningful [13]. 
Second, the enrichment score was influenced not only by the correlation coefficient but 
also by the randomness of input data, parameter selection, clustering algorithm, module 
size and the number of genes in modules.

To test whether the identified modules obtained by DC-WGCNA are biologi-
cally meaningful, take the cervical cancer samples as an example, the highly enriched 
(Top3) biological process (BP) terms in GO for network modules were summarized. 
The turquoise module is significantly enriched in categories “epidermis development” 
(p = 3.4E−14) which is correlated with Epithelial-Mesenchymal Transition in cervical 
cancer [47], “angiogenesis” (p = 2.3E−7) which is important early in cervical pathogene-
sis [48], “keratinocyte differentiation” (p = 1.8E−6) which is dependent by Human Papil-
lomaviruses (HPV) lifecycle, and the cervical cancers are driven by HPV of the high-risk 
variety [49]. Overall, the enrichment terms show the biologically meaningful of the 
modules obtained by DC-WGCNA.

To compare the biological functions of the modules between the Pearson-based 
WGCNA and DC-WGCNA. For the cervical cancer dataset, we selected the highly 
enriched BP terms ( p < 0.01 ) in GO for network modules obtained by the two methods. 
For the same colour, we calculated the numbers of overlapped BP terms between two 
modules obtained by the two methods and the proportion of the overlapped BP terms in 
the BP terms obtained by Pearson-based WGCNA. Thereinto, the proportion of the tur-
quoise module is 71.62% which shows that the potential biological functions of the mod-
ules obtained by different clustering methods are similar sometimes. Simultaneously, the 
proportion of the brown module is 7.14% which shows that the potential biological func-
tions of the modules obtained by different clustering methods are distinct obviously.

Stability analysis

In this section, we will compare the stability for highly correlated gene pairs and mod-
ules. First, we compare the stability based on highly correlated gene pairs. The microar-
ray and RNA-seq datasets were divided into two halves with the same number of samples 

Table 3  Average DAVID enrichment score for each dataset

Macrophage 
datasets

Liver datasets Cervical cancer Pancreatic cancer

Pearson 4.9685 6.1470 11.0860 7.9590

Spearman 4.3323 4.7704 11.5940 6.4339

MIC 4.1027 3.9617 8.6950 7.2693

Dcorr 5.2633 5.8904 14.2780 9.7644
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randomly, and calculated the correlation coefficients between different genes for each 
half independently. We calculated the Pearson coefficient of one half of the data and 
sorted these gene pairs according to the absolute Pearson value. The most correlated n 
( n = 5000, 10,000, 25,000, 50,000, 100,000 ) gene pairs were chosen. Then, we calculated 
the Pearson coefficient of these n gene pairs for the other half of the data. The stability of 
highly correlated gene pairs was demonstrated by comparing the mean absolute differ-
ence between the two halves of data. The smaller the mean absolute difference, the more 
stable it is. The same process was conducted for distance correlation. The results are 
shown in Fig. 8. For the macrophage dataset, Fig. 8a shows that the Pearson coefficient 
had good stability when the top number was small. With an increase in the top number, 
the stability of the distance correlation was stronger than the Pearson coefficient. For the 
liver data set, Fig. 8b shows that the stability of the distance correlation was significantly 
better than Pearson’s coefficient. Similarly, the advantage became more obvious as the 
top number increased. For the cervical cancer and pancreatic cancer datasets, the stabil-
ity of the distance correlation was significantly better than the Pearson coefficient, which 
can be seen in Fig. 8c, d.

To determine the module stability, the liver data were randomly divided into two 
groups with the same number of samples, and each group of data was processed inde-
pendently to obtain gene modules. To discuss the module preservation between the two 
parts of data, we examine the preservation significance (Fig.  9). The shade of the red 
colour here represents − log(p) , where p is the Fisher’s exact test p-value for the overlap 
between the two modules. The shade of the red colour indicates the significant of the 
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Fig. 8  Stability based on highly correlated gene pairs. The red border in each panel represents the Pearson 
correlation. and the blue border represents the distance correlation. The lower the height of the border, the 
higher is the stability. In general, the stability of distance correlation was better than Pearson’s coefficient, 
and with an increasing number of top correlated gene pairs selected, the advantage of distance correlation 
becomes more obvious
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p-value; The darker the colour, the smaller the P-value, the more significant the overlap, 
and the more stable the module [37]. The numbers in Fig. 9 represent the gene counts in 
the corresponding module interaction. Since the gray module consists of genes that are 
not assigned to any module, it is not surprising that the grey module does not overlap 
with other modules.

