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Pulmonary arterial hypertension (PAH) is a rare but progressive and currently incurable disease, which is characterized by

vascular remodeling in association with muscularization of the arterioles, medial thickening and plexiform lesion formation.

Despite our advanced understanding of the pathogenesis of PAH and the recent therapeutic advances, PAH still remains a fatal

disease. In addition, the susceptibility to PAH has not yet been adequately explained. Much evidence points to the involvement

of epigenetic changes in the pathogenesis of a number of human diseases including cancer, peripheral hypertension and

asthma. The knowledge gained from the epigenetic study of various human diseases can also be applied to PAH. Thus, the

pursuit of novel therapeutic targets via understanding the epigenetic alterations involved in the pathogenesis of PAH, such as

DNA methylation, histone modification and microRNA, might be an attractive therapeutic avenue for the development of a novel

and more effective treatment. This review provides a general overview of the current advances in epigenetics associated with

PAH, and discusses the potential for improved treatment through understanding the role of epigenetics in the development

of PAH.
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INTRODUCTION

Pulmonary hypertension (PH) is a disorder in the lung
vasculatures including the pulmonary artery, pulmonary vein
or pulmonary capillaries, resulting in an increase of blood
pressure followed by heart failure.1 After the clinical classifica-
tion of PH into primary and secondary PH at the first meeting
held by the World Health Organization (WHO) in 1973, the
categories of PH were continuously subdivided more precisely,
until reestablishment according to the presence of the identified
causes at the 5th World Symposium of Pulmonary Hyperten-
sion held in Nice, France, in 2013. The recent updated
classification of PH presents five WHO groups as follows:
(i) WHO group 1, pulmonary arterial hypertension (PAH);
(ii) WHO group 2, pulmonary hypertension due to left heart
disease; (iii) WHO group 3, pulmonary hypertension due to
lung diseases and/or hypoxia; (iv) WHO group 4, chronic
thromboembolic pulmonary hypertension; and (v) WHO
group 5, pulmonary hypertension with unclear multifactorial
mechanisms. Each group was also further subdivided by its
genetic or pathological causes.2 PAH, the WHO group 1, is a
disorder of the pulmonary arterioles, resulting in increased

blood pressure followed by right ventricular heart failure, and
characterized by the absence of the common causes of PH,
which include chronic liver and thromboembolic diseases. The
pathogenic events of PAH arise from the hyperproliferation of
pulmonary vascular cells, such as pulmonary artery endothelial
cells (PAECs) and pulmonary artery smooth muscle cells
(PASMCs), which in turn causes neointima formation in the
small pulmonary arteries.3 Although rare, occurring at only
2.4–7.6 cases per million per year, PAH is a progressive disease
leading to an incident mortality rate of ~ 15% within 1 year of
diagnosis. Moreover, the mortality rate of PAH was reported in
2012, to be 51% within 7 years of diagnosis.4,5

PAH is a complex disease with multiple etiologies and may
be mediated by the interplay of genetic background, epigenetic
changes and pathobiological environmental factors, which
explains the great variability in susceptibility6 (Figure 1).
Therefore, the defining molecular mechanisms involved in
the pathogenesis of PAH may arise from various aspects due to
the multiple etiologies and disease heterogeneity. Emerging
evidence has demonstrated the importance of epigenetics in the
pathogenesis of PAH.6–9 Epigenetics is defined as all heritable
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changes in gene expression that are not related to changes in
the underlying DNA sequence.10 To date, the cell-signaling
abnormalities, and environmental and genetic mechanisms
involved in PAH pathogenesis, have been well studied.
However, despite advances in epigenetics technology such as
genome-scale DNA methylation analysis, few studies have yet
been performed on the epigenetics associated with PAH
pathogenesis. The three main types of epigenetic regulation
are DNA methylation, histone modification and microRNA
(miRNA).11 Although many miRNAs associated with PAH
have been elucidated, the involvement of epigenetic regulation
via methylation and histone modification in the pathogenesis
of PAH remains in critical need of investigation. Our efforts for
understanding the initiation and progression of PAH via
epigenetics research may provide new insights to identify novel
targets for treatment. This review will introduce the current
understanding of the epigenetics associated with PAH patho-
biology and discuss the possible epigenetic modulations
involved in progression of PAH.

MAJOR MECHANISMS OF EPIGENETIC REGULATION

DNA methylation
Although most epigenetic changes are highly dynamic, depend-
ing on the cellular status, DNA methylation is comparably
stable and can even be inherited by daughter cells. In the
genome, methyl groups can be added by covalent interaction to
adenosine or cytosine DNA nucleotides through the enzyme
DNA methyltransferase (DNMT).12,13 DNA methylation and
demethylation processes govern diverse biological conditions,
involving genomic imprinting, cellular differentiation, organ
morphogenesis, cell reprogramming, X-chromosome inactiva-
tion, RNA splicing, transposon silencing and DNA repair.14

The CpG island, a region with a specific base sequence

commonly located in gene promoters, can undergo particularly
high rates of methylation, which is considered as a sign of
genetic repression. Mechanistically, DNA methylation achieves
transcriptional repression through three modes of action as
follows: (1) direct masking of the binding site of transcription
factors, caused by nucleosome compaction; (2) recruitment of
transcriptional repressors; and (3) cross-interaction with his-
tone modification mechanisms.15,16 Conversely, the promoter
regions of most active genes appear to be unmethylated (or
hypomethylated). For example, oncogenes are generally hyper-
methylated, whereas tumor suppressor genes are unmethylated
in cells with normal cellular status; this epigenetic state is
reversed in the progression of cancer.17 Consequently, the
detection of global changes in DNA methylation can be
considered as a hallmark of cancer pathogenesis.18,19 During
embryonic development, organogenesis and general pathogen-
esis, functional genes can also be controlled spatiotemporally
by DNA methylation mechanisms. Moreover, changes of the
DNA methylation state are known to have close relations to a
variety of human diseases and disorders including cancer,
diabetes, immune disorders, cardiovascular diseases and cere-
bral ischemia, as well as genetically imprinted disorders,
suggesting the strong possibility for therapeutic applications
of this epigenetic mechanism.20 In such diseases, detection of
the epigenome state through analysis of the global DNA
methylation state might be important, as epigenetic changes
can be considered as biomarkers for interpretation of patho-
genic status. The fact that the alteration of DNA methylation by
environmental input can be observed is a very interesting
biological phenomenon. In addition to genetic cues of patho-
genic abnormality, this can lead to a unique synergetic
condition through accumulation of hyper- or hypo-DNA
methylation, causing it to be regarded as a ‘second hit’ in

Figure 1 Proposed multifactorial pathogenesis of pulmonary arterial hypertension (PAH). This figure presents the complex nature of
heritable PAH (HPAH) and idiopathic PAH (IPAH). In the case of HPAH, the major driver ‘primary hit’ maybe genetic mutation of
HPA-associated genes. In many PAH patients, unknown or undetectable ‘secondary hit’ mechanisms such as epigenetic alteration, gender
and other cardiovascular anomalies, as well as environmental factors, might cooperate in the progression of HPAH. Commonly, IPAH is
caused by the combination effect of multiple cues such as non-heritable genetic or epigenetic variations, as well as environmental statuses.
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many disease conditions. Alcohol, tobacco, cocaine and many
drugs are capable of modifying the global DNA methylation in
target genomic regions of sensitive organs, especially in
conditions of pregnancy.21,22

Histone modification
Double-stranded DNA is highly packed with incorporation of
histones and is organized as the nucleosome to build chroma-
tin in eukaryotic cell nuclei. In nature, five histone families,
H1/H5, H2A, H2B, H3 and H4, were found to be incorporated
into chromatin. Although the H1/H5 histone family has the
role of a linker, the other histones function to form a core
structure with the DNA strand. In biological events, the
posttranscriptional modification of these histones is related to
diverse functional aspects including the regulation of gene
transcription, DNA repair process, chromosome condensation
and meiosis, as well as genetic imprinting.23,24 Similar to other
proteins, histones are diversely modified by posttranslational
modification through the following mechanisms: methylation,
acetylation, ubiquitination, SUMOylation, phosphorylation and
ADP-ribosylation. These constitute the complex ‘Histone
Code,’ which is determined by the combinational modifica-
tions of histone.25–27 In particular, histone methylation and
acetylation are closely linked with transcriptional gene regula-
tion, which is regarded as one of the major epigenetic events
and is related with many pathological conditions in the
progression of cardiovascular disease, including PAH.9,26 Many
of the lysine (K) residues of histone H3 such as H3K4, H3K9,
H3K27, H3K36 and H3K79 are commonly methylated by
adding one, two or three methyl groups, respectively. Although
the methylation of histone H3K9 and H3K27 is thought to be a
code for transcriptional repression, the methylation of histone
H3K4, H3K36 and H3K79 is able to induce gene
transcription.28 A variety of histone methyltransferases and
histone demethylases are involved in controlling the state of
histone methylation. In addition to histone methylation, the
acetylation of histone H3, especially of H3K9, H3K14 and
H3K27, can also function as an active transcriptional code.
These biological processes are governed by histone acetyltrans-
ferase and histone deacetylase (HDAC).29,30 Specifically, HDAC
removes the acetyl groups from lysine residues on the histone,
causing chromatin to become tightly packaged, and represses
gene expression. In humans, 18 HDACs within 4 classes have
been discovered, including class I, IIa, IIb, III and IV. Except
for class III HDACs, which are known as sirtuins (SIRT1-7),
the other three classes of HDACs are zinc-dependent enzymes,
which are commonly targets of small chemical HDAC
inhibitors.31,32 Recent evidence has suggested that inflamma-
tion widely contributes to cardiovascular pathogenesis, includ-
ing the pathogenesis of PAH.33 Importantly, treatment with
HDAC inhibitors at a low dose can attenuate the inflammatory
response in chronic cardiovascular conditions, providing
the potential functional mechanism of HDAC inhibitors in
therapeutic treatment.34

MicroRNAs
miRNAs are endogenous, short-length (20–24 nucleotides),
noncoding RNAs that are involved in the posttranscriptional
fine-tuning of gene expression, typically through binding to the
3′-untranslated region, to affect the stability and translation
of target mRNAs. miRNAs are expressed in multicellular
organisms and are highly conserved between species.35 As
one miRNA has the capacity to target multiple mRNAs,
elaborate regulation of miRNA expression is fundamental to
maintaining homeostasis in living organisms. Accordingly,
altered expression of miRNAs can cause pathogenic conditions
such as PAH.35 In addition, emerging studies have shown that
epigenetic modifications by DNA methylation and histone
modification can also regulate the expression of miRNAs in a
transcriptional manner, suggesting the therapeutic potential
of HDAC and DNMT modulators for regulating miRNA
expression for the treatment of PAH.9,36

EPIGENETIC ALTERATIONS IN PAH

DNA methylation and histone modification in PAH
Given the exacerbated severity of PAH by the interplay of
complex genetic and/or epigenetic changes, identification of
novel therapeutic avenues via investigation of the epigenetic
mechanisms involved in the pathogenesis of PAH might be of
growing interest. However, few studies have identified the
role of epigenetic modifications such as altered DNA
methylation and histone modification in association with PAH
pathogenesis.7–9

Superoxide dismutase-2 (SOD2) is a member of the
iron/manganese SOD family, which catalyzes the dismutation
of superoxide into hydrogen peroxide and diatomic oxygen,
and has a critical role in vascular functions.37 Several lines of
study have implicated SOD2 in the development of PAH.8,38

One study showed that adenovirus-mediated gene transfer of
SOD to the lung ameliorated monocrotaline-induced PH in
rats, suggesting the involvement of increased oxidative stress in
the pathogenesis of PAH and the therapeutic potential of
antioxidants for treatment.38 Epigenetic changes by histone
modification are a key mechanism for regulation of cell
proliferation and survival. The first demonstration of aberrant
epigenetic changes in PAH pathogenesis showed no mutation
in the SOD2 gene, whereas tissue-specific, methylation-induced
SOD2 deficiency increased the proliferation and decreased the
apoptosis of PASMC, while also impairing redox signaling.
Conversely, SOD augmentation restores experimental PAH,
suggesting therapeutic benefits of epigenetic modification.8

Zhao et al.7 also demonstrated that epigenetic modifications,
through histone acetylation, are implicated in the development
of PAH. The levels of HDAC1 and HDAC5 were higher in
lungs from both PAH patients and a PH rat model than in
control groups, and HDAC inhibitors were found to exert
antiproliferative and anti-inflammatory effects on vascular cells.
The authors also demonstrated that HDAC inhibitors,
including suberoylanilide hydroxamic acid and vorinostat,
ameliorate the phenotype of PH rat models, indicating that
increased HDAC activity leads to the pathological condition of
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PH.7 Another investigation by Wang et al.36 showed that
miR-124 has an important role in maintaining homeostasis
in fibroblasts and is involved in the pathogenesis of PAH.
miR-124 significantly inhibits proliferation, migration and
expression of monocyte chemotactic protein-1 in pulmonary
vascular fibroblasts. In addition, the expression of miR-124 is
significantly decreased in the fibroblasts of patients with PAH.
Interestingly, the decrease in miR-124 was restored by treat-
ment with HDAC inhibitors, but not by 5-aza-deoxycytidine in
hypertensive fibroblasts.36 These studies suggest therapeutic
potential for HDACs inhibitors in the treatment of PAH.

Myocyte enhancer factor 2 (MEF2) is a family of transcrip-
tion factors, which are known to have an important role in
control of the expression of genes involved in cellular
differentiation and embryonic development. There are four
members of the MEF2 family: MEF2A, MEF2B, MEF2C and

MEF2D. Among them, MEF2A and MEF2C are highly
expressed in endothelial cells. Endothelial-cell-specific
MEF2C-deficient mice showed reduced retinal vessel loss and
decreased endothelial apoptosis, suggesting that MEF2 is a
key endothelial homeostatic transcription factor in the
vasculature.39–42 In light of the function of MEF2 in endothelial
cells, the most recent study by Kim et al.9 found a novel role
for the transcription factor MEF2 in maintaining homeostasis
in the pulmonary vasculature. MEF2 activity was also found to
be impaired in PAH PAECs through excess nuclear accumula-
tion of HDAC4 and HDAC5. The impaired MEF2 activity leads
to the downregulation of target genes involved in pulmonary
vascular homeostasis, including miR-424 and 503, connexins
37 and 40, and Krűppel-like factors 2 and 4 (Kim et al.9).
Especially, miR-424 and 503 have been revealed as key miRNAs
in maintaining homeostasis, the disruption of which lead to the

Table 1 miRNAs involved in the pathogenesis of PAH

Cell type miRNA Target mRNA Function of miRNA Animal model Reference

PASMC miR-130 CDKN1A Increase of proliferation, no effects on
apoptosis

Chronic hypoxia in mice 104

PAEC/
PASMC

miR-17/20a BMPR2/PDLIM5,
CDKN1A

Increase of proliferation, SMC phenotypic
switch

Chronic hypoxia in mice and MCT in rats 64,65,105,106

PAEC/
PASMC

miR-130/301 PPARγ Vasoconstriction, increase of proliferation Chronic hypoxia+SU-5416 in mice, MCT
in rats and chronic hypoxia in mice

107,108

PASMC miR-210 MKP-1, E2F3 Increase of proliferation, inhibition of apoptosis Chronic hypoxia in mice 109,110

PASMC miR-451 Increase of migration under serum-free
conditions, no effect on proliferation

Chronic hypoxia in mice 111

PASMC miR-193-3p IGF1R, ALOX5,
ALOX12, ALOX15

Inhibition of proliferation MCT in rats and chronic hypoxia in mice 112

PASMC miR-9 Increase of proliferation, SMC phenotypic
switch

113

PASMC miR-190 KCNQ5 Vasoconstriction Chronic hypoxia in rats 114

PAEC miR-27a PPARγ Increase of proliferation Chronic hypoxia in mice 115

Fibroblast miR-124 PTBP1, MCP-1 Inhibition of proliferation, migration and
inflammatory phenotype

Chronic hypoxia in mice and rats, chronic
hypoxia+SU-5416 in mice

36

PASMC miR-124 CAMTA1, PTBP1,
NFATc1

Inhibition of proliferation, SMC phenotypic
switch

Chronic hypoxia in mice 116

PASMC miR-138 MST1 Inhibition of apoptosis 117

PAEC miR-424/503 FGF2, FGFR1 Inhibition of proliferation and migration,
cell cycle arrest

MCT in rats and chronic hypoxia
+SU-5416 in rats

43

PASMC miR-206 NOTCH-3 Increase of proliferation and migration,
inhibition of apoptosis, SMC phenotypic switch

Chronic hypoxia in mice 118

PASMC miR-145 ACE, DAB2,
FSCN1

Vascular remodeling Chronic hypoxia in mice and miR-145
knockout mice

119

PASMC miRNA-328 IGF1R, CaV1.2 Inhibition of proliferation, increase of
apoptosis, vasoconstriction

Chronic hypoxia in rats and miR-328
transgenic mice

120

PASMC miR-204 SHP2 Inhibition of proliferation, increase of apoptosis MCT in rats 121

Abbreviations: ACE, angiotensin-converting enzyme; ALOX5, arachidonate 5-lipoxygenase; ALOX12, arachidonate 12-lipoxygenase; ALOX15, arachidonate
15-lipoxygenase; BMPR2, bone morphogenetic protein receptor type II; CAMTA1, calmodulin-binding transcription activator 1; CaV1.2, L-type calcium channel 1C;
CDKN1A, cyclin-dependent kinase inhibitor 1A; DAB2, disabled-2; E2F3, transcription factor E2F3; FGF2, fibroblast growth factor 2; FGFR1, fibroblast growth factor 1
receptor; FSCN1, fascin actin-bundling protein 1; IGF1R, insulin growth factor 1 receptor; KCNQ5, potassium voltage-gated channel subfamily KQT member 5 protein;
MCP-1, monocyte chemotactic protein-1; MCT, monocrotaline; MKP-1, mitogen-activated protein kinase phosphatase-1; miRNA, microRNA; MST1, serine/threonine
kinase 4; MYOCD, myocardin; NFATc1, nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1; NOTCH-3, neurogenic locus notch homolog 3 protein
3; PAEC, pulmonary artery endothelial cell; PAH, pulmonary arterial hypertension; PASMC, pulmonary artery smooth muscle cell; PDLIM5, PDZ and LIM domain protein
5; PPARγ, peroxisome proliferator–activated receptor-γ; PTBP1, polypyrimidine tract-binding protein 1; SHP2, Src homology-2 domain containing protein tyrosine
phosphatase 2.
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pathogenesis of PAH.43 The authors also demonstrated that
selective, pharmacological inhibition of class IIa HDACs using
MC1568 restored the impaired MEF2 activity in PAH PAECs
and rescued the experimental monocrotaline and SU-5416/
hypoxia (SUGEN) PH models, while restoring targets such as
miR-424 and 503 (Kim et al.9). The reports described above
provide direct evidence of the role of epigenetics in PAH
pathogenesis, contributing to the vascular pathology of PAH.

miRNAs in PAH
As PAH is a complex disease with multiple etiologies, miRNAs
may be key candidates for more effective treatment, due to
their capacity to coordinately regulate various signaling path-
ways associated with PAH such as bone morphogenetic protein
(BMP) signaling, apelin (APLN) and apelin receptor (APLNR)
signaling and hypoxia-related signaling, via the targeting of
multiple mRNAs.1,44–46 Thus, the abnormal expression and
dysregulation of miRNAs contributes to the pathogenesis of
PAH. A significant amount of study has been devoted to
elucidating the roles of miRNAs, as one epigenetic mechanism
involved in the pathogenesis of PAH, through which many
altered miRNAs have been identified.1,35 The PAH-related
miRNAs and signaling mechanisms, including their target
mRNAs, are summarized in Table 1 and Figure 2.

POSSIBLE EPIGENETIC ALTERATION OF GENES

ASSOCIATED WITH PAH

Components of BMP signaling
BMP signaling is a part of the transforming growth factor
(TGF)-β superfamily, which consists of TGF-β, BMP, activin
and growth and differentiation factor (GDF) signaling.47,48 The
recent circumstantial evidence suggests that BMP signals are
involved in the development of endothelium and maintenance
of blood vessel homeostasis.49–51 In particular, several human
genetic mutations have been closely linked with pathogenic
conditions related to the cardiovascular system such as heredi-
tary hemorrhagic telangiectasia and PH.52–54 The following
section will discuss the potential possibility of epigenetic regula-
tion of the major components involved in the BMP signaling
cascade and the subsequent influence on PAH progression.

BMP type I receptors. BMP type I receptor (BMPR1) directly
binds to BMP ligands such as BMP2, 4, 6, 9 and 10, and is
activated by phosphorylation through subsequent formation of
tetraheteromeric complexes with BMP receptor type II
(BMPR2). In genetic screening experiments in PH (or PAH)
patients, mutations in BMPR1 genes, including activin A
receptor type II-like 1 (ACVRL1/ALK1) and BMP receptor
type-1B (BMPR1B/ALK6), were identified to be involved
in predisposal to PAH.55,56 Moreover, the downregulation
of BMP receptor type-1A (BMPR1A/ALK3), mediated by

Figure 2 MicroRNA (miRNA) regulatory pathways implicated in the pathogenesis of pulmonary arterial hypertension (PAH). This figure
provides an overview of the signaling pathways regulated by miRNAs, which are involved in the pathogenesis of PAH. Aberrant expression
of miRNAs in pulmonary vascular cells such as pulmonary artery endothelial cells (PAECs), pulmonary artery smooth muscle cells
(PASMCs) and fibroblasts by pathological factors leads to altered signaling pathways and contributes to the pathogenesis of PAH.
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angiopoietin-1 signaling in the lung tissue, was suggested to be
a cause of nonfamilial PH.57 Although direct evidence of
epigenetic regulation of the BMPR1 genes has not yet been
finely addressed in cardiovascular pathogenesis, there may be
considerable functional contributions of epigenetic mechan-
isms to these genes. For instance, the expression of ACVRL1/
ALK1, which is dominantly expressed in endothelial cells, is
controlled by CpG island methylation, mediated by transcrip-
tion factor Sp1 on the ACVRL1/ALK1 promoter region,
suggesting possible involvement of the epigenetic mechanism
of ACVRL1/ALK1 in PAH.58 In recent times, miR-656 was
reported to directly target BMPR1A/ALK3 in glioma cell
lines.59 In the case of BMPR1B/ALK6, it was suggested that
the expression of this gene can be tightly regulated through the
DNA methylation status of the species-conserved 5′-CpG
island in the promoter region. The hypermethylation of this
region silences BMPR1B expression in human glioblastoma
tumor-initiating cells and results in inhibition of normal cell
differentiation and subsequent tumorigenicity. Moreover,
treatment with a demethylation agent such as 5-aza-2′-
deoxycytidine or genetic inhibition of enhancer of zeste
homolog 2, which functions in the methylation of CpG islands
by recruiting DNMT, restored the expression of BMPR1B in
human glioblastoma tumor-initiating cells.60 Collectively, these
epigenetic regulations of BMPR1 genes may also be involved in
PAH pathogenesis, and require further elucidation, as these
biological phenomena have not yet been described in the
cardiovascular system.

BMP receptor type II. The unique type II serine/threonine
kinase receptors in components of the TGF-β superfamily,
involving TGF-β, BMP and activin signaling, determine the
downstream signaling cascade. