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ABSTRACT: To investigate the role of the active site copper in Escherichia coli copper amine oxidase (ECAO),
we initiated a metal-substitution study. Copper reconstitution of ECAO (Cu-ECAO) restored only ∼12%
wild-type activity as measured by kcat(amine). Treatment with EDTA, to remove exogenous divalent metals,
increased Cu-ECAO activity but reduced the activity of wild-type ECAO. Subsequent addition of calcium
restored wild-type ECAO and further enhanced Cu-ECAO activities. Cobalt-reconstituted ECAO
(Co-ECAO) showed lower but significant activity. These initial results are consistent with a direct electron
transfer from TPQ to oxygen stabilized by the metal. If a Cu(I)-TPQ semiquinone mechanism operates, then
an alternative outer-sphere electron transfer must also exist to account for the catalytic activity of Co-ECAO.
The positive effect of calcium on ECAO activity led us to investigate the peripheral calcium binding sites
of ECAO. Crystallographic analysis of wild-type ECAO structures, determined in the presence and absence
of EDTA, confirmed that calcium is the normal ligand of these peripheral sites. The more solvent exposed
calcium can be easily displaced by mono- and divalent cations with no effect on activity, whereas removal of
the more buried calcium ion with EDTA resulted in a 60-90% reduction in ECAO activity and the presence
of a lag phase, which could be overcome under oxygen saturation or by reoccupying the buried site with
various divalent cations. Our studies indicate that binding of metal ions in the peripheral sites, while not
essential, is important for maximal enzymatic activity in the mature enzyme.

Copper amine oxidases (CuAOs) catalyze the oxidative dea-
mination of primary amines to the corresponding aldehydes,
followed by the reduction of oxygen to hydrogen peroxide.

RCH2NH3
þ þO2 þH2O f RCHOþNH4

þ þH2O2

In bacteria CuAOs have a role in the utilization of primary
amines as a source of nitrogen or carbon (1, 2). In higher
organisms, they are important in a variety of functions including
cell adhesion and signaling (3-8). In humans three CuAOs have
been identified, AOC1, also known as amiloride binding protein,
AOC2, a retinal form, and AOC3, or vascular adhesion protein
(VAP-1) (9). The most widely characterized of the three, VAP-1,
is an endothelial transmembrane CuAO that mediates the inter-
action between lymphocytes and endothelial cells under inflam-
matory conditions facilitating transendothelial lymphocyte
migration (10-13). CuAO production of formaldehyde has also
been implicated in the alteration of protein structure, which may
subsequently cause protein deposition associated with chronic
vascular and neurobiological disorders, such as diabetic compli-
cations, atherosclerosis, and neurodegenerative disease (7, 14).

CuAOs are also implicated in adipose tissue regulation (15).
Although the mechanisms underlying the various etiological
outcomes are not fully understood, the development of highly
selective amine oxidase inhibitors is underway (16).

The posttranslational modification of a conserved active site
tyrosine in CuAO forms an organic cofactor, 2,4,5-trihydroxy-
phenylalanine quinone (TPQ)1 (17, 18). TPQ biogenesis is
autocatalytic, requiring only copper and oxygen (18). Crystal
structures of the Escherichia coli enzyme (ECAO) have provided
a basis for detailed structure-function studies (19). ECAO is a
homodimer of ∼160 kDa (Figure 1), and the active site includes
TPQ, stabilized in an “off-metal” conformation by interaction
with Tyr369, and in this productive form of the enzyme the O5 of
TPQ is positioned at the bottom of the substrate entry cleft close
to the active site base Asp383. The cupric ion is coordinated by
His524, His526, His689, and two water molecules, one equatorial
and one axial.

The crystal structures of TPQ/copper amine oxidases from pea
seedling (PSAO) (20), Arthrobacter globiformis (AGAO) (21),
Hansenula polymorpha (HPAO) (22),Pichia pastoris lysyl oxidase
(PPLO) (23), bovine serum amine oxidase (BSAO) (24), human
vascular adhesion protein (VAP-1) (25), and human diamine
oxidase (26) all display the same overall architecture and
topology as ECAO, with the exception of the N-terminal domain
which only exists in Gram-negative bacterial enzymes.

Since the early 1980s experiments have been carried out on a
range of CuAOs to examine the role of the active site copper in
activating molecular oxygen (O2) and whether it is redox active
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during the oxidative half-cycle of catalysis (27-37). Two current
models exist for the reoxidation of amine substrate reduced
aminoquinol (TPQAMQ) to TPQ: (a) that copper plays an
essential role in inner-sphere electron transfer from TPQAMQ

to O2 by providing a binding site for reduced oxygen species,
suggesting a potential redox-active role for copper (33) or (b) that
electron transfer occurs by an outer-sphere mechanism whereby
TPQAMQ directly reduces dioxygen which is bound and activated
in a hydrophobic pocket adjacent to the metal site, with no
requirement for a change in the copper oxidation state (34).
Recent experiments by Mukherjee et al. and Shepard et al. have
provided further evidence for a redox role of copper in an inner-
sphere electron transfer process (38, 39) and are consistent with
the existence of an on-pathwayCu(I)-TPQ semiquinone (TPQSQ)
intermediate. However, as noted by Shepard et al., it seems
increasingly likely that the precise reoxidation mechanism of
TPQAMQ in CuAOs is specific to the source of the CuAO (39).

While attention has focused naturally upon the roles of copper,
TPQ, and various active site residues in CuAOs, the roles of the
nonactive sitemetal ions,which lie at peripheral sites distant from
the active site, have been largely ignored (Figure 1). In ECAO,
there are two such peripheral metal ions, originally assigned
as calcium from crystallographic data (19) and subsequently
confirmed by inductively coupled plasma mass spectroscopy
(ICP-MS) (40). These peripheral metal sites in ECAO lie close
to the enzyme surface some 30 Å from the active site copper
(Figure 1). One is in direct contact with solvent and will be
referred to as the “surface site” while the other is not solvent
exposed and will be referred to as the “buried site”. The buried
site is present in all CuAOs with the exception of HPAO,
although HPAO contains an arginine (R467) in place of one of
the buried site acidic ligands (Figure 2), raising the prospect that
a salt bridge substitutes for themetal in this species. Interestingly,
both peripheral metal sites are assigned as calcium in the
mammalian CuAOs (thoughMn2þ has been reported in purified
native human placental diamine oxidase (41)), and as calcium is a
well-known regulatorymetal, this may be of significance for their
biological function. In contrast, two CuAOs from plant sources,
PSAO (20) and fenugreek seedlings (42), are reported to contain
Mn2þ as their second sitemetal.Mn2þ is highly abundant in plant
seedlings, suggesting that metal availability is a possible determi-
nant for the identity of the observed metal in these sites.

We initiated biochemical and kinetics studies to explore the
effect of active site metal replacement in ECAO. One of the
surprising outcomes of this work was to highlight the potential

importance of the peripheral calcium ions in ECAO. We have
therefore examined the effects of EDTA treatment and of
metal replacement at these sites on ECAO activity and three-
dimensional structure.

EXPERIMENTAL PROCEDURES

Expression and Purification of ECAO. ECAO protein
was prepared from E. coli JM109 carrying recombinant plas-
mid pKKecao (40) essentially according to previously repor-
ted procedures (40, 43) but with the following modifications.

FIGURE 1: Structural overview of ECAO. In the center is a cartoon showing the ECAOdimer colored bymonomer (1DYU). To the left is amore
detailed view of the peripheral metal binding sites; to the right is a detailed view of the active site. Figure generated with Pymol (73).

FIGURE 2: Amino acid alignment of seven copper amine oxidases in
the regions of the peripheral metal sites. The alignment is based on a
multiple sequence alignment (CLUSTALW(74)) including 30CuAO
from plants, animals, and bacteria and on the available crystal
structures. (A) The buried site region is characterized by two
β-strands that link the Cu(II) site via its ligands H524, H526, and
H689 to the buried Ca2þ site. (B) The surface site is less well
conserved. Peripheral metal site ligands are indicated in bold and
underlined. The copper ligands are shown in red, acidic peripheral
site ligands in orange, and hydrophobic residues whose backbone
carbonyls coordinate the peripheral sites in green. Asparagines in the
surface site in BSAO and VAP1 are shown in blue. (ECAO, Escheri-
chia coli; PSAO, pea seedling; AGAO, Arthrobacter globiformis,
BSAO, bovine serum; VAP-1, human vascular adhesion protein;
PPLO, Pichia pastoris; HPAO, Hansenula polymorpha.) ECAO
numbering is used throughout, and the identity of the peripheral
metal in each enzyme site is indicated.
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A culture of E. coli JM109 carrying plasmid pKKecao (40) was
grown in 2TY medium (500 mL) containing 50 μg/mL disodium
carbenicillin, 25 μg/mL ampicillin, and 50 μM CuSO4 at 37 �C
with shaking (200 rpm) to OD600 0.6-0.8. Induction of ECAO
expression was achieved by addition of 1 mM IPTG for 4-5 h.
Cells were harvested for 10 min at 4 �C at 5000g, and all
subsequent manipulations were carried out on ice. The cell
pellet was resuspended in 10 mL of 50 mM Tris-HCl (pH 8.0)
containing 20% sucrose. A 3 mL aliquot of 42 mM EDTA
(pH 8.0) was added followed by a further 3 mL of 50 mM Tris-
HCl (pH 8.0) containing 10 mg/mL lysozyme with inter-
mittent agitation and incubated for 30 min. Six milliliters of
50mMTris-HCl (pH 8.0) containing 9% sucrose was then added
followed by 13.5 mL of the same buffer containing 15 mM
MgCl2. The suspension was centrifuged at 10000g for 30 min to
obtain the periplasmic fraction. The supernatant was dialyzed
overnight against 20 mM Tris-HCl (pH 7.0) and loaded onto a
Q-Sepharose ion-exchange column, previously equilibrated
with 20 mM Tris-HCl (pH 7.0) and washed with 20 mM
Tris-HCl (pH 7.0) followed by a second wash with 35 mM
NaCl in 20 mM Tris-HCl (pH 7.0). A gradient from 35 to
175 mM NaCl in 20 mM Tris-HCl (pH 7.0) was then used
to elute the protein. The purest fractions, identified by
SDS-PAGE, were pooled and dialyzed versus 20 mM Tris-
HCl (pH 7.0). ECAO was concentrated to 6-10 mg/mL, as
estimated by A280 measurement adjusted by a gravimetrically
derived correction factor of 0.76 to give the concentration in
milligrams per milliliter (ε280= 2.1� 105M-1 cm-1) (44). Pure
ECAO was used directly for crystallization or flash frozen in
liquid N2 and stored at -80 �C.
UV-Vis Spectroscopy. UV-vis spectroscopic studies were

performed on a Shimadzu UV2401 PC spectrophotometer
equipped with a temperature-controlled cell holder at 25 (
0.1 �C. TPQ content was determined by titration of the enzyme
with 2-hydrazinopyridine (2-HP). In brief, 200 μL aliquots of
ECAO (5 μM per monomer) in 100 mM sodium phosphate
buffer (pH 7.0) were incubated with 0.1-1.0 mol equiv of the
irreversible inhibitor 2-HP. Samples were incubated overnight;
then spectra were recorded over the range 300-600 nm. The
reaction was monitored by the formation of an initial adduct at
∼430 nm and allowed to proceed until no further spectral change
was detected following each addition (45).
Activity Assays. Enzyme activity was determined from

the measurement of the initial rate of hydrogen peroxide produc-
tion during the enzymatic oxidation of a primary amine sub-
strate, using a coupled assay system (19). Briefly, the assay
buffer contained 100 mM sodium phosphate buffer (pH 7.0),
2,20-azinobis(3-ethylbenzthiazoline-6-sulfonoic acid) (ABTS)
(0.3 mg/mL), horseradish peroxidase (0.1 mg/mL), and β-phe-
nylethylamine at variable concentrations. To assess the effect of
various treatments on the enzyme, specific activity was measured
at a standard concentration of 10 μM β-phenylethylamine
at which concentration ECAO activity equals Vmax. Typically,
to 980 μL assay buffer was added 20 μL of purified protein
(0.2-0.05 μM; dimer of ECAO) and the reaction recorded at
410 nm in a Shimadzu 2401 UV-vis spectrophotometer. Steady-
state kinetic parameters (KM(amine) and kcat) were determined by
changing the concentration of β-phenylethylamine (0.5-1000
μM) and calculated by fitting the data to nonlinear regression
curves of the Michaelis-Menten equation using OriginPro. In
addition, we determined the effect of oxygen on enzyme activity
by comparing specific activity of the metal-reconstituted samples

and wild-type enzyme under standard aerobic conditions and
following oxygen purging of the assay solutions.
Active Site Metal Replacement Studies. All chemicals

were purchased to the highest quality (g99.99% pure). All work
was carried out using plasticware which had been treated with
0.1 M EDTA (pH 7.3) (25 L bath prepared in ddH2O with
resistivity g15 MΩ) for a minimum of 1 h at room temperature
before rinsing with ddH2O (g15 MΩ) and drying thoroughly.
Buffers were prepared using Chelex-treated H2O (resistance
g18.2 MΩ). All solutions were passed twice through a Chelex
column (Chelex 100, 100-200 mesh sodium; Bio-Rad). No more
than 5Lof bufferwas passed throughwithout regenerationof the
Chelex matrix unless EDTA (g1 mM) was added supplementary
to Chelex treatment. The pH of the buffers was confirmed prior
to work with ECAO. All solutions were degassed by purging
withN2 andwith rigorous stirring for aminimumof 2-3 h (1L of
buffer in a plastic flask withminimum head space) before placing
in an anaerobic cabinet (Belle Technology;e2 ppmO2) overnight
at ca. 25 �C. Sodium dithionite and KCN were placed in the
cabinet overnight prior to addition to allow for equilibration.
Analytical grade chloride salts of Co(II), Cu(II), Ni(II), and
Zn(II) were purchased from Fisher Chemicals.

Attempts were made to substrate-reduce the wild-type ECAO
with β-phenylethylamine as has been described for HPAO (32).
However, yields of copper-free (Cu-free) ECAO were low using
this method. Metal ions were therefore removed from wild-type
ECAO using a modification of the method described previously
for AGAO (31). Approximately 6 mL of 10 mg/mL wild-type
ECAO was prepared and dialyzed aerobically overnight at 4 �C
against 500 mL of Chelex-treated 50 mM HEPES (pH 6.8). The
dialyzed protein was transferred to 500 mL of degassed, Chelex-
treated 50 mMHEPES (pH 6.8) and equilibrated under anaero-
bic conditions in the Belle cabinet overnight at 25 �C. Solid
sodium dithionite (50 mM) was added to a degassed solution of
50 mM HEPES (pH 6.8), and the protein was dialyzed for a
minimumof 3 h during which it decolorized from strong to a very
pale pink. Solid KCNwas then added to 10 mM, and the dialysis
continued overnight. The resulting metal-depleted ECAO was
dialyzed extensively in 50 mM HEPES (pH 6.8) supplemented
with 1 mM EDTA, followed by 50 mM HEPES (pH 6.8) alone.

The metal-depleted ECAO was then removed from the anae-
robic cabinet, aliquoted into equal portions, and dialyzed versus
Chelex-treated 50 mM HEPES (pH 6.8) supplemented with
1.4 mMMCl2 (M=Cu2þ, Ni2þ, Co2þ, Sr2þ, Zn2þ) under aerobic
conditions. All subsequent steps were performed under aerobic
conditions. Following overnight dialysis at room temperature,
the samples were removed, diluted by half with Chelex-treated
50 mM HEPES (pH 6.8), and further dialyzed versus non-
Chelex-treated 20 mM Tris-HCl (pH 7.2) supplemented with
100 mM EDTA alongside a sample of wild-type ECAO. EDTA
was removed by 4 h dialysis versus non-Chelex-treated 20 mM
Tris-HCl (pH 7.2) alone. Samples were dialyzed overnight versus
non-Chelex-treated 20mMTris-HCl (pH7.2) supplementedwith
1 mM CaCl2. All samples were analyzed for metal content by
ICP-MS and kinetic assays carried out.
ECAO Sample Preparation for Solution Studies of

Peripheral Metals. Typically, wild-type ECAO was diluted in
20 mM Tris-HCl (pH 7.0), and the protein concentration was
measured by A280 (44). The sample was divided into aliquots,
which were subjected to various treatments before measure-
ment of enzyme activity. For EDTA treatment, a solution
of EDTA was added to the enzyme to give a final concentration
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of g1000-fold molar excess of EDTA to ECAO. The EDTA-
treated ECAO samples were incubated at room temperature for
at least 1 h before further additions or measurement of enzyme
activity. The final concentration of EDTA in the assay mixture
was reduced by dilution to e10 nM. At this concentration there
was no effect of residual EDTAon either ECAOor theHRPused
in the coupled assay. To remove EDTA from the enzyme
solution, three to five buffer exchange steps against metal-free
Chelex-treated 20 mMTris-HCl buffer (pH 7.0) (see above) were
performed using Microcon centrifugal filter devices (Amicon;
30 kDa MWCO) prior to metal addition.
Metal Content Determination. Samples of ECAO in aqu-

eous solution were subjected to ICP-MS at the University of East
Anglia using a Thermo Electron X7 ICP quadrupole mass
spectrometer. An internal rhodium standard was used to correct
for any instrument drift. Solvent standards were also analyzed.
X-ray Crystallographic Data Collection. ECAO crystals

were grown by sitting drop vapor diffusion. Typically 5 μL
of protein sample (6-10 mg/mL) was gently mixed with the
same volume of mother liquor in a microbridge insert (Crystal
Microsystems). Drops were equilibrated against mother liquor
containing 100 mM HEPES (pH 6.9-7.2) and sodium citrate
(1.10-1.35 M).

For EDTA-treated crystals (EDTA1 and EDTA2) 0.5 M
EDTA in 20 mM Tris-HCl (pH 8.5) was added to an 8 mg/mL
solution of wild-type ECAO to give a final concentration of
66 mM EDTA. After 4 h incubation, this enzyme solution was
used to set up crystallization trays. For strontium treatment,
wild-type (non-EDTA-treated) crystals grown as above were
soaked for 50 h in 100 mMSrCl2. ECAO crystals were recovered
and incubated in cryoprotectant solution of crystal growth
mother liquor containing 20% glycerol before being immediately
flash frozen in liquid nitrogen for X-ray data collection. The
collection of data for these crystals was performed both at SRS,
Daresbury (Station 14.2; EDTA1), and at ESRF, Grenoble
(beamline BM14; EDTA2).

The proteins crystallized in space group P212121, as observed
previously for ECAO (19), and contained a dimer in the asym-
metric unit. Data were processed using MOSFLM (46) and
SCALA (47). Further processing, model building, and refine-
mentwere carried out using theCCP4 suite (48).Details of crystal
parameters, data collection, and refinement statistics are shown
in Table 3.
X-ray Crystallographic Structure Analysis. The iso-

morphous wild-type ECAO structure 1DYU (40) was used
as a starting model. All refinement and model building was
performed using Refmac5 (49) and COOT (50), respectively.
Rigid body refinementwas used to optimize the orientation of the
starting model. Then TPQ was replaced in each subunit by an
alanine residue; all metal ions (Cu2þ and Ca2þ) and all water
molecules in the active site were deleted as were a number of other
water molecules. After initial positional refinement COOT was
used to build the missing side chains, to place the metals and
water molecules where appropriate, and successive rounds of
positional refinement and rebuilding generated the final model.

RESULTS

Active Site Metal Replacement. UV-Vis Spectro-
scopy and Kinetics. The UV-vis spectral properties of
the active site metal-reconstituted ECAOs are shown in Figure 3.
The metal-depleted protein contained no detectable peak in the
450-500 nm region, suggesting the TPQ was in a reduced state.

This spectrum remained essentially unchanged even after pro-
longed exposure to air-saturated buffer at room temperature
(data not shown). The active site metal-reconstituted enzymes
all contained a broad peak in the 450-550 nm range with all
measurements being made at pH 7.0.

Metal determination by ICP-MS (Table 1) indicates that Cu
substitution is almost complete at 0.95 atom/subunit with Ni
substitution at 0.82 atom/subunit and the Co-substituted sub-
stantially lower at only ∼0.5 atom/subunit. Kinetic analyses
allowed determination of KM(amine) and kcat and for the EDTA-
treated samples and subsequent calcium-treated samples. These
data were corrected for metal content and are shown in Table 2.
For the initial Cu-, Ni-, and Co-reconstituted samples the
KM(amine) was similar to wild type, but kcat was reduced, resulting
in kcat/KM(amine) values of 1.25, 0.004, and 0.25 μM-1 s-1

corresponding to 12.1%, 0.39%, and 2.4%, respectively, com-
pared with the wild-type untreated ECAO. It should be noted
that themetal-depleted enzyme showed ca. 1%wild-type activity.
The Zn-substituted ECAO was inactive in the assay and thus
below the level of detectable activity of kcat 1.2 � 10-5 s-1 (40).

As shown in Table 1, the dialysis step with the replacement
metals resulted in samples containing excess metal ions, which
may account for the lower than expected levels of enzyme activity
(Table 2 and Figure 4). To overcome any potential inhibitory
effects of exogenous metal ions, samples were further dialyzed
versus 100 mM EDTA. This treatment had an adverse effect on
the activity of thewild-type ECAO, resulting in a kcat/KM(amine) of
6.08 μM-1 s-1, which represents a 49% reduction compared with
untreated ECAO. As anticipated, however, the EDTA treatment
resulted in the kcat/KM(amine) values for Cu-ECAO, Ni-ECAO,
and Co-ECAO increasing to 4.21, 0.1, and 0.86 μM-1 s-1, which
represent 69%, 1.7%, and 14%, respectively, compared with the
EDTA-treated wild-type value. For all of these forms of metal-
reconstitutedECAO the λmax values were 485( 2 nm (Figure 3A)
with metal content corrected molar extinction coefficients of
1726, 2210, and 2750 M-1 cm-1 for Cu-, Ni-, and Co-ECAO,
respectively.

The unexpected reduction in activity of the EDTA-treated
wild-type ECAO led to the proposal that calcium bound in the
peripheral metal sites may be removed from the enzyme during
this treatment, resulting in reduced activity. It was also observed,
during initial evaluation of the catalytic function of the metal-
replaced enzyme, that the initial rate of amine oxidation increased
over time. As the assay buffer had not been Chelex treated, it was
concluded that trace amounts of a divalent metal ion might be
responsible.

Table 1: ICP-MS Analysis of Metal Content (Indicated in Parentheses)

for Metal Removal and Replacement and Subsequent Treatments

ECAO

metal content

(mol of atom/mol of subunit)

wild type 1.05 ( 0.01 (Cu)

apo (Cu-free) 0.009 ( 0.0002 (Cu)

Cu-replaced (Cu-ECAO) 8 ( 0.05 (Cu)

Ni-substituted (Ni-ECAO) 10 ( 0.2 (Ni)

Co-substituted (Co-ECAO) 11 ( 0.1 (Co)

Cu-ECAO (þEDTA) 0.95 ( 0.01 (Cu)

Ni-ECAO (þEDTA) 0.81 ( 0.02 (Ni)

Co-ECAO (þEDTA) 0.5 ( 0.02 (Co)

Cu-ECAO (þcalcium) 0.92 ( 0.01 (Cu)

Ni-ECAO (þcalcium) 0.82 ( 0.02 (Ni)

Co-ECAO (þcalcium) 0.49 ( 0.02 (Co)
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To explore this further, the EDTA-treatedmetal-reconstituted
enzyme samples were dialyzed against 1 mM CaCl2. There was
little change in the active site metal contents (Table 1), and the
level of copper present in the Ni-ECAO and Co-ECAO samples

after calcium addition was maximally 1% and 2%, respectively.
The wild-type enzyme activity was restored to a kcat/KM(amine) of
10.83 μM-1 s-1 while the Cu-ECAO and Co-ECAO also showed
increases in kcat/KM(amine) to 7.07 and 0.4 μM-1 s-1, representing
65% and 4% of the activity of the restored wild-type value. In
contrast, the Ni-ECAO activity decreased to a kcat/KM(amine)

value of 0.05 μM-1 s-1 or only 0.5% of the restored wild-type
activity. The addition of Ca2þ to the Cu-ECAO, Ni-ECAO, and
Co-ECAO resulted in shifts in the λmax values to 471, 493, and
462 nm, respectively (Figure 3B), and with corrected extinc-
tion coefficients of 2891, 2561, and 2612M-1 cm-1, respectively.
The changes in λmax presumably reflect differences in the active
site environment in these three enzyme forms, but this was not
investigated further in this study.

Experiments were also carried out to investigate the possibility
that oxygen binding was altered in metal-substituted ECAOs
in accordance with the observations of Mills et al. in HPAO (34).
Under saturating oxygen conditions no change in activity
was observed for the Cu-ECAO or Ni-ECAO. However, the
Co-ECAO did show a modest increase compared with air-
saturated conditions in both kcat (0.27-0.43 s-1) and KM(amine)

(0.6-0.68 μM), resulting in a kcat/KM(amine) increase from 0.44 to
0.63 μM-1 s-1. This is a verymodest increase compared with that
reported for the Co-HPAO which under saturating oxygen

FIGURE 3: UV-vis spectra of metal-reconstituted ECAO. (A) Post
EDTA treatment. (B) Following addition of calcium. Solid line, Cu-
ECAO; dot-dashed line, Ni-ECAO; dashed line, Co-ECAO. The
λmax and extinction coefficient (M

-1 cm-1) values corrected formetal
content are shown in the insert tables.

Table 2: Kinetic Parameters for ECAO during Active Site Metal Reconstitutiona

enzyme kcat (s
-1) KM (μM) kcat/KM (μM-1 s-1) relative activity

wild-type ECAO untreated 12.4.0( 0.6 1.2( 0.1 10.33 100

copper-reconstituted (Cu-ECAO) 1.5 ( 0.025 1.2( 0.2 1.25 12.1

nickel-reconstituted (Ni-ECAO) 0.01( 0.001 1.46( 0.2 0.004 0.39

cobalt-reconstituted (Co-ECAO) 0.2( 0.006 0.8( 0.15 0.25 2.4

wild-type EDTA-treated 7.3( 0.4 1.2( 0.15 6.08 100

Cu-ECAO EDTA-treated 4.84( 0.16 1.15( 0.19 4.21 69

Ni-ECAO EDTA-treated 0.09( 0.004 0.9( 0.2 0.1 1.7

Co-ECAO EDTA-treated 0.86( 0.06 1.0( 0.3 0.86 14

wild-type calcium-treated 13.0( 0.6 1.2( 0.3 10.83 100

Cu-ECAO calcium-treated 9.89( 0.6 1.4( 0.4 7.07 65

Ni-ECAO calcium-treated 0.05( 0.002 1.0( 0.2 0.05 0.5

Co-ECAO calcium-treated 0.27( 0.08 0.6( 0.1 0.44 4

Co-ECAO calcium-treated O2 satd 0.43( 0.1 0.68 ( 0.1 0.63 5.8

aDithionite-reduced and cyanide metal-depleted enzyme was prepared and reconstituted and subsequently treated with EDTA and addition of calcium.
Values for kcat and kcat/KM(amine) are corrected for the variable metal content (Table 1) in the reconstituted enzymes. The relative activities are given as
a percentage of the corresponding wild-type treated enzyme.

FIGURE 4: ECAO turnover (kcat) profile of the active site metal
replacement studies.



Article Biochemistry, Vol. 49, No. 6, 2010 1273

conditions exhibited a kcat identical to that of the wild-type
enzyme (32).

These initial results of active site metal replacement studies
suggested that, in ECAO, copper is the most efficient catalytic
metal with cobalt displaying ca. 5.8% wild-type activity in terms
of kcat/KM(amine) under oxygen saturation. It is clear, however,
that other divalent cations, specifically Ca2þ, associated with
peripheral binding sites on the enzyme, influence the active site
of the enzyme, a phenomenon that we went on to investigate
further.
Roles of Peripheral Metal Sites. Solution Studies. To

examine the role of the non active site calcium ions in ECAO,
we used EDTA to effect their removal from wild-type ECAO.
EDTAcan chelate, with different stability constants (logK1) (51),
various divalent metal ions including calcium (Ca2þ; 10.70),
manganese (Mn2þ; 13.56), magnesium (Mg2þ; 8.69), and stron-
tium (Sr2þ; 8.63), with a strong preference for zinc (Zn2þ; 16.5)
and copper (Cu2þ; 18.8). Although ECAO is a copper-containing
enzyme, previous studies on CuAOs have shown that the deeply
buried active site copper is tightly bound and is not accessible to
EDTA (29, 52, 53).However, it was anticipated that the positions
of the calcium ions close to the surface of ECAOwould facilitate
their removal by EDTA.

EDTA treatment at a final concentration of 1 mM (EDTA:
ECAOdimer = 5000:1) caused a consistent reduction (60-90%)
in enzyme activity with an associated lag of up to 4 min in
attaining maximal activity with β-phenylethylamine. The addi-
tion of Mg2þ, Mn2þ, Ca2þ, or Sr2þ to EDTA-treated enzyme, to
a final concentration of 3 mM, prevented the lag phase and led to
a good recovery of activity (Figure 5). When these metals were
added directly to buffers containing untreated ECAO, the
activities remained unchanged (Figure 5). Activity measurements
on the EDTA-treated enzyme under saturating oxygen also
reduced the lag phase and resulted in ca. 2-fold higher specific
activity (Figure 5). There was no effect of oxygen concentration
on the activity of any of the other enzyme samples. The addition
of excess zinc abolished ECAO activity, and it is possible this is
due to binding in the region of the active site base, forcing TPQ
into a nonproductive conformation (54, 55).
Crystallographic Studies. Effect of EDTA Treatment.

The solution data suggested that the reduction in enzyme activity
observed upon EDTA treatment was due to the removal of
calcium ions from their binding sites. We therefore determined

the structure of ECAO from crystals grown in the presence of
EDTA (EDTA1; PDB code 2wof) or soaked in strontium
(strontium complex; PDB code 2woh). A second EDTA-treated
ECAO data set (EDTA2; PDB code 2wo0) was collected at an
X-ray wavelength of 1.77 Å to maximize any anomalous signal
from copper or calcium. In addition, a non-EDTA-treated wild-
type ECAO data set recorded at an X-ray wavelength of 1.48 Å
was also analyzed (56). These various structures were compared
with previously determined structures of wild-type ECAO
1DYU, grown in sodium citrate (40), and 1OAC, grown in
ammonium sulfate (19). Crystallographic data collection and
refinement statistics are summarized in Table 3.

The EDTA-treated structures were resolved to 2.25 Å
(EDTA1) and 2.6 Å (EDTA2) and showed essentially no differ-
ence in overall structure compared with structures of the un-
treated enzyme (1DYU). However, there was a difference in TPQ
conformation within the active site. In 1DYU the TPQ is
exclusively in a productive off-copper conformation (Figure 1)
in which O5 is positioned for attack by the incoming amine
substrate and subsequent catalysis. By contrast, in the EDTA-
treated structure EDTA1, after the first round of positional
refinement the density for TPQ, modeled as alanine at this stage,
was clear and corresponded to a mixture of the two previously
reported conformers, on-copper and off-copper (Figure 6A).
After several well-defined water molecules were added and a
further five cycles of refinement performed, TPQwas rebuilt with
occupancy of 0.5 for each conformation and refined with a final
B-factor of around 25 Å2 for each. The B-factors for copper were
of similar value and the Fo(EDTA1)

- Fc(1DYU) map did not display
any negative peaks, indicating that the copper site was fully
loaded and had not been affected by the EDTA treatment.

Differences were also observed upon examination of the
electron density difference Fo(EDTA1)

- Fc(1DYU) map in the
region of the peripheral metal sites which showed a negative
peak of 7 rms on the buried metal site but, surprisingly, no
negative peak at the surfacemetal site (Figure 6B). This suggested
that in the EDTA-treated crystals the calcium ions were missing
from the buried site but were apparently still present in the
surface site. However, when both calcium ions were removed
from the 1DYU model, followed by 20 cycles of restrained
refinement of this calcium-free model, a strong positive peak
was observed at both sites in the Fo - Fc map, suggesting that
metal ions were present in both sites.

FIGURE 5: Activity profile of ECAO, with and without EDTA treatment, showing the effects of supplementation with additional metals
(Ca2þ, Mn2þ, Mg2þ, Sr2þ, Zn2þ).
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To clarify this apparent contradiction, both calcium ions were
reintroduced into the EDTA1 model at full occupancy with B-
factor values from the 1DYU starting model (B-factor of surface
sites Ca2þ = 54.28 and 51.85 and buried sites Ca2þ = 23.61 and
25.77, chains A andB, respectively). After positional andB-factor
refinement, there was essentially no change in the B-factors of the
calcium in the surface metal site when compared to the starting
model. Interestingly, as observed in the 1DYU structure, the
surfacemetalB-factorswere considerably higher than those of the
surrounding protein ligands, suggesting that the Ca2þ occupancy
at this site is less than 1 in both EDTA1 and 1DYU. In contrast,
the B-factors of the buried metal doubled, suggesting that
occupancy of the buried site is substantially reduced by EDTA.
The occupancy of the calcium at the buried site was therefore
refined, and with 60% calcium occupancy, the B-factors of this
metal ion were refined to similar values to its protein ligands,
∼25 Å2. Similar observations were made following analysis of an
independent EDTA-treated ECAO crystal (data not shown).

These results could suggest that both sites remained partially
occupied by calcium after EDTA treatment. However, an alter-
nate, and more likely, explanation would be that these sites
actually contain a smaller cation at full occupancy. In order to
confirm the identity of the ion in these sites after EDTA

treatment, data were collected from a crystal of EDTA-treated
ECAO at 1.77 Å where calcium has a detectable anomalous
signal (EDTA2, f

00
Ca= 1.64, f 0 0Cu= 0.76). The resulting ano-

malous difference map showed a clear 4 rms peak at each copper
site but no peak at the buried or surface sites, indicating no
calciumwas present in either site. These data indicate that EDTA
treatment is able to successfully remove calcium from both the
surface and buried sites and that the observed electron density at
this position must be due to a different ion with no anomalous
signal at 1.77 Å. As the crystals were grown in high concentra-
tions of sodium citrate (1.2M), wemodeled sodium ions ( f 0 0Na=
0.16) into both sites at full occupancy. After refinement both
peripheral metal ions had similar B-factors to their protein
ligands, and the Fo(EDTA1)

- Fc(EDTA1)
electron density map no

longer showed strong difference features, indicating sodium is
likely to be bound in both sites.

Interestingly, our reexamination of the 1DYUstructure, which
was also grown in 1.2 M sodium citrate, called into question the
identity of the surface metal ion in this structure. Unfortunately,
the 1DYU data were collected at 0.99 Å where there is little
detectable calcium anomalous signal ( f 0 0Ca=0.58).We therefore
calculated an anomalous difference map from another available
data set representative of the non-EDTA-treated wild type,

Table 3: Crystallographic Statistics for Data Collection and Structure Refinement

data set EDTA1 EDTA2 strontium complex

X-ray source SRS ESRF home source

14.2 BM14 Rigaku RU-200

X-ray detector Quantum 4 ADSC CCD MAR225 CCD detector R-axis IVþþ
X-ray wavelength (Å) 0.98 1.77 1.54

temperature (K) 100 100 100

space group P212121 P212121 P212121
unit cell a, b, c (Å) 135.1, 166.9, 79.8 134.7, 166.6, 79.8 135.1, 166.9, 79.8

resolution (Å) 51.3-2.25 (2.37-2.25) 49.0-2.6 (2.74-2.60) 39.6-2.7 (2.85-2.70)

no. of unique reflections 86158 (12459) 56001 (8057) 49169 (7228)

multiplicity 4.4 (4.5) 3.6 (3.6) 3.1 (3.0)

Wilson B-factor 31.4 48.8 59.9

completeness (%) 99.9 (100.0) 99.9 (99.8) 98.1 (99.5)

ÆI/σæ (final shell) 13.7 (3.9) 13.2 (3.9) 14.3 (3.6)

Rmerge (%)a 9.1 (40.8) 7.3 (23.7) 7.2 (30.2)

Rfactor (%)b 16.9 (22.9) 18.2 (28.8) 18.6 (28.6)

Rfree (%)c 22.0 (29.1) 24.8 (39.2) 24.3 (41.0)

no. of reflections 83024 (6007) 54013 (4072) 46643 (3457)

no. of reflections, Rfactor set 80077 (5786) 52095 (3914) 44149 (3279)

no. of reflections, Rfree set 2947 (221) 1918 (158) 2494 (178)

no. of non-hydrogen atoms 12678 11794 11969

no. of of protein atoms 11402 11386 11366

no. of ligand atoms 6 6 6

no. of solvent atoms 1060 400 597

average B (Å2)

overall 35.7 29.7 40.5

main chain 34.2 29.2 40.3

side chain 35.8 29.9 40.4

ligands 33.8 33.8 44.3

solvent 43.2 34.2 43.3

rmsd from ideality

bonds (Å) 0.02 0.01 0.004

angles (deg) 1.70 1.60 0.853

Ramachandran plot

most favored (%) 97.8 95.9 97.5

allowed regions (%) 2.2 3.9 2.5

disallowed regions (%) 0 0.2 0.1

PDB code 2wof 2wo0 2woh

aRmerge =
P

h

P
l|Ihl - ÆIhæ|/

P
h

P
lÆIhæ, where Ihl is the lth observation of reflection h. bRfactor =

P

)Fo| - |Fc )/
P

|Fo|, where |Fo| is the observed structure
factor amplitude and |Fc| is the calculated structure factor amplitude. cRfree is the R factor calculated for only the data excluded from refinement.
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a xenon derivative of ECAO (ECAO-Xe) (56). This data set was
collected at 1.48 Å where calcium does have a detectable
anomalous signal ( f 00Ca=1.19).

A strong anomalous peak (8.5 and 8 rms in subunits A and B,
respectively) was found in the buried calcium site for the xenon
derivative data, as well as a weaker but significant peak at the
copper site (f 00Cu = 0.54). However, no anomalous signal could
be detected at the surface site in either subunit (Figure 6C). These
results indicate that the surface site in the xenonderivativeECAO
structure, which has not been treatedwithEDTA, is not occupied
by Ca2þ but by a metal ion with no anomalous signal at 1.48 Å.
This metal ion is not removed by EDTA, as there was no
difference in site occupancy following EDTA treatment. The
obvious candidate was Naþ, since the mother liquor in which the
crystal grew contained 1.2 M sodium citrate, and Naþ has
negligible anomalous signal at these wavelengths (1.48 Å, f 0 0Na =
0.11, and 1.77 Å, f 0 0Na = 0.16). As the 1DYU crystal was also
grown in sodium citrate, we rerefined this structure (40), repla-
cing the surface site calcium with a sodium ion. In this rerefined
1DYU model, the B-factors for the surface metal sites decreased
to values similar to those of the protein ligands, strongly
suggesting that in crystals grown in 1.2 M sodium citrate sodium
ions are likely to occupy the surface sites irrespective of whether
the sample has been treated with EDTA.

In contrast, in the very first ECAO structure determined
(1OAC (19)), for which the crystal was grown in 2.3 M
ammonium sulfate, both peripheral metals were assigned as

calcium. In this structure the B-factors of the metals and ligands
are similar, suggesting that, in this case, the assignment of the
surface metal ion as calcium is correct. This is supported by the
conformation of D670, a surface site ligand, which in 1OAC is
coordinated to the metal ion, consistent with the presence of
a divalent cation. In contrast, in structures determined from
crystals grown in sodium citrate a strong negative peak is
observed on the D670 side chain in Fo(1DYU) - Fc(1OAC),
Fo(EDTA1)

- Fc(1OAC), and Fo(ECAO-Xe) - Fc(1OAC) difference
maps, indicating that D670 is no longer a ligand in these
structures. This is consistent with the presence of a monovalent
metal ion such as Naþ. As final confirmation of the ability of a
buffer metal ion to displace calcium in the surface site, we
collected X-ray diffraction data from a crystal of non-EDTA-
treated ECAO grown in 1.2 M sodium citrate and soaked with
100mMstrontium chloride (Table 3). In this structure, strontium
could be modeled at full occupancy in the surface site of both
subunits, with D670 as a ligand, but no strontium was detectable
in the buried sites (Figure 6D). These data indicate that strontium
displaces sodium from the surface site, suggesting a preference for
divalent metal ions in this site. However, strontium is unable to
displace calcium from the buried site.

DISCUSSION

Active Site Metal. Cu-free ECAO remains colorless and is
resistant to oxidation, confirming the successful removal of
copper ion and confirming that no contaminating metals were

FIGURE 6: Crystallographic studies identifying the nature of the peripheral metal ions. (A) Detail of the active site in EDTA-treated ECAO
showing themultiple conformationsofTPQ.2Fo-Fc density is shownasabluemeshcontoured at 1 rms. (B)A strongnegativepeak is observedat
the site of the buried calcium in an Fo(EDTA) - Fo(1DYU) map contoured at -5σ and shown as red mesh. No difference peak is observed at the
surface site. (C)A strongpositive peak is observed at the buried site in ananomalous differencemap calculated fromanECAOdata set collected at
1.48 Å, indicating that this site is likely occupied by calcium in the absence of EDTA treatment. Positive anomalous difference density is shown as
an orangemesh contoured at 4σ. (D) A strong positive feature is observed at the surface site in the Sr2þ complex structure in an Fo(Sr)- Fo(1DYU)

difference map. No peak is observed at the buried site, indicating strontium has only displaced the surface metal ion. The difference density is
shown as an orange mesh contoured at 8σ. Figure generated with Pymol (73).
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able to enter the active site and reoxidize the TPQ cofactor.
Reconstitution with Cu2þ, or substitution with Co2þ, Ni2þ, or
Zn2þ resulted in reoxidation and recolorization of the TPQ
cofactor, with recovery of 12.1% wild-type ECAO activity when
copper was added. Although both Ni-ECAO and Co-ECAO
support amine oxidation, their respective catalytic efficiencies
are poor: 0.39% and 2.4%, respectively, compared with wild-type
ECAO. To put these values into context, the background level of
activity associated with the metal-depleted enzyme was ca. 1% of
wild-type activity. Zincwas found to completely inactivate ECAO.

As copper reconstitution did not restore a high level of ECAO
activity, we hypothesized that excess metal ions have an inhibi-
tory effect. To remove any excess metal, the Cu-ECAO, Ni-
ECAO, and Co-ECAO were treated with EDTA. Surprisingly,
wild-type ECAO treated with EDTA showed a 49% reduction in
activity. In contrast, EDTA treatment resulted in a substantial
increase in the Cu-ECAO activity to 69% that of the EDTA-
treated wild-type ECAO. The Co-ECAO and Ni-ECAO showed
moremodest levels of recovery of activity to 14%and 1.7%of the
wild type. The unexpected reduction in activity of the wild type
led to the suggestion that EDTA treatment of wild-type ECAO
had removed the peripheral calcium ions. In order to test whether
this was the case, we added excess calcium to both EDTA-treated
wild-type ECAO and EDTA-treatedmetal-reconstituted ECAO.
This resulted in the restoration of full activity to the wild-type
ECAOand a further substantial increase in activity of Cu-ECAO
to 65% that of fully active wild-type ECAO. The activity of Ni-
ECAO decreased and is essentially indistinguishable frommetal-
depleted enzyme. There was also a reduction in Co-ECAO
activity upon addition of calcium, although the activity was still
ca. 4% of wild type. Previous studies with Co-HPAO showed a
similar reduction in activity due to a substantial increase in the
KM for oxygen such that under oxygen saturating conditions
the Co-HPAO displayed the same turnover rate as wild-type
enzyme (32). To examine whether there was an effect of oxygen
concentration on ECAO, we compared kcat and KM(amine) under
air-saturated and oxygen-saturated conditions. For Cu-ECAO
and Ni-ECAO there was no effect, while for Co-ECAO we
observed amodest increase in kcat from 0.27 to 0.43 s-1; however,
this is significantly different from the value of 9.8 s-1 for Cu-
ECAO, and so Co-ECAO does not show the same substantial
level of recovery of activity as does Co-HPAO under oxygen
saturation (32). Another example of appreciable activity in a Co-
substituted enzyme was presented for bovine serum amine
oxidase (BSAO) by Suzuki et al. (27), who reported 13.3% of
native BSAO activity which corrects to 18.2%when allowance is
made for the 73% Co content.

A red shift of the λmax for TPQ to ca. 485 nm (cf. wild-type
ECAO λmax of 477 nm) was observed for all metal-substituted
ECAOs upon EDTA treatment. After calcium addition, the λmax

values of the TPQcofactor in allmetal-substitutedECAOs varied
considerably (Co-ECAO, 462 nm; Cu-ECAO, 471 nm; Ni-
ECAO, 493 nm). The λmax shifts are indicative of changes in
the TPQ environment, suggesting differences in TPQ mobility in
the different ECAO forms (40, 57). This suggests that the
treatment with EDTA affects the active sites in all the enzyme
forms in a similar manner, perhaps resulting in a constraint on
the TPQ configuration. Upon addition of calcium the active site
environmentmust change, reflected by the divergence in the TPQ
spectral feature.

Moving now to Zn2þ, this was shown to bind to copper-
depleted AGAO but was unable to reoxidize TPQred to

TPQox (31). In contrast, in Zn-HPAO (32), Zn-LSAO (28), and
Zn-ECAO (this study) TPQ reoxidation is observed. In addition,
all three Zn-substituted CuAOs reacted with suicide inhibitors
forming stable adducts, and Zn-LSAO was shown to be able to
support the reductive half-reaction (28). However, none of the
Zn-substituted CuAOs so far reported have been able to carry
out the oxidative half-reaction, in contrast to the Co- and Ni-
substituted enzymes which show low activity. These observations
cannot be reconciled with either a purely redox-active or redox-
inactive model for the CuAO active site metal. Therefore,
we suggest that a distinction should bemade between reoxidation
of a chemically reduced cofactor and the oxidative half-cycle of
catalytic turnover.

Dithionite-reduced TPQ is likely to be protonated at physio-
logical pH and therefore unable to coordinate the metal. How-
ever, upon metal addition a rapid reoxidation of TPQ is
observed, and the crystal structures of metal-substituted ECAOs
show an on-metal TPQ binding, also indicative of oxidized TPQ
(data not shown). It seems plausible that there is a site in the
vicinity of themetal where dioxygen can bind and reoxidize TPQ.
Copper and cobalt are able to directly bind oxygen (59, 63).
Nickel(II) complexes with dioxygen have been reported (64, 65),
but we have not found reference to zinc(II) dioxygen complexes.
The ability of Zn-ECAO to support TPQ reoxidation suggests
that, in this reaction, electrostatic stabilization of a dioxygen
species rather than direct coordination is occurring (36). Once
TPQ is oxidized, we suggest that in the Zn-substituted ECAO an
on-metal conformation of TPQ is strongly favored as indicated
by the UV-visible spectrum (66). However, it is clear that in the
presence of excess 2-HP the on-metal/off-metal equilibrium is
affected such that all of the TPQ becomes available for reaction
with the inhibitor.

Our data, and that of others, show that in the Zn-enzyme the
oxidative half-reaction is completely blocked. We therefore
propose that reduced TPQ in metal-depleted ECAO can be
oxidized by addition of metal in the presence of oxygen with
no associated metal-redox change. This is analogous to the final
step of TPQ biogenesis, TPQred f TPQox (67). Once oxidized,
TPQ is then competent for a single reductive half-reaction, but in
the presence of Zn the resulting aminoquinol cannot be reox-
idized to TPQ (Figure 7).

All metals were added to the Cu-free ECAO in their divalent
state and, given the similarity of the coordination environment
prior to addition of themetal, are unlikely to undergo subsequent
oxidation state changes (34, 58). The standard redox potentials
for the transition metal ions studied suggest that only the Cu(II)/
Cu(I) couple with E0 þ200 mV (59) would be thermodynami-
cally capable to participate in oxidation of the aminoquinol
cofactor during the oxidative half-cycle (E0 for TPQox/TPQred=
-140mV (60)). By contrast, as arguedbyMills andKlinman (32),
the much lower E0 for Co(II)/Co(I) = -500 mV (61) suggests it
would not be able to oxidize reduced TPQ while the Ni(II)/Ni(I)
is even lower (-1160 mV (62)). Mills and Klinman argue against
Co(III)/Co(II) redox mechanisms and propose an outer-sphere
electron transfer role for the copper based on the fact that, despite
compromised oxygen binding, the Co-HPAO can catalyze the
enzymatic reaction (32). For ECAO, we have not determined the
redox state of the Co but have no reason to doubt that it is likely
to also be present as Co(II). While Co-ECAO does display
catalytic potential, this is not restored to full activity in the
presence of saturating oxygen and so does not behave in an
identical manner to Co-HPAO (32). It is possible that the KM(O2)
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for Co-ECAO may be substantially higher than that reported
for Co-HPAO, but this would not be technically possible to
determine.

Our data do not require a redox role for the metal as being
essential for the oxidative half-cycle of ECAO; they are consistent
with the redox step in the catalytic oxidative cycle involving direct
electron transfer from reduced TPQ to dioxygen with the metal
stabilizing the process. Cu is well suited to this role, Co less so,
and Ni is poor with Zn unable to function. Alternatively, as
copper has been shown to be the most favorable metal for
supporting catalysis in ECAO, it could be argued that this is
consistent with a redox role involving a Cu(I)-TPQSQ intermedi-
ate in line with recent evidence for PSAO and AGAO (38, 39).
However, an outer-sphere electron transfer mechanism would
still be required to explain the observed catalytic activity in Co-
ECAO, Co-BSAO (27), and Co-HPAO (32). Shepard et al.
suggested the possibility that an outer-sphere mechanism may
operate for the Co- and Ni-substituted forms of AGAO (30).
Peripheral Metal Sites. The observation that addition of

calcium to copper-reconstituted ECAO resulted in increased
ECAO activity prompted us to investigate the peripheral metal
binding sites more closely. The roles of these peripheral metals
have not been examined previously. ECAO has a natural
preference for calcium in these sites and so provides an excellent
model for investigating the role of calcium sites in eukaryotic, and
specifically mammalian, CuAOs.We were therefore interested to
know whether these sites play any role in the function of the
mature enzyme.

Upon treating wild-type ECAO with EDTA a reduction in
enzyme activity of 60-90%was observed together with a lag phase
(up to 4 min) before the enzyme acquired maximal activity. An
investigation of the origin of this lag showed that it was not due to
inadequate temperature control, interference by EDTA in the
coupled assay, or EDTA acting as a reversible inhibitor. The

addition of an excess of the metal ions Ca2þ, Mg2þ, Mn2þ, and
Sr2þ all allowed recovery of substantial enzyme activity and
removed the lag observed after EDTA treatment alone. It should
benoted that the only other report of aCuAOwhere the removal of
a buriedmetal site and its effect upon activity has beenmeasured is
PSAO (20). In PSAO, EDTA treatment resulted in successful
removal of the buried site Mn2þ, as confirmed by the absence of
a characteristic paramagnetic Mn(II) EPR signal, but no effect on
PSAO activity was observed. However, no data are available as to
whether an EPR-silent divalent or a monovalent cation from the
reaction buffer was able to occupy the vacated Mn2þ site.

The X-ray structures of EDTA-treated enzyme revealed that
buffer-derived sodium ions occupy both peripheral metal sites. In
contrast to the untreated enzyme, in these structures TPQ exists
in two conformations, the productive “off-copper” and the
nonproductive “on-copper” conformers, each at 50% occu-
pancy. The productive conformation of TPQ is that observed
in previous structures (19, 21, 23, 25, 40, 44, 68) in which O4 is
hydrogen-bonded to the hydroxyl group of Y369 (in ECAO) and
O5 is positioned at the base of the amine substrate entry channel
(Figure 1). In the nonproductive on-copper conformation TPQ
has rotated about the CR-Cβ bond so that O4 is close to the
copper (19, 20, 22). Conformational rearrangement of TPQ from
the on-copper to the active off-copper position may account for
the lag phase observed upon enzyme assay of the EDTA-treated
ECAO. Abolishment of the lag phase after addition of excess
Ca2þ, Mg2þ, Mn2þ, or Sr2þ suggests that binding of these metals
in the peripheral binding sites may affect the TPQ conformation
in the active site.

As we have clearly seen from the crystal structure of the
EDTA-treated enzyme (EDTA1), there is a direct effect of
the identity of the peripheral sites ions on the conformation
of the active site. The presence of 50% of the TPQ in the
nonproductive on-copper conformation in the EDTA-treated

FIGURE 7: Mechanism proposed for the role of the active site metal in TPQ oxidation and catalysis. I represents the resting state of metal-free
ECAO. II is metal- (M-) substituted ECAO inwhich the TPQ is fully reduced to the O-quinol. III is the oxidized form of TPQwhich is in ametal-
dependent rate-determining equilibrium between the unproductive “on-copper” and productive “off-copper” conformations. IV is the substrate-
reducedTPQaminoquinolwhich is able to form in the presence of allmetals tested. V is the proposedZn2þ-dead-end species.Unlike zinc, which is
not competent to support reoxidation of the aminoquinol, the other metals tested (Cu, Co, and Ni) are able to support turnover.
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structures suggests a long-range conformational effect is affecting
TPQ mobility. Interestingly, in all amine oxidase structures
determined, the buried metal and its ligands (or equivalent in
HPAO) lie at one end of an antiparallel β-strand feature, the
other end being occupied by two of the three His residues that
coordinate the active site copper ion (Figures 2 and 8), providing
a direct structural link between the twometals. However, whether
this feature is responsible for influencing the mobility of TPQ
cannot be established from the present crystallographic data
because any small structural changes propagated through the
enzyme are beyond the resolution limit of the data.

An alternative explanation for the reduced activity after
EDTA treatment relates to the efficiency of oxygen entry to
the active site. There have been several recent structural studies
using xenon as a probe of potential molecular oxygen binding
sites to explore potential pathways by which O2 may be directed
to the active site of CuAOs (24, 56, 69, 70). These structures,
together with in silico studies of HPAO, PSAO, AGAO, and
PPLO (70), support a major pathway for oxygen entry from
the surface through a conserved β-sandwich which links both
metal sites to the active site copper (Figure 8) (56). In this
β-sandwich many of the residues are conserved and form part of
a funnel-shaped hydrophobic channel identified as the likely
major oxygen entry pathway (70). Removal of the calcium ions
from the peripheral metal sites may subtly alter the conformation
or dynamics of the funnel-shaped channel, making the access of
oxygen to the active site less efficient.We are currently investigat-
ing this possibility using biophysical and in silico methods. The
observations that the lag phase is reduced and activity increases in
the EDTA-treated enzyme when exposed to saturating oxygen
conditions are of interest in this regard.

Whatever the cause of the reduced enzyme activity and lag, the
removal of calcium from the peripheral metal sites of the enzyme
causes a reduction in enzyme activity. However, removal of
calcium does not completely abolish activity, indicating that
calcium binding at these sites is not essential for activity. Even
after calcium removal both sites are still occupied by a metal ion,
generally a monovalent cation from the buffer. If the peripheral

sites are reoccupied by a divalent cation (Ca2þ, Mn2þ, Mg2þ,
Sr2þ), a substantial increase in activity is observed. As reported
for other CuAOs, in ECAO it appears that the peripheral sites
bind the most abundant solution metal ions with a strong
preference for divalent cations. In the E. coli periplasm, as in
mammalian systems, the most abundant divalent metal ion is
calcium (71, 72), and both solution studies and the structure of
ECAO determined from crystals grown in ammonium sulfate
show that calcium is the native ion occupying both peripheral
metal binding sites (19). The next question is whether these
peripheral metals play any role(s) at earlier stages in the enzyme
production and processing pathway, and we are currently
addressing this question by mutagenesis and kinetic, spectro-
scopic, and structural studies.

CONCLUSIONS

We have undertaken initial studies to explore the replacement
of the active site metal in ECAO. These data demonstrate that
copper is the most efficient metal in supporting amine oxidation.
Cobalt displays a low level of activity (ca. 4%) under air-
saturated conditions, but unlike Co-HPAO, the turnover rate
of Co-ECAO under oxygen saturating conditions only increases
to 5.8% that of wild type and is not fully restored as observed for
Co-HPAO. Nickel displays very low levels of activity (0.05%)
while zinc is completely inactive. All of the metals support
reoxidation of the dithionite-reduced TPQ cofactor and are able
to react with 2-HP, including zinc, leading us to propose that this
step is analogous to the final step in TPQ biogensis (TPQred to
TPQox) and does not require a redox-active metal. Our data do
not discriminate between the redox step in the catalytic oxidative
half-reaction involving direct electron transfer from reducedTPQ
to dioxygen with the metal stabilizing the process or with copper
playing a direct redox role (Cu(I)-TPQSQ). In the latter case an
alternative outer-sphere electron transfer mechanism would be
required for the activity of the Co-ECAO. Surprisingly, we
observed an effect of the peripheral calcium sites upon enzyme
activity and undertook studies to investigate the role of these
peripheral metals by their removal and replacement. Removing

FIGURE 8: Structural relationship between the peripheral calcium sites and the active site in ECAO. The buried site is structurally associated with
the active site (CuandTPQ) through twoβ-strands (red). In contrast, the surface site showsnodirect structural associationwith the active site. The
putative oxygen entry channel is also shown.



Article Biochemistry, Vol. 49, No. 6, 2010 1279

the metals resulted in a 60-90% reduction in enzyme activity,
and replacement with various divalent metals (Ca2þ, Mn2þ,
Mg2þ, and Sr2þ) could restore full activity. We also observed
that the surface site is readily exchangeable and is often occupied
by sodium derived from in vitro buffers, meaning that it is
difficult to prepare enzyme that lacks peripheral metals. Future
studies to elucidate the roles of the individual peripheral sites by
mutagenesis are underway.
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