We assigned appropriate parameters to make the module numbers obtained by 
WGCNA and DC-WGCNA equal to 9. The recommended soft-thresholding powers of 
WGCNA were 5 and 4, the number of the modules whose preservation significances 
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larger than 50 was four (Fig.  9a). The red and green modules of part 1 of WGCNA 
showed relatively weak preservation. Moreover, the recommended soft-thresholding 
powers of DC-WGCNA were both 4. In Fig. 9b, five modules whose preservation signifi-
cance is larger than 50 are shown. The black module of part 1 of DC-WGCNA showed 
relatively weak preservation, and there were fewer modules with weak overlap. For the 
liver dataset, DC-WGCNA was more stable than WGCNA in terms of preservation sig-
nificance and suggested soft threshold. Other results from the other three datasets can 
be found in Additional file 3: Fig. S1. The results are similar to those obtained for the 
liver dataset,showing that DC-WGCNA was more stable than WGCNA. Since the divi-
sion of the data was random, the gene modules were different. However, the stability did 
not change dramatically in either test.

Discussion
In this paper, distance correlation was applied to WGCNA to construct a new gene co-
expression network analysis method and the algorithm was verified to be valid using 
microarray and RNA-seq datasets.

We showed the complexity of gene relationships using gene expression microar-
ray datasets and calculated the correlation coefficients of pairs of genes using different 
measures. The results showed that the distance correlation ability to detect various com-
plex relationships between genes was strong. Moreover, Pearson correlation was too 
sensitive to outliers, while distance correlation was robust. Therefore, distance correla-
tion is a good choice to measure the relationship between genes and discuss compara-
tively reasonable results.

To illustrate the efficiency of using distance correlation, we calculated the proportion 
of complex relationships in gene relationships when the distance correlation coefficient 
was greater than 0.5. Approximately 10% of relationships in the both microarray and 
RNA-seq datasets were complex.

To compare the performance of Pearson-based WGCNA and DC-WGCNA, we kept 
the other parameters constant and constructed a gene co-expression network using 
these two algorithms. DC-WGCNA showed slight advantages in the speed of achieving 
SFT and the scale-free fit index compared with Pearson correlation when the same soft-
thresholding power was used. For further research, we calculated the DAVID enrich-
ment score of the modules obtained using WGCNA based on four correlation measures. 
DC-WGCNA had a higher average DAVID enrichment score in most of the four data-
sets compared with the others. Moreover, considering the stability analysis, the mod-
ules from DC-WGCNA had better module preservation than those from Pearson-based 
WGCNA.

DC-WGCNA is significant, especially for gene datasets with complex relationships. 
However, the time complexity of distance correlation is O(n2) which is still a relatively 
expensive computation. The time complexity of distance correlation is greater than that 
of Pearson correlation of O(n). For example, the calculation of the distance correlation 
coefficients between approximately 3,000 genes in 300 samples by a PC (CPU: core i7) 
required approximately 9 hours. Moreover, according to the formula of distance correla-
tion, an n× n distance matrix must be calculated. Thus, the memory required is large 
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with a large number of samples. Fortunately, the number of samples analysed in this 
paper was small; therefore, the required memory was not vast. For the convenience of 
application, the R code used in this study has been provided in Additional file 4.

Conclusions
Compared with the Pearson correlation coefficient, distance correlation is distribution 
free and better fits complex relationships. Its limitation is the large computation time 
and inability to determine positive and negative correlations. When outliers exist and 
the significant impact on the correlation coefficient value is undesirable, distance cor-
relation is a better alternative choice. However, if these outliers are not errors and high-
light their biological significance, we can choose the higher value between Pearson and 
distance correlations.

In this paper, we only discuss the applicability of distance correlation in gene co-
expression network analysis. In fact, distance correlation is also suitable for measuring 
other complex relationships (such as proteins and metabolites), and we will attempt to 
apply distance correlation to other network analyses in our future work.

Methods
Distance correlation

Distance correlation was proposed in 2007 by Szekely, Rizzo, and Bakirov [17, 33]. For 
two random variables X and Y, the distance correlation coefficient is denoted as R(X, Y). 
And, Vn(X ,Y ) denotes the empirical distance covariance which is a non-negative num-
ber defined by:

Here, Akl and Bkl are defined as Akl = akl − āk . − ā.l + ā.. and Bkl = bkl − b̄k . − b̄.l + b̄.. , 
where akl = �Xk − Xl�p, bkl = �Yk − Yl�q with k , l = 1, . . . , n.

Likewise, for a random variable X, Vn(X) is non-negative and defined as

Finally, the empirical distance correlation Rn(X ,Y ) is the square root of the following 
scheme

In this paper, we use the energy package in R to calculate the distance correlation (see 
the references in the manual for more details; https://​CRAN.R-​proje​ct.​org/​packa​ge=​
energy).

Hypothesis testing and ROC curves

To evaluate the ability of the correlation coefficients for identifying the correlation 
between gene expression data, the concept of the receiver operating characteristic 
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(ROC) curve was introduced based on the correlation coefficient hypothesis test. The 
test of dependence between X and Y is described as a hypothesis test as follows: H0 : X 
and Y are independent. H1 : X and Y are dependent. The definition of the ROC curves, 
the hypothesis testing, and realization methods used for the four correlation coefficients 
are referred to [28].

Scale‑free topology

Scale-free networks are complex networks which have a few highly connected nodes and 
most poorly connected nodes [50, 51]. The relationship between the topological prop-
erties of network nodes (genes and proteins) and functional essentiality in interaction 
networks is well-known [42, 52, 53].

SFT [4] has determined that the frequency distribution p(k) of connectivity number 
follows the power law: p(k) ∼ k−γ , where k is a non-negative real number. The weighted 
gene co-expression network conforms to SFT. Whether the network satisfies approxi-
mate SFT can be intuitively determined by drawing log(p(k)) versus log(k). The model 
fitting index R2 is the squared of the correlation coefficient between log(p(k)) and log(k). 
There is a straight line between log(p(k)) and log(k) when R2 of the model approaches 1.

The WGCNA R package [37] provides functions that help to choose the parameters 
(pickSoftThreshold), and the function scaleFreePlot help to evaluate whether 
the network exhibits SFT.

WGCNA

WGCNA is a popular tool for identifying modules of highly correlated genes [4, 37, 54, 
55]. The function of WGCNA is plentiful; only part has been used in this paper. We will 
introduce the process of module division of WGCNA. For other functions, we refer to 
the tutorials for the WGCNA package at https://​labs.​genet​ics.​ucla.​edu/​horva​th/​Coexp​
ressi​onNet​work/​Rpack​ages/​WGCNA/​Tutor​ials/. The method used for network con-
struction proceeded as follows. First, a similarity co-expression matrix was calculated 
with Pearson or another correlation coefficient cor(i,  j) for all gene expression profiles. 
In this paper, we focused on the unsigned network in which the correlation coefficients 
are changed into absolute values. Next, an adjacency matrix is obtained from the simi-
larity co-expression matrix by using the soft-thresholding power. The power is selected 
according to the criteria of approximately fitting the SFT network. Then, from the adja-
cency matrix, a topological overlap matrix is obtained. Based on the dissimilarity topo-
logical overlap matrix, a dendrogram was generated by using the hierarchical clustering 
method. Finally, different numbers of modules were obtained by dynamic tree cutting.

DAVID enrichment analysis

DAVID [45, 46] is a database of bioinformatics resource which is available at http://​
david.​abcc.​ncifc​rf.​gov/. In this paper, the enrichment score of the DAVID Functional 
Annotation Clustering report is used. The report combines annotation terms from 14 
public databases including KEGG pathways and Gene Ontology. The report makes the 
similar annotations class together and makes the biology clearer. The Group Enrichment 

https://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/
https://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/
http://david.abcc.ncifcrf.gov/
http://david.abcc.ncifcrf.gov/
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Score is the geometric mean of the log p-values in the annotation term cluster, which is 
used to evaluate the enrichment significance of a gene module.

Module stability

To evaluate the stability of the modules obtained by Pearson-based WGCNA and DC-
WGCNA, one dataset was divided into two groups with the same number of samples 
randomly, and each group of data was processed independently to obtain gene modules 
to discuss the module preservation between the two parts. We calculated the overlaps of 
the two modules for each pair and used Fisher’s exact test to obtain a p-value for each of 
the pairwise overlaps. Module stability was processed by the R code (see [37]).

Datasets

We evaluated the performance of this approach primarily on four different arrays (mac-
rophage and liver) and RNA-seq (Cervical cancer and pancreatic cancer) datasets.

The macrophage and liver datasets were expression profiling by the array. We used 
329 samples for macrophage dataset [22–24]. The liver dataset was gene expression in 
mice tissues consisting of 288 samples [25, 26]. Moreover, the data of both datasets were 
normalized using the RMA method. The macrophage and liver data can be downloaded 
from http://​www.​ncbi.​nlm.​nih.​gov/​geo/ under series GSE38705 and GSE16780, 
respectively.

The computation complexity of distance correlation is large O(n2) . To overcome this 
computational difficulty and obtain the distance correlation coefficient, it is crucial to 
screen genes and limit the number of genes screened to a small number. From a bio-
logical point of view, a gene must be expressed to some extent before it can be translated 
into protein or considered biologically significant [56], and low-expression genes may 
be difficult to discern from noise [57]. Thus, we removed the genes with low expression 
by filtering. Simultaneously, we selected the genes whose expression varied significantly, 
since the genes without variation are uninformative for network analysis [18]. We cal-
culated the coefficient of variation for each probe set. Then, the dataset will be reduced 
by selecting probes beyond the average intensity and the coefficient of variation (CV) 
is greater than 5%. In this way, we selected 3,611 genes for the macrophage dataset and 
3,089 genes from the liver dataset for analysis.

Cervical cancer and pancreatic cancer datasets from Gene expression RNA-seq were 
performed using TCGA: https://​www.​cancer.​gov/​tcga. About the technique of obtaining 
cervical cancer and pancreatic cancer datasets, we refer to [58, 59]. The gene expres-
sion data of the datasets are transformed log2(x + 1) and RSEM normalized count. Then, 
we calculated the average and CV of the gene expression profiles. And, the dataset was 
reduced by selecting probes beyond the average intensity and CV is greater than 10%. 
We selected 3808 genes in 308 samples for the cervical cancer dataset. For the pancreatic 
cancer dataset, there are 3029 genes in 183 samples.
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