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Abstract: The development of subunit vaccines against African swine fever (ASF) is mainly hindered
by the lack of knowledge regarding the specific ASF virus (ASFV) antigens involved in protection. As
a good example, the identity of ASFV-specific CD8+ T-cell determinants remains largely unknown,
despite their protective role being established a long time ago. Aiming to identify them, we imple-
mented the IFNγ ELISpot as readout assay, using as effector cells peripheral blood mononuclear
cells (PBMCs) from pigs surviving experimental challenge with Georgia2007/1. As stimuli for the
ELISpot, ASFV-specific peptides or full-length proteins identified by three complementary strategies
were used. In silico prediction of specific CD8+ T-cell epitopes allowed identifying a 19-mer peptide
from MGF100-1L, as frequently recognized by surviving pigs. Complementarily, the repertoire of
SLA I-bound peptides identified in ASFV-infected porcine alveolar macrophages (PAMs), allowed
the characterization of five additional SLA I-restricted ASFV-specific epitopes. Finally, in vitro stimu-
lation studies using fibroblasts transfected with plasmids encoding full-length ASFV proteins, led
to the identification of MGF505-7R, A238L and MGF100-1L as promiscuously recognized antigens.
Interestingly, each one of these proteins contain individual peptides recognized by surviving pigs.
Identification of the same ASFV determinants by means of such different approaches reinforce the
results presented here.

Keywords: ASFV; CD8+ T-cells; antigen presentation; IFNγ ELISpot; epitope predictions; im-
munopeptidomics; promiscuous epitope
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1. Introduction

African swine fever (ASF) is a hemorrhagic viral disease of pigs that courses with
lethality rates up to 100% in its acute forms. Due to the devastating impact of the disease,
including national and international trading restrictions, ASF is included in the Terrestrial
Animal Health Code of the World Organization for Animal Health (OIE) as a notifiable
disease. To date, no commercial vaccines are available against ASF, and hence, control
strategies are based on early diagnosis, animal quarantine and slaughter of infected and
in contact pigs. Despite guidelines have proven effective in wealthy areas where compen-
sation policies are correctly applied [1], their implementation in less favored areas have
demonstrated inefficient, recommending additional efforts in research and development of
complementary antiviral treatments and vaccines, not available today.

African swine fever virus (ASFV) is the sole member of the family Asfarviridae, genus
Asfivirus, and it is included in the nucleocytoplasmic large DNA virus superfamily [2].
ASFV was first described in Kenia in 1921 as an endemic virus continuously circulating
between African wild pigs and ticks from the Ornithodoros genus in an asymptomatic
manner [3]. Since then, ASF remained endemic in many sub-Saharan countries with
sporadic exportations to other continents. Two ASFV entries in Portugal, dated in 1957
and 1960, provoked 40 years of ASFV endemicity in the Iberian peninsula, the sporadic
occurrence of ASF in some countries of Europe and South America and the establishment
of ASFV in Sardinia since 1978 until today [4]. Continental Europe became free of ASF in
1997, but only 10 years later, in 2007, ASFV reentered Europe through Georgia, rapidly
expanding to neighboring countries of Eastern Europe [5]. In 2014, the virus entered the
European Union (EU) territory for the first time, affecting both domestic pigs and wild
boars, the latter playing a critical role in ASF spread. In this area, the main causes of ASFV
transmission include pig to pig contact, infected pig products, or infected fomites, such as
transport vehicles [4]. Conversely, wild boar-mediated transmission has been considered a
minor risk factor in Asia, albeit this view is currently being revised, with some countries
reporting relevant outbreaks in their wild boar populations [6]. Since its first declaration in
China in 2018, most probably due to the importation of contaminated pork products, ASFV
has expanded extremely fast to all neighboring countries, reaching more than 28 countries
from Asia and Oceania, causing an economic crisis of gigantic proportions [7,8]. Therefore,
developing safe and efficacious vaccines against ASF is a priority for the swine industry
worldwide [9].

Immunization with recombinant live attenuated viruses (LAV) conferred protection
against experimental challenge with genotype II ASFV strains, currently circulating in
Europe and Asia [10–14]. Unfortunately, the molecular and immunological mechanisms
eliciting this immunity are poorly understood, albeit innate immune responses [15–18],
and both ASFV-specific antibodies [19,20] and CD8+ T-cells [21], may play complemen-
tary roles. CD8+ T-cell responses, in the absence of antibodies, have demonstrated to be
responsible for the partial protection triggered by DNA vaccines in the absence of antibod-
ies [22,23]. Nevertheless, the protection afforded so far has been limited to homologous
lethal challenge with E75 (genotype I) [22,23], and has proved unsuccessful against experi-
mental challenge with Georgia2007/1 [24]. In addition, the complexity of ASFV, encoding
more than 150 proteins [25–28], challenges the identification of the specific antigens and
determinants inducing protective responses.

The aim of this study was to explore the effectiveness of three different strategies to
identify ASFV CD8+ T-cell epitopes and ASFV proteins, presented in the SLA I-context
and promiscuously recognized by CD8+ T-cells from ASF survivors. The detection of
ASFV-specific T-cells was assessed by IFNγ ELISpot, using peripheral blood mononuclear
cells (PBMCs) as effector cells from pigs experimentally vaccinated with BA71∆CD2 [12]
and surviving the infection with Geogia2007/1, the virulent ASFV globally circulating.
Different stimuli were used for the ELISpot assay: (i) synthetic peptides selected by in silico
predictions; (ii) synthetic peptides selected by immunopeptidomics; or (iii) autologous
fibroblasts transfected with plasmids encoding individual full-length open reading frames
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(ORFs) fused to ubiquitin [22,23,29,30]. Together with a complete list of ASFV peptides
susceptible to be presented in the SLA I context, here, we report a collection of specific
peptides and proteins that are specifically recognized by T-cells from ASF surviving pigs.
Furthermore, the three ASFV antigens characterized as promiscuously inducing specific
T-cell responses (independently of the SLA I haplotype), were concomitantly identified by
the different methods here implemented.

2. Materials and Methods
2.1. Cells and Viruses

Porcine alveolar macrophages (PAMs) from healthy conventional pigs (Landrace ×
Large White) were obtained by bronchoalveolar lung lavage. Porcine PBMCs were isolated
from whole blood using Histopaque-1077 density gradient solution (Sigma-Aldrich, Saint
Louis, MO, USA). Porcine primary fibroblast cultures were obtained from 2 cm2 pieces of
ear tissue sample following previously described protocols [31].

Two ASF viruses were used: BA71 and the live attenuated BA71∆CD2 virus, a deletion
mutant from BA71 lacking the CD2v gene (EP402R) previously obtained in the laboratory [12].

2.2. Multiparametric In Silico Predictions of ASFV-CD8+ T-Cell Epitopes

Georgia2007/1 proteome was retrieved from Uniprot (UP000141072) for in silico CD8+

T-cell epitope prediction. Predictions were made using the NetMHCpan 3.0 software [32],
considering 42 SLA class I alleles. Peptides ranging from 8 to 11 amino acid residues, with
an IC50 (concentration of peptide inhibiting binding of a standard peptide by 50%) below
500 nM were selected. A total of 8648 different sequences were obtained. To further select
the most promising theoretical CTL candidates, additional features were considered for
each peptide, including: (i) proteasome cleavage, analyzed by using the MHC-I Processing
tool from IEDB (http://tools.iedb.org/processing); (ii) promiscuity: the number of SLA I
alleles predicted to bind the peptide with an affinity of 500 nM or lower (out of the 42 alleles
screened); (iii) overlap: the number of predicted peptides with a SLA binding affinity of
500 nM or lower, overlapping in at least one amino acid to a given polypeptide; (iv) peptide
immunogenicity [33]; and (v) binding affinity of peptides to the transporter associated with
antigen processing (TAP) using TAPREG scoring [34], successfully used in the laboratory
to identify two CD2v CTL peptides from the E75 ASFV strain [22]. The list of candidates
(266 peptides) was obtained, taking into account all these parameters. Finally, 64 larger
peptides (15–27 amino acids) were added to the peptide collection, according exclusively to
the presence of ten or more overlapping peptides within their sequence, being considered
putative hot spots for promiscuous SLA I antigen presentation.

2.3. Typing of SLA I Genes

Typing PAMs were performed using genomic DNA isolated using NucleoSpin Blood
kit (Macherey-Nagel, Düren, Germany), and SLA-1, SLA-2 and SLA-3 classical SLA I genes.
Typing was performed following previously established protocols [35–37].

2.4. In Vitro Infection of PAMs with ASFV

For each virus, a 6-well plate was used with 5 × 106 PAMs/well. PAMs were infected
using a multiplicity of infection (MOI) of 0.01. Cells were harvested by scrapping and
pellets frozen at −80 ◦C until used. Cell supernatants were harvested at different times to
follow the virus kinetics by qPCR as previously described [23].

2.5. Determination of Cell Viability and Percentage of Infected Cells by Flow Cytometry

Cell viability was measured using the LIVE/DEAD fixable violet dead cell stain kit
(Invitrogen, Carlsbad, CA, USA). To determine the percentage of infected cells, PAMs were
permeabilized using Cytofix/Cytoperm fixation/permeabilization kit (BD Biosciences,
Allschwil, Switzerland). Anti-ASFV p72 mouse monoclonal antibody (clone 1BC11, Inge-
nasa, Madrid, Spain) diluted 1/100 was used, followed by APC-conjugated AffiniPure

http://tools.iedb.org/processing
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Goat Anti-Mouse IgG1 (Jackson ImmunoResearch, West Grove, PA, USA) diluted 1/200 as
secondary antibody. A BD FACSAria IIu was used for analysis (BD Biosciences).

2.6. Affinity Purification of SLA I Molecules

Anti-SLA I monoclonal antibody (mAb) 4B7/8 [38] was purified from hybridoma
supernatant by affinity chromatography using a Sepharose 4Fast Flow resin, coupled
with an antibody recognizing mouse kappa L chains (Capture Select LCkappa (mur),
Thermofisher, Waltham, MA, USA). The antibody was then extensively dialyzed against
0.1 M sodium carbonate buffer pH 8.3 containing 0.5 M NaCl in a D-tube dialyzer maxi
with a molecular weight cut-off of 12–14 kDa (Novagen, Madison, WI, USA). Dialyzed α-
SLA I antibody was next coupled to CNBr Sepharose beads, following the manufacturer’s
instructions (GE Healthcare, Chicago, IL, USA). PBS 0.1% (w/v) sodium azide was used for
long-term storage of the coupled sepharose at 4 ◦C.

Cell pellets were thawed on ice and lysed with 500 µL of 1% n-Dodecyl β-D-Maltoside
(Thermo Fisher Scientific, Waltham, MA, USA) in immunoprecipitation buffer (50 mM
Tris-HCl, pH 8 containing 150 mM NaCl) plus 1X complete protease inhibitor cocktail
(Thermo Fisher Scientific, Waltham, MA, USA), and incubated with an equal volume of the
sepharose-conjugated α-SLA I for 8 h at 4 ◦C with end-over-end rotation. Non-specifically
bound molecules were removed by washing and, finally, SLA I-peptides complexes were
eluted in 4–5 sepharose volumes of 50% acetonitrile, 5% formic acid, and stored at −80 ◦C
until further analysis.

2.7. Western Blot to Detect Immunoprecipitated SLA I-Peptide Complexes

A total of 2.5% of each sample was run in a 4–12% gradient NuPAGE Bis-Tris acry-
lamide SDS-PAGE (Invitrogen, Carlsbad, CA, USA). His-tagged protein ladder (Ther-
mofisher, Waltham, MA, USA) was used as molecular weight marker. The gel was trans-
ferred to a nitrocellulose membrane (Amersham, Protran Premium), using a XCell Sure-
Lock™ Mini-Cell with a blot module (Thermofisher, Waltham, MA, USA). Following
transfer, the nitrocellulose membrane was blocked in 3% non-fat milk (w/v). 4B7/8 α-SLA
I hybridoma supernatant (4 µg/mL) and anti-mouse IgG HRP-conjugated (Sigma-Aldrich,
Saint Louis, MO, USA, 1:10,000) were used as primary and secondary antibodies, respec-
tively. For the His-tag marker, mouse anti-His tag HRP-conjugated (Novex, Thermofisher,
Waltham, MA, USA) 1:100,000 was used. After extensive washing, the specific signal on the
membrane was developed by using Western Lightning Ultra chemiluminescence substrate
(PerkinElmer, Waltham, MA, USA) for 5 min at RT in the dark. A Fluorchem HD2 (Alpha
Innotech, Kasendorf, Germany) was used for imaging.

2.8. On-Tip Desalting and LC-MS/MS Analysis

The proteomic analysis was performed in the CSIC/UAB Proteomics Facility of IIBB-
CSIC that belongs to ProteoRed, PRB2-ISCIII, supported by grant PT13/0001. Samples
were desalted with TopTips C18 (PolyLC Inc., Columbia, MD, USA), following the standard
procedure. The eluates obtained from the desalting process were evaporated to dryness
and reconstituted in 20 µl of 5% MeOH, 1% HCOOH for analysis by LC-MS/MS (at the
Proteomics Laboratory of CSIC-UAB). The MS system used was an LTQ XL Orbitrap
(ThermoFisher) equipped with a nanoESI ion source. The total amount of each sample
(20 µL) was loaded into the chromatographic system consisting in a C18 preconcentration
cartridge (Agilent Technologies, Barcelona, Spain) connected to a 15 cm long, 100 µm
i.d. C18 column (Nikkyo Technos Co Ltd., Tokyo, Japan). The separation was done at
0.4 µL/min in a 120-min acetonitrile gradient from 3 to 40% (solvent A: 0.1% formic acid,
solvent B: acetonitrile 0.1% formic acid). The HPLC system was composed of an Agilent
1200 capillary nano pump, a binary pump, a thermostated micro injector and a micro
switch valve. The LTQ XL Orbitrap was operated in the positive ion mode with a spray
voltage of 1.8 kV. The spectrometric analysis was performed in a data dependent mode,
acquiring a full scan followed by 10 MS/MS scans of the 10 most intense signals detected in
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the MS scan from the global list. The full MS (range 400–1800) was acquired in the Orbitrap
with a resolution of 60,000. The MS/MS spectra were done in the linear ion-trap.

2.9. Database Search and Peptide Identification

All LC-MS/MS spectra were searched using SEQUEST (Proteome Discoverer v1.4,
ThermoFisher, Waltham, MA, USA) using a combined database, including Sus Scrofa, BA71
and Georgia2007/1 ASFV genomes, and the 6-frame translation of each virus genome (in
order to identify peptides in and out of known ORFs). The following parameters were
fixed: peptide confidence = High, peptide rank = 1, Xcorr > 2.

2.10. PBMC Purification

Male Landrace × Large White piglets aged 6–8 weeks old were used, and animal care
and procedures were carried out in accordance with the guidelines of the Good Experi-
mental Practices and under the supervision of the Commission of Animal Experimentation
of Generalitat de Catalunya (approval code CEA-OH/9212/2). In vivo experiments were
performed at the biosafety level 3 facilities at the Centre de Recerca en Sanitat Animal
(IRTA-CReSA, Barcelona, Spain).

Pigs were intramuscularly immunized with BA71∆CD2 (3.3 × 104 or 106 PFU), and
three weeks after, pigs were challenged with 103 GEC of Georgia2007/1. Three to four
weeks later, PBMCs were collected, at the peak of ASFV-specific humoral and T-cell re-
sponses [12]. PBS immunized pigs are always used as controls for the assays, succumbing
the lethal Georgia2007/1 infection between days 5 and 10 with acute ASF-clinical signs and
high viral loads in serum. As previously described, BA71∆CD2-immunized pigs survive
Georgia2007/1 challenge with little or no ASF-compatible signs and without significant
viral load. From three weeks post-challenge, immunized pigs were negative for ASFV in
serum and positive for ASFV specific responses, including specific antibodies and T-cells
(detectable from 14 days post-immunization).

2.11. Porcine IFNγ ELISpot

IFNγ response was assessed by ELISpot assay using purified mouse anti-pig IFNγ

Clone P2G10 (BD Pharmingen, Allschwil, Switzerland) as capture antibody and biotiny-
lated mouse anti-porcine IFNγ antibody P2C11 (BD Pharmingen, Allschwil, Switzerland)
as detection antibody, following a previously reported method [23]. ASFV-specific peptides
(4 µg/mL) or BA71∆CD2 (106 PFU/mL) were added as specific stimuli and PBMCs were
incubated o/n at 37 ◦C. All peptides were synthesized by ProImmune Ltd. (Oxford, UK) to
>85% purity. RPMI and 10 µg/mL phytohemagglutinin-M (PHA-M, Sigma-Aldrich, Saint
Louis, MO, USA) were used as negative and positive controls, respectively.

Transfected fibroblasts were used as APCs at a 1:5 ratio with autologous PBMCs.
The ASFV gene expression library available in our laboratory at the time consisted in
73 plasmids encoding individual ORFs from the E75 ASFV isolate (GenBank accession
number FN557520.1), cloned in frame with ubiquitin into the pCMV vector [29]. Plasmid
transfection of the fibroblasts was done by electroporation (pulse voltage = 1700 V, pulse
width = 20 ms, pulse number = 1), using the Neon Transfection System 10 µL Kit (Invitrogen,
Carlsbad, CA, USA). Fibroblasts electroporated with the empty pCMV-Ub plasmid were
used as a negative control for the assay. Finally, electroporated cells were placed in the
corresponding well of a 96-well plate with the autologous PBMCs and proceeded as
described above.

3. Results
3.1. In Silico Prediction of CD8+ T-Cell Epitopes Using the Georgia2007/1 Proteome and In Vitro
Validation as ASFV-Specific T-Cell Epitopes

Covering the entire proteome Georgia2007/1 with overlapping 8–11-mer peptides
would need synthesizing more than 50,000 peptides, which was out of the scope of this
project. In order to reduce the number of peptides to synthesize, the Georgia2007/1
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proteome was first screened with the NetMHCpan3.0; thus, selecting a total of 8648 pep-
tides ranging from 8 to 11 amino acid residues, with optimal SLA I binding properties
(IC50 < 500 nM). The theoretically best fitting peptides were finally classified attending to
multiple parameters: TAP-binding affinity, proteasome cleavage, promiscuity, overlapping,
and peptide immunogenicity. The combination list was reduced to the best 266 candidates
(Supplementary Table S1), which, together with 64 longer sequences (12–27 amino acids
in length), selected exclusively according to the presence of multiple overlapping pre-
dicted epitopes (Supplementary Table S2), were individually synthesized. The 330 selected
peptides belonged to 110 different proteins (from the 166 of Georgia2007/1 proteome).
Interestingly, 50% of the selected peptides belonged to 22 single proteins, half of them
(53.3%) were described as late proteins and a large proportion (22.2%), accounting for
enzymes involved in nucleic acid metabolism (Supplementary Table S3).

After chemical synthesis, only one of the 330 predicted peptides was capable of
stimulating a specific IFNγ response when using PBMCs from BA71∆CD2-immunized pigs
before and after surviving Georgia2007/1 challenge. The identified peptide corresponded
to residues 68–86 of the MGF100–1L, and was specifically recognized by 11 out of the 20
(55%) pigs tested. It is worth noting that the identified sequence corresponded to a 19-mer
peptide containing at least nine predicted CD8+ T-cell overlapping epitopes (Table 1).

Table 1. Predicted epitopes within the peptide MGF100-1L68–86 (LQMAPGGSYFITDNMTEEF). The table summarizes the
number of predictions that overlap with each sequence and the SLA I alleles predicted to present it.

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 Overlapping
Peptides

L Q M A P G G S Y
8SLA-1*0801, SLA-2*1001

L Q M A P G G S Y F
9SLA-1*0801, SLA-2*0601, SLA-2*1001

L Q M A P G G S Y F I
12SLA-2*0601, SLA-2*1001

Q M A P G G S Y
8SLA-1*0201, SLA-1*0202, SLA-1*0401, SLA-1*0701, SLA-1*0702, SLA-1*0801, SLA-1*1301, SLA-2*1001

Q M A P G G S Y F
9SLA-1*0201, SLA-1*0202, SLA-1*0401, SLA-1*0801, SLA-1*1301, SLA-2*1001

M A P G G S Y F I
12SLA-2*0502

Y F I T D N M T E E F
12SLA-1*1301

F I T D N M T E E F
9SLA-1*1301

I T D N M T E E F
6SLA-1*0201, SLA-1*0401, SLA-1*0601, SLA-1*1301

3.2. Identification of SLA I-Restricted Peptides by Mass Spectrometry-Based Immunopeptidomics
and In Vitro Validation as ASFV-Specific T-Cell Epitopes

To perform the mass spectrometry (MS)-based immunopeptidomic analysis, pe-
ripheral alveolar macrophages (PAMs) from three pigs with different SLA I haplotypes
(Figure 1A), were individually infected with the virulent BA71 or with the attenuated
BA71∆CD2 ASFV strain, at a MOI of 0.01. Cells and cell supernatants were obtained at 24
and 54 h post-infection (hpi), and the kinetics of both the percentage of infected live cells
and virus production were compared (Figure 1B). As expected, the maximum values were
obtained at 54 hpi, being similar for both viruses, despite the cell death rate seeming higher
for BA71∆CD2 than for BA71 infected cells (Figure 1C). Cell extracts obtained at this time
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point were selected for further proteomic analysis. After anti-SLA I immunoprecipitation
and elution, the presence of SLA I-peptide complexes was confirmed by Western blot using
an anti-SLA I antibody (Figure 1D). The intense band observed corresponds to the 45 kDa
SLA class I heavy chain, while the two lighter bands correspond to traces of the heavy and
light chains of the anti-SLA I antibody used for the immunoprecipitation detached from
the sepharose beads (see Supplementary Figure S1, for a complete view of the WB).
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the eluted SLA I-peptide complexes (Elution). M: molecular weight marker.

BA71-infected PAMs led to the determination of 50 ASFV sequences, while 82 peptides
were profiled from the BA71∆CD2-infected samples (Table 2, Supplementary Table S4),
despite the percentage of live cells recovered at 54 hpi is lower for the later (Figure 1B), and
both the percentage of infected cells and virus titers obtained from supernatants are compa-
rable (Figure 1C). Thus, in total, 132 SLA I-bound peptides were identified, corresponding
to 106 different ASFV sequences that belonged to 56 different ASFV proteins (Table 2).
Interestingly, 91 (85.8%) of the 106 sequences identified matched identical sequences in
Georgia2007/1, and 13 of the peptides (12.3%) differed only in one or two amino acids that
theoretically did not play key roles in SLA I binding. Finally, only two (1.9%) of the eluted
peptides showed significant divergence with the Georgia2007/1 sequence. The differences
observed between BA71 and BA71∆CD2 PAM extracts did not only affect the number of
peptides identified, but also the number of different proteins to which the peptides belong.
From the 56 proteins identified, only 21 were commonly represented in the peptide-elution
pools obtained from BA71 and BA71∆CD2 PAM extracts, while seven and 28 were uniquely
identified after BA71 and BA71∆CD2 infection, respectively (Table 2).
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Table 2. Summary of SLA I-restricted ASFV peptides identified by MS-based immunopeptidomics.

Function/Protein Total
Peptides BA71 BA71∆CD2 Activity/Similarity Temporal

Expression

Multigene Families 14 5 9

MGF110-6L 2 1 1 Early
MGF360-10L 2 1 1 Unknown
MGF360-8L 2 1 1 Early
MGF505-1R 3 1 2 Early
MGF505-2R 1 0 1 Late
MGF505-3R 1 0 1 Early
MGF505-5R 1 0 1 Early
MGF505-7R 1 0 1 Early
MGF505-9R 1 1 0 Early

Transcription,
Replication and Repair 41 13 28

C315R 1 0 1 Transcription factor IIB-like Early/Late
C475L 4 1 3 Poly(A) polymerase large subunit Late

D1133L 7 3 4 Helicase superfamily II Late
D205R 3 0 3 RNA polymerase subunit 5 Early
D250R 1 0 1 Ribonucleotide reductase (small subunit) Early
D339L 1 0 1 RNA polymerase subunit 7 Early
E301R 2 1 1 Proliferating cell nuclear antigen-like protein Late

EP1242L 2 2 0 RNA polymerase subunit 2 Early/Late
EP364R 1 0 1 ERCC nuclease domain Late
EP424R 3 2 1 FtsJ-like methyl transferase domain Early
F334L 1 0 1 Ribonucleotide reductase (small subunit) Early

G1211R 4 1 3 DNA polymerase family B Early/Late
G1340L 1 0 1 VV A8L-like transcription factor Late
H359L 1 1 0 RNA polymerase subunit 3 Early
I243L 1 1 0 Transcription factor SII Early/Late

M448R 1 0 1 RNA ligase Late
NP1450L 1 0 1 RNA polymerase subunit 1 Early/Late
NP419L 1 0 1 DNA ligase Early/Late
P1192R 4 1 3 DNA topoisomerase type II Early/Late
Q706L 1 0 1 Helicase superfamily II Late

Morphogenesis 24 12 12

A137R 1 0 1 Protein p11.5 Late
A151R 1 0 1 Protein oxidation pathway Early/Late
B602L 3 1 2 Chaperone Late
B646L 5 2 3 Major capsid protein p72 Late

CP2475L 10 7 3 Polyprotein pp220 Late

E120R 1 0 1 Structural protein p14.5, DNA-binding
protein Late

E183L 2 1 1 Structural protein p54 Late
E248R 1 1 0 Structural protein Early/Late

Host Cell Interaction 6 1 5

A179L 2 1 1 Bcl-2 apoptosis inhibitor Late

A238L 1 0 1 IkB-like protein, inhibitor of host gene
transcription Early

QP383R 3 0 3 Nif-S like Late



Vaccines 2021, 9, 29 9 of 20

Table 2. Cont.

Function/Protein Total
Peptides BA71 BA71∆CD2 Activity/Similarity Temporal

Expression

Uncharacterized 47 19 28

B117L 1 0 1 Late
B125R 2 0 2 Late
B475L 9 5 4 Late
C129R 3 1 2 Late
C257L 1 0 1 Late

CP123L 2 0 2 Late
CP312R 1 0 1 Early/Late
DP238L 2 1 1 Early
E111R 1 0 1 Early/Late
F317L 3 1 2 Late
H233R 3 1 2 Late
H339R 3 1 2 Late
I226R 2 2 0 Early/Late
I73R 2 1 1 Early/Late
I9R 1 0 1 Unknown

K145R 6 3 3 Late
M1249L 5 3 2 Late

TOTAL 132 50 82

As expected for optimal SLA I ligands, 50% of the eluted peptides were 9-mers. A total
of 35.6% of them corresponded to proteins with unknown function, albeit proteins involved
in transcription and replication, morphogenesis, host cell interaction and from multigene
families were also identified. As described for the in silico prediction, a large proportion
of the eluted peptides mapped within late proteins (62.2%) (Table 2), albeit it is worth
mentioning that none of them matched the in silico predicted ones. The ASFV protein
from which the larger number of peptides were identified was the uncharacterized B475L,
with a total of nine peptides (six different sequences), followed by the putative helicase
encoded by the D1133L ORF [39] and the uncharacterized K145R protein, from which
seven (five different sequences) and six peptides (three different sequences) were identified,
respectively. Five peptides were identified from the structural protein p37 (pp220 product)
encoded by the CP2475L gene [40], the major capsid protein B646L and the uncharacterized
protein M1249L, corresponding to five, four and three different sequences, respectively
(Table 2).

Finally, it is worth mentioning the identification of five additional SLA I peptides
mapping out of any known ORF (Supplementary Table S4, all detected from BA71 CD2-
infected samples. Homologous sequences of four out of these five peptides were found in
the genome of the Georgia2007/1.

Out of the 111 different peptides identified by the immunopeptidomics approach, five
(4.5% of the total), were recognized by ASFV-specific T-cells. Thus, in vitro stimulation of
PBMCs collected from BA71∆CD2-immunized pigs surviving Georgia2007/1 challenge
with these individual peptides, specifically induced IFNγ secretion detectable by ELISpot
(Table 3).

Aiming to confirm the phenotype of the peptide-specific T-cells, PBMCs from a
BA71∆CD2-immunized pig or from a non-immunized pig (control) were in vitro stim-
ulated with a mix of the positively identified peptides (Table 3) in the presence of Brefeldin
A, to allow for the intracellular accumulation of IFNγ (Supplementary Figure S2). PBMCs
were finally fluorescence-labelled with specific surface markers and intracellularly, with an
anti-IFNγ antibody (see details in Figure S2 legend). ASFV-specific peptides specifically
stimulated single positive CD8+ T-cells, exclusively detected in the BA71∆CD2-immunized
pig and not in the control pigs (Figure S2). As expected, IFNγ+ CD8αhigh T-lymphocytes,
were also detected when stimulating the PBMCs with BA71∆CD2, although the highest
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proportion of IFNγ+ T cells were, in this case observed in CD4+/CD8+ T-cells, fitting with
activated and effector memory phenotype in swine [41,42].

Table 3. ASFV epitopes identified by immunopeptidomics that are recognized by specific T-cells
from BA71∆CD2-vaccinated pigs that survived the lethal Georgia2007/1 challenge.

Peptide
Sequence Protein Responding

Animals Sample Georgia2007/1 Identity

NPTIIMEQY H339R 1/10 (10%) BA71 100%
KNILNTLMF I226R 1/10 (10%) BA71 100%

DKDGNSALHYL A238L 6/20 (30%) BA71∆CD2 100%
AKIVEEGGEES K145R 4/20 (20%) BA71/BA71∆CD2 100%

NSTLVIRI MGF505-7R 4/20 (20%) BA71∆CD2 87.5% (NSTLVIRL)

Two of the identified peptides belong to early expressed proteins: MGF505-7R and
A238L or IkB-like protein, involved in transcription inhibition [43]. The other three peptides
belong to late (K145R and H339R) or early/late (I226R) proteins with unknown functions.
Interestingly, only the K145R peptide was identified in both BA71 and BA71∆CD2-infected
PAM extracts. Coincidently, this K145R peptide, together with the A238L and the MGF505-
7R peptides, exclusively identified in BA71∆CD2-cell extracts, were recognized by at least
20% of the tested animals. Conversely, the H339R and the I226R exclusively identified in
BA71-infected samples were specifically recognized by only one out of the ten pigs tested
(Table 3). Far from being conclusive, these results indicate that the peptide repertoires pre-
sented by BA71∆CD2 and BA71 are not only quantitative, but also qualitatively different.

3.3. Identification of ASFV Full-Length Proteins Promiscuously Recognized by
ASFV-Specific T-Cells

Complementary to the identification of ASFV specific CD8+ T-cell epitopes by in silico
predictions and peptide-elution experiments, a third approach was followed aiming to
identify ASFV full-length proteins promiscuously recognized by ASFV specific T-cells.
Instead of using synthetic peptides as specific stimuli in our ELISpot assay, autologous pig
fibroblasts (from the same pig than the PBMCs used as effector cells), were used as antigen
presenting cells (APCs), after being transfected with plasmids encoding 73 individual
full-length proteins (Table 4).

Each protein was expressed as a fusion with ubiquitin to improve their SLA I presen-
tation and their recognition by the specific T-cells [22,23]. PBMCs (matching the APCs)
from BA71∆CD2-immunized pigs that survived the Georgia2007/01 challenge, were used
again as effector cells in an IFNγ ELISpot assay. Seven pools of 10 to 11 plasmids (Table 4)
were initially electroporated into fibroblasts and then used to specifically stimulate the
production of IFNγ by the specific T-cells at a ratio of 1:5 (APC:PBMCs). Finally, plasmids
from the pools capable of specifically stimulating IFNγ responses were individually tested.
This screening led to the identification of three full-length proteins (from the 73 tested)
recognized by ASFV-specific T-cells: MGF505-7R, MGF100-1L and A238L (Figure 2). Inter-
estingly, all three ASFV antigens were broadly recognized by PBMCs from at least 50% of
the pigs tested. Thus, a single clone, pCMV-Ub-MGF505-7R, was capable to stimulate spe-
cific IFNγ responses in all but one of the ten animals tested (Figure 2). The two additional
antigenic proteins identified using this methodology: A238L and MGF100-1L, despite
showing less promiscuity than MGF505-7R, were still broadly recognized by ASFV-specific
T cells in five and six out of the 10 pigs tested (Figure 2).

Interestingly, peptides from these three proteins were previously identified as ASFV-
specific T-cell epitopes, two from the immunopeptidomics assays using PAMs infected
with BA71∆CD2 (MGF505-7R334–341 and A238L81–91) and one from the in silico predictions
(MGF100-1L68–86), validating our methodologies. The specific peptides were always recog-
nized by a lower proportion of ASF-surviving pigs (20–30%) than the full-length proteins
(50–90%), most probably reflecting their SLA I-restricted nature. These results strongly
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suggest the presence of multiple ASFV-specific T-cell epitopes in these full-length proteins,
and argue in favor of their use in future experimental vaccination studies.

Table 4. E75 ASFV gene expression library encoding each open reading frame (ORF) with the
ubiquitin gene at the N-terminus and under the control of the CMV promoter.

Plasmid Mix E75 Locus Protein Name Plasmid Mix E75 Locus Protein Name

Mix 1

2 DP93R

Mix 5

92 B407L
3 MGF360-2L 93 B175L
4 KP177R 94 B263R
6 L60L 104 O174L
7 MGF360-3L 109 D250R
8 MGF110-1L 110 D129L

10 MGF110-13L 111 D79L
13 MGF110-12L 116 D345L
14 MGF110-14L 117 S183
15 MGF360-4L 118 S273R

Mix 2

16 MGF360-6L 120 H359L

17 X69R

Mix 6

121 H171R
18 MGF300-1L 122 H124R
20 MGF300-2R 132 E184L
22 MGF300-4L 133 E183L
23 MGF360-8L 135 E301R
25 MGF360-10L 137 E199L
26 MGF360-11L 138 E165R
28 MGF360-12L 139 E248R
30 MGF360-14L 140 E120R

Mix 3

31 MGF505-2R 141 E296R
33 MGF505-4R 142 E111R

35 MGF505-6R

Mix 7

143 E66L
36 MGF505-7R 144 I267L
39 A224L 151 I215L
40 A104R 152 I177L
41 A118R 153 I196L
45 MGF360-15R 158 MGF100-2L
46 A238L 161 I8L
47 A859L 163 I10L

Mix 4

48 A179L 164 L11L
49 A137R 167 DP96R
50 F317L 168 MGF360-19R

53 F165R
55 K205R
56 K78R
63 EP152R
66 EP364R
77 C62L
83 B438L
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Figure 2. IFNγ response assessed by ELISpot assay using fibroblasts transfected with the pCMV-Ub-MGF505-7R, pCMV-
Ub-A238L and pCMV-Ub-MGF100-1L plasmids as APCs, and PBMCs from ASF-convalescent animals as effector cells (pig 
individual numbers on the x axis). Values represented correspond to the specific IFNγ-SC (spots) found after stimulation 
with autologous fibroblasts transfected with each specific plasmids, once subtracted the number of spots found with 
pCMV-Ub (empty plasmid) transfected fibroblasts (always <10). Levels of specific IFNγ-SC observed after stimulation 
with the BA71ΔCD2 virus are also shown. 
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gens involved in protection is a major gap for the short-term development of efficient 
subunit vaccines. 

It has long been known that both antibodies [19,20] and CD8+ T-cells [21] can play 
important roles in the protection afforded by LAVs, however, little information exists 
about the antigens involved in such protection. In fact, the experimental subunit vaccine 
prototypes so far tested, have demonstrated little or non-reproducible protection [22,46–
49]. To complicate the picture, the protection afforded by the structural proteins p54, p30, 
p72, and CD2v, initially identified as protective humoral determinants in genotype I 
strains [50–52], failed to cross-protect against other ASFV strains [49,53], including geno-
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Work performed in our laboratory using DNA immunization as a tool and ubiquitin 
as a genetic adjuvant to improve SLA I presentation clearly demonstrated the ability of 
specific ASFV antigens to protect against E75 (genotype I strain) lethal challenge in the 
absence of detectable antibodies [22,23]. The protection afforded in one of these studies 
correlated with the induction of specific CD8+ T-cells against two epitopes from the CD2v 
antigen [22]. Unfortunately, the protection observed was not reproducible against Geor-
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gia2007/1. Thus, the two CTL epitopes described in E75 are not present in the Geor-
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Figure 2. IFNγ response assessed by ELISpot assay using fibroblasts transfected with the pCMV-Ub-MGF505-7R, pCMV-
Ub-A238L and pCMV-Ub-MGF100-1L plasmids as APCs, and PBMCs from ASF-convalescent animals as effector cells (pig
individual numbers on the x axis). Values represented correspond to the specific IFNγ-SC (spots) found after stimulation
with autologous fibroblasts transfected with each specific plasmids, once subtracted the number of spots found with
pCMV-Ub (empty plasmid) transfected fibroblasts (always <10). Levels of specific IFNγ-SC observed after stimulation with
the BA71∆CD2 virus are also shown.

4. Discussion

Availability of effective vaccines against ASF would greatly improve the management
of the disease as well as eradication actions in the future. Currently, LAVs appear as
the most feasible vaccine choice in the immediate future, but subunit vaccines are likely
the long-term alternative, especially for ASF-free areas reluctant to implement LAVs in
the field [9,44,45]. Nonetheless, the little information available regarding the ASFV anti-
gens involved in protection is a major gap for the short-term development of efficient
subunit vaccines.

It has long been known that both antibodies [19,20] and CD8+ T-cells [21] can play
important roles in the protection afforded by LAVs, however, little information exists about
the antigens involved in such protection. In fact, the experimental subunit vaccine proto-
types so far tested, have demonstrated little or non-reproducible protection [22,46–49]. To
complicate the picture, the protection afforded by the structural proteins p54, p30, p72, and
CD2v, initially identified as protective humoral determinants in genotype I strains [50–52],
failed to cross-protect against other ASFV strains [49,53], including genotype II Geor-
gia2007/1 [47,48,54].

Work performed in our laboratory using DNA immunization as a tool and ubiquitin as
a genetic adjuvant to improve SLA I presentation clearly demonstrated the ability of specific
ASFV antigens to protect against E75 (genotype I strain) lethal challenge in the absence
of detectable antibodies [22,23]. The protection afforded in one of these studies correlated
with the induction of specific CD8+ T-cells against two epitopes from the CD2v antigen [22].
Unfortunately, the protection observed was not reproducible against Georgia2007/1 [24],
confirming studies published by others [47,54]. Variability of the CD2v sequence among
ASFV isolates [55] might account for the lack of protection against Georgia2007/1. Thus,
the two CTL epitopes described in E75 are not present in the Georgia2007/1 CD2v sequence.
Furthermore, the rest of the ASFV antigens described as potentially protective against
genotype I viruses have failed to protect against Georgia2007/1, despite being highly
conserved, perhaps indicating differences in the pathogenesis and/or in the capabilities to
interfere antigen presentation pathways between the ASFV strains. With this data at hand,
identification of protective antigens in other ASFV strains, such as the promising results
recently described using genotype I OURT strains [48,56], would need to be confirmed
in Georgia2007/1 if willing to fight this ASFV strain. Here, we provide experimental
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evidences demonstrating the presence of at least three CD8+ T-cell ASFV determinants
promiscuously recognized by pigs surviving Georgia2007/1 challenge, providing the bases
for future antigen discovery.

The low rate of success of our peptide prediction approach, with only one peptide out
of the 330 theoretical best peptides identified by specific CD8+ T-cells, is in consonance with
previous results from the lab [57]. Due to the concerns that we had when performing the
in silico predictions based on a single prediction tool, we decided to perform a multipara-
metric analysis not only based on NetMHCpan. Despite novel immunoinformatics tools
have been recently developed [58], at the time of the analysis little data was available from
swine [59–62], which forced to complete our multiparametric prediction tool with experi-
mental data obtained mainly from human and mouse studies. Most probably due to the
imperfections of our predictive methodology, our approach has allowed the identification
of only one promiscuously recognized ASFV T-cell determinant within the Georgia2007/1
MGF100-1L protein. Being aware that other methods might provide better results, the
reality is that up to today little reports are available providing definitive information about
potential promiscuous vaccine targets against ASFV. As a good example, recent work
performed in our own laboratories [63], made it possible to predict a completely different
set of potential ASFV T-cell epitopes, and only one partially overlapped with the ones
here described. Interestingly, the two overlapping SLA I-binding peptides found in our
proteomic studies, partially overlapped with a longer polypeptide predicted as a potential
CD4+ T-cell peptide within the major structural ASFV p72 protein (encoded by the B646L
ORF) but, so far, no experimental work has confirmed its recognition by ASFV-specific
T-cells. The work here presented just add a little bit of knowledge to a very complex issue
that should be taken seriously if willing to obtain safer subunit vaccines into the market.
Further work should be invested to optimize both the computational searches and the
identification of optimal vaccine targets for the future. Even though the ranking criteria
established was based on scientific grounds, limiting the selection to the best 330 peptides
was not absent of risks, particularly when Georgia2007/1 encodes 166 ORFs and taking
into account the SLA I heterogeneity existing in the domestic pig population. It should
be pointed out that none of the predicted peptides tested matched the ones identified
in the immunopeptidomic studies. Still, the newly discovered MGF110-1L peptide was
promiscuously presented by APCs, despite its length (19 amino acids), theoretically sub-
optimal for SLAI binding, supposedly by directly fitting into the binding groove with a
bulged conformation or by being internalized and processed to the contained overlapping
peptides [64,65].

On the other hand, immunopeptidomics has been demonstrated as a powerful tool to
unmask CD8+ T-cell epitopes, confirming previous studies with other pathogens [66–69].
SLA I immunoprecipitation studies performed on cell extracts from PAMs infected with the
live attenuated BA71∆CD2 ASFV and the parental BA71 isolate allowed the identification
of five (out of the 137 SLA I bound peptides profiled) as novel ASFV-specific T-cell epitopes,
three of them recognized by more than one pig. The ratio of success obtained fits with the
fact that only a minor fraction of a large number of potential candidates in the MHC-peptide
repertoire induce a specific immune response [70]. However, none of the identified SLA
I-bound peptides should be discarded, since they might be real CTL peptides associated
to SLA I alleles not present in the animals tested, since our screening was performed in
outbred commercial pigs. Additionally, the immunodominance phenomenon might also
prevent the identification subdominant epitopes that might be relevant in protection [29].
Confirming this hypothesis, pig immunization studies performed with cocktails of synthetic
peptides, identified in the immunopeptidomics assays and grouped according to their
theoretically binding affinity for SLA I as strong and week binders, induced promiscuous
CD8+ T-cell responses that in vitro recognized not only the peptides used in vivo, but
also ASFV (data not shown). The fact that these peptides were not recognized by PBMCs
of surviving pigs, but were capable of in vivo stimulating T-cells that recognize ASFV
in vitro, opens the possibility to explore the protective potential of subdominant epitopes,
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otherwise masked due to the immunodominance phenomenon, as it has been described
before for other infectious agents [29]. Moreover, potential CTL epitopes might have
escaped our read-out assay. Thus, our assay was limited to the detection of the T-cell
repertoire present in the blood at a given time and capable to stimulate a response, while
different repertoires might be present in primary ASFV target organs, lymphoid tissue, at
different times post-infection and/or with other effector characteristics.

Finally, the peptide repertoire identified might be biased by the effector and target cells
used in the assays. Despite macrophages being the main ASFV target [71,72], epithelial cells
and dendritic cells (DCs), might also interact with ASFV [15,18,73–76]. Alternative antigen
processing pathways exclusively present in DCs might render different peptide repertoires
to the specific CD8+ T-cells [77], an option that should be tested in the future. Moreover,
the choice of effector cells for the assay will also define the fate of the experiments. Since
Georgia2007/1 is a highly virulent and lethal ASFV strain, experimentally infected pigs
die before having the chance to develop ASFV-specific T-cells. To circumvent this problem,
before the Georgia2007/1 challenge, pigs were immunized with BA71∆CD2, a recombinant
LAV lacking CD2v, capable to confer homologous and heterologous protection, including
against Georgia2007/1 [12]. In vivo cross-protection seemed to correlate with the ability
of immunized pigs to induce specific CD8+ T-cells capable to recognize homologous and
heterologous ASFV strains [12]. Despite the limitations derived from the low number of
replicates, it seems that BA71∆CD2 is presented in the SLA I-restricted pathway quantita-
tively and qualitatively better than its parental virulent BA71 strain, which might explain
at least partially the improved CD8+ T-cell responses induced in vivo. We are currently
extending our antigen-presentation study to Geogia2007-infected cells, albeit preliminary
studies do not evidence significant differences to that obtained with BA71-infected cells and
again seems to be quantitatively less efficient than BA71∆CD2-infected cells at presenting
SLA I-peptides (data not shown).

The presence of out of frame SLA I-binding peptides in PAMs infected with BA71∆CD2
might demonstrate once again its superior presentation in the SLA I-restricted pathway.
The presence of out of frame SLA I-peptides have been described both in tumors [78–80]
and virus infections [81–83], including in ASFV-infected cells [84]. As before mentioned,
their protective relevance should not be ruled out despite none being recognized by PBMCs
from recovered pigs, since they might have relevant functions during ASFV infection and
protection. Previous results showed that CD2v suppresses mitogen-dependent lympho-
cyte proliferation in vitro [85], most probably through its C-terminal end, located in the
cytoplasm of the infected cell. So far, the C-terminal end of CD2v has been demonstrated
to interact with multiple immune mediators, including the SH3P7 [86] and AP-1 [87],
involved in key aspects of cell trafficking, and the latter being involved in SLA I downregu-
lation during HIV infection [88,89]. Future efforts will be done to understand the intrinsic
mechanisms by which the depletion of CD2v from BA71 yields an attenuated ASFV strain
(BA71∆CD2), capable of improving antigen presentation in vitro and inducing efficient
and cross-protective immune responses in vivo.

While virus infections usually lead to the development of a host response against a
narrow range of dominant peptides, expression of antigens in fusion with ubiquitin has
been previously described to promote CD8+ T-cell responses [22,23], and as a screening
tool to identify dominant and subdominant epitopes [29,90]. Thus, the use of transfected
fibroblasts as APCs in the screening methodology of the present work has proven a valuable
strategy to monitor the immune response of the pigs ex vivo. A similar screening of
transiently transfected APCs with immune cells from convalescent animals as effector
cells was previously described for the identification of CD8+ T-cell antigens in other
models [91,92], as well as in ASFV using random cDNA clones [84]. Despite fibroblasts
not being susceptible to infection with virulent ASFV strains, they are perfectly capable of
presenting antigens in the SLA I context to specific CD8+ T-cells [93]. This, together with
the feasibility of establishing fibroblast cell lines from individual animals that are highly
susceptible to DNA transfection, defined them as optimal tools to identify ASFV-full length
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proteins containing CD8+ T-cell epitopes. The identification of MGF110-1L, A238L and
MGF505-7R as promiscuous ASFV antigens confirmed the suitability of the methodology,
taking into account that peptides from these same proteins were independently defined as
ASFV-specific CD8+ T-cell determinants overall, albeit recognized by a smaller percentage
of animals than the correspondent full-length protein. Altogether, the results obtained
indicate that the methods here employed might validate each other, since the same ASFV
determinants were identified as inductors of CD8+ T-cell responses. Future experiments
should determine the protective potential of these newly described T-cell determinants and,
if so, the specific mechanisms by which they confer such protection, including working with
PBMCs deprived of CD4+ T-cells to definitively confirm their identity. Enough evidences
seem to confirm the T-cells here described as ASFV-specific CD8+ T-cells: (1) the predictions
made were based on potential SLA I overlapping peptides; (2) all peptides described by
proteomics were selected, due to the immunoprecipitation of SLA-peptide complexes using
specifically binding to anti-SLA I antibodies; (3) the ASFV full-length proteins described as
T-cell determinants were identified by using transfected fibroblasts that express SLA I, but
not SLA II molecules on their surface; (4) Figure S2, defines as single positive CD8 T-cells
the T-cell subset, recognizing the ASFV-specific peptide mix used, while a stimulation with
BA71∆CD2 stimulated all three T-cell subsets: single positive CD8 T-cells, single positive
CD4 T-cells and double positive CD4 CD8 T-cells, corresponding with CTL, T-helper and
memory T-cells, respectively.

Selection of the optimal protective antigens is crucial for the success of future ASFV
subunit-based immunization approaches. Moreover, characterization of conserved antigens
might be key to develop cross-protective vaccines, an important feature for endemic
regions as Africa, where many ASFV strains have been described to be concomitantly
circulating [94,95]. Future efforts should be directed at identifying promiscuous and cross-
protective ASFV antigens, as well as the optimal delivery methods and/or the appropriate
adjuvants to be used in the field, a critical point when the cost is crucial for the success of
the vaccine.
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tidomics; Figure S1: Complete view of the western blot (WB) corresponding to Figure 1D; Figure S2:
Intracellular IFNγ staining of ASFV peptide-specific T cells.

Author Contributions: Conceptualization, L.B.-C., J.C. and F.R.; methodology, L.B.-C., J.C., F.C.-F.
and F.R.; formal analysis, M.C.; investigation, L.B.-C., E.L., M.J.N., J.C. and S.P.-P.; resources, J.D.,
M.L.S. and C.P.; writing—original draft preparation, L.B.-C.; writing—review and editing, F.R., J.C.,
V.N.; visualization, L.B.-C.; supervision, F.R., J.C. and V.N.; project administration, F.A. and F.R. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Departament d’Economia i Coneixement de la Generalitat de
Catalunya (Spain), grant number 2015 DI 037. Studies were co-financed by Boehringer Ingelheim
Veterinary Research Center (BIVRC) GmbH & Co. KG, the Ministerio de Ciencia e Innovación of
Spain (grant numbers AGL2016-78169-C2-1-R and PID2019-107616RB-I00) and Red de Investigación
en Sanidad Animal (RISA).

Institutional Review Board Statement: The in vivo studies were conducted according to the guide-
lines of the Declaration of Helsinki, and approved by the Institutional Review Board of Generalitat
de Catalunya (approval code CEA-OH/9212/2).

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article and supplementary material.

Acknowledgments: We thank Marta Muñoz and Uxía Alonso from IRTA-CReSA for her technical
help and the personnel in charge of field studies and BSL3 facilities at IRTA-CReSA. We also thank
Jordi Argilaguet for his technical and scientific advice. The authors are also grateful to the Centres

https://www.mdpi.com/2076-393X/9/1/29/s1
https://www.mdpi.com/2076-393X/9/1/29/s1


Vaccines 2021, 9, 29 16 of 20

de Recerca de Catalunya (CERCA) Program, Red de Investigación en Sanidad Animal (RISA) and
Global Alliance for Research on African swine fever (GARA).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Arias, M.; Sánchez-Vizcaíno, J.M. African Swine Fever Eradication: The Spanish Model. In Trends in Emerging Viral Infections of

Swine; Iowa State Press: Ames, IA, USA, 2002; pp. 133–139. [CrossRef]
2. Alonso, C.; Borca, M.; Dixon, L.; Revilla, Y.; Rodríguez, F.; Escribano, J.M. ICTV Virus Taxonomy Profile: Asfarviridae. J. Gen.

Virol. 2018, 99, 613–614. [CrossRef] [PubMed]
3. Montgomery, R.E. On a Form of Swine Fever Occurring in British East Africa (Kenya Colony). J. Comp. Pathol. Ther.

1921, 34, 159–191. [CrossRef]
4. Costard, S.; Mur, L.; Lubroth, J.; Sanchez-Vizcaino, J.M.; Pfeiffer, D.U. Epidemiology of African Swine Fever Virus. Virus Res.

2013, 173, 191–197. [CrossRef] [PubMed]
5. Beltran-Alcrudo, D.; Lubroth, J.; Depner, K.; La Rocque, S. African Swine Fever in the Caucasus; FAO EMPRES Watch, April 2008; pp.

1–8. Available online: https://www.researchgate.net/publication/280559339_African_swine_fever_in_the_Caucasus (accessed
on 6 January 2021).

6. Kim, S.H.; Kim, J.; Son, K.; Choi, Y.; Jeong, H.S.; Kim, Y.K.; Park, J.E.; Hong, Y.J.; Lee, S.I.; Wang, S.J.; et al. Wild Boar Harbouring
African Swine Fever Virus in the Demilitarized Zone in South Korea, 2019. In Emerging Microbes and Infections; Taylor and Francis
Ltd.: Abingdon, UK, 2020; pp. 628–630. [CrossRef]

7. Li, X.; Tian, K. African Swine Fever in China. Vet. Rec. 2018, 183, 300–301. [CrossRef] [PubMed]
8. Ge, S.; Li, J.; Fan, X.; Liu, F.; Li, L.; Wang, Q.; Ren, W.; Bao, J.; Liu, C.; Wang, H.; et al. Molecular Characterization of African Swine

Fever Virus, China, 2018. Emerg. Infect. Dis. 2018, 24, 2131–2133. [CrossRef]
9. Bosch-Camós, L.; López, E.; Rodriguez, F. African Swine Fever Vaccines: A Promising Work Still in Progress. Porc. Heal. Manag.

2020, 6, 17. [CrossRef]
10. O’Donnell, V.; Holinka, L.G.; Gladue, D.P.; Sanford, B.; Krug, P.W.; Lu, X.; Arzt, J.; Reese, B.; Carrillo, C.; Risatti, G.R.; et al.

African Swine Fever Virus Georgia Isolate Harboring Deletions of MGF360 and MGF505 Genes Is Attenuated in Swine and
Confers Protection against Challenge with Virulent Parental Virus. J. Virol. 2015, 89, 6048–6056. [CrossRef]

11. O’Donnell, V.; Risatti, G.R.; Holinka, L.G.; Krug, P.W.; Carlson, J.; Velazquez-Salinas, L.; Azzinaro, P.A.; Gladue, D.P.; Borca, M.V.
Simultaneous Deletion of the 9GL and UK Genes from the African Swine Fever Virus Georgia 2007 Isolate Offers Increased Safety
and Protection against Homologous Challenge. J. Virol. 2017, 91, e01760-16. [CrossRef]

12. Monteagudo, P.L.; Lacasta, A.; López, E.; Bosch, L.; Collado, J.; Pina-Pedrero, S.; Correa-Fiz, F.; Accensi, F.; Navas, M.J.; Vidal, E.;
et al. BA71∆CD2: A New Recombinant Live Attenuated African Swine Fever Virus with Cross-Protective Capabilities. J. Virol.
2017, 91, e01058-17. [CrossRef]

13. Chen, W.; Zhao, D.; He, X.; Liu, R.; Wang, Z.; Zhang, X.; Li, F.; Shan, D.; Chen, H.; Zhang, J.; et al. A Seven-Gene-Deleted African
Swine Fever Virus Is Safe and Effective as a Live Attenuated Vaccine in Pigs. Sci. China Life Sci. 2020, 63, 623–634. [CrossRef]

14. Borca, M.V.; Ramirez-Medina, E.; Silva, E.; Vuono, E.; Rai, A.; Pruitt, S.; Holinka, L.G.; Velazquez-Salinas, L.; Zhu, J.; Gladue, D.P.
Development of a Highly Effective African Swine Fever Virus Vaccine by Deletion of the I177L Gene Results in Sterile Immunity
against the Current Epidemic Eurasia Strain. J. Virol. 2020, 94, e02017-19. [CrossRef] [PubMed]

15. Franzoni, G.; Dei Giudici, S.; Oggiano, A. Infection, Modulation and Responses of Antigen-Presenting Cells to African Swine
Fever Viruses. Virus Res. 2018, 258, 73–80. [CrossRef] [PubMed]

16. Gil, S.; Sepúlveda, N.; Albina, E.; Leitão, A.; Martins, C. The Low-Virulent African Swine Fever Virus (ASFV/NH/P68)
Induces Enhanced Expression and Production of Relevant Regulatory Cytokines (IFNalpha, TNFalpha and IL12p40) on Porcine
Macrophages in Comparison to the Highly Virulent ASFV/L60. Arch. Virol. 2008, 153, 1845–1854. [CrossRef] [PubMed]

17. Franzoni, G.; Graham, S.P.; Giudici, S.D.; Bonelli, P.; Pilo, G.; Anfossi, A.G.; Pittau, M.; Nicolussi, P.S.; Laddomada, A.; Oggiano, A.
Characterization of the Interaction of African Swine Fever Virus with Monocytes and Derived Macrophage Subsets. Vet. Microbiol.
2017, 198, 88–98. [CrossRef]

18. Franzoni, G.; Graham, S.P.; Sanna, G.; Angioi, P.; Fiori, M.S.; Anfossi, A.; Amadori, M.; Dei Giudici, S.; Oggiano, A. Interaction
of Porcine Monocyte-Derived Dendritic Cells with African Swine Fever Viruses of Diverse Virulence. Vet. Microbiol. 2018, 216,
190–197. [CrossRef]

19. Onisk, D.V.; Borca, M.V.; Kutish, S.; Kramer, E.; Irusta, P.; Rock, D.L. Passively Transferred African Swine Fever Virus Antibodies
Protect Swine against Lethal Infection. Virology 1994, 198, 350–354. [CrossRef]

20. Ruiz Gonzalvo, F.; Carnero, M.E.; Caballero, C.; Martínez, J. Inhibition of African Swine Fever Infection in the Presence of Immune
Sera in Vivo and in Vitro. Am. J. Vet. Res. 1986, 47, 1249–1252.

21. Oura, C.A.; Denyer, M.S.; Takamatsu, H.; Parkhouse, R.M. In Vivo Depletion of CD8+ T Lymphocytes Abrogates Protective
Immunity to African Swine Fever Virus. J. Gen. Virol. 2005, 86, 2445–2450. [CrossRef]

22. Argilaguet, J.M.; Pérez-Martín, E.; Nofrarías, M.; Gallardo, C.; Accensi, F.; Lacasta, A.; Mora, M.; Ballester, M.; Galindo-Cardiel, I.;
López-Soria, S.; et al. DNA Vaccination Partially Protects against African Swine Fever Virus Lethal Challenge in the Absence of
Antibodies. PLoS ONE 2012, 7, e40942. [CrossRef]

http://doi.org/10.1002/9780470376812.ch4c
http://doi.org/10.1099/jgv.0.001049
http://www.ncbi.nlm.nih.gov/pubmed/29565243
http://doi.org/10.1016/S0368-1742(21)80031-4
http://doi.org/10.1016/j.virusres.2012.10.030
http://www.ncbi.nlm.nih.gov/pubmed/23123296
https://www.researchgate.net/publication/280559339_African_swine_fever_in_the_Caucasus
http://doi.org/10.1080/22221751.2020.1738904
http://doi.org/10.1136/vr.k3774
http://www.ncbi.nlm.nih.gov/pubmed/30194128
http://doi.org/10.3201/eid2411.181274
http://doi.org/10.1186/s40813-020-00154-2
http://doi.org/10.1128/JVI.00554-15
http://doi.org/10.1128/JVI.01760-16
http://doi.org/10.1128/JVI.01058-17
http://doi.org/10.1007/s11427-020-1657-9
http://doi.org/10.1128/JVI.02017-19
http://www.ncbi.nlm.nih.gov/pubmed/31969432
http://doi.org/10.1016/j.virusres.2018.10.007
http://www.ncbi.nlm.nih.gov/pubmed/30316802
http://doi.org/10.1007/s00705-008-0196-5
http://www.ncbi.nlm.nih.gov/pubmed/18787755
http://doi.org/10.1016/j.vetmic.2016.12.010
http://doi.org/10.1016/j.vetmic.2018.02.021
http://doi.org/10.1006/viro.1994.1040
http://doi.org/10.1099/vir.0.81038-0
http://doi.org/10.1371/journal.pone.0040942


Vaccines 2021, 9, 29 17 of 20

23. Lacasta, A.; Ballester, M.; Monteagudo, P.L.; Rodríguez, J.M.; Salas, M.L.; Accensi, F.; Pina-Pedrero, S.; Bensaid, A.; Argilaguet, J.;
López-Soria, S.; et al. Expression Library Immunization Can Confer Protection against Lethal Challenge with African Swine
Fever Virus. J. Virol. 2014, 88, 13322–13332. [CrossRef]

24. Bosch-Camós, L. Unmasking African Swine Fever Virus Antigens Inducing CD8+ T-Cell Responses with Protective Potential; Universitat
Autònoma de Barcelona: Barcelona, Spain, 2019.

25. Andrés, G.; Charro, D.; Matamoros, T.; Dillard, R.S.; Abrescia, N.G.A. The Cryo-EM Structure of African Swine Fever Virus
Unravels a Unique Architecture Comprising Two Icosahedral Protein Capsids and Two Lipoprotein Membranes. J. Biol. Chem.
2020, 295, 1–12. [CrossRef] [PubMed]

26. Liu, S.; Luo, Y.; Wang, Y.; Li, S.; Zhao, Z.; Bi, Y.; Sun, J.; Peng, R.; Song, H.; Zhu, D.; et al. Cryo-EM Structure of the African Swine
Fever Virus. Cell Host Microbe 2019, 26, 836–843.e3. [CrossRef] [PubMed]

27. Cackett, G.; Matelska, D.; Sýkora, M.; Portugal, R.; Malecki, M.; Bähler, J.; Dixon, L.; Werner, F. The African Swine Fever Virus
Transcriptome. J. Virol. 2020, 94, e00119-20. [CrossRef] [PubMed]

28. Alejo, A.; Matamoros, T.; Guerra, M.; Andrés, G. A Proteomic Atlas of the African Swine Fever Virus Particle. J. Virol.
2018, 92, e01293-18. [CrossRef]

29. Rodriguez, F.; Slifka, M.K.; Harkins, S.; Whitton, J.L. Two Overlapping Subdominant Epitopes Identified by DNA Immunization
Induce Protective CD8(+) T-Cell Populations with Differing Cytolytic Activities. J. Virol. 2001, 75, 7399–7409. [CrossRef]

30. Rodriguez, F.; Whitton, J.L. Enhancing DNA Immunization. Virology 2000, 268, 233–238. [CrossRef]
31. Takashima, A. Establishment of Fibroblast Cultures. Curr. Protoc. Cell Biol. 1998, 2.1.1–2.1.12. [CrossRef]
32. Nielsen, M.; Andreatta, M. NetMHCpan-3.0; Improved Prediction of Binding to MHC Class I Molecules Integrating Information

from Multiple Receptor and Peptide Length Datasets. Genome Med. 2016, 8, 33. [CrossRef]
33. Calis, J.J.A.; Maybeno, M.; Greenbaum, J.A.; Weiskopf, D.; De Silva, A.D.; Sette, A.; Keşmir, C.; Peters, B. Properties of MHC Class
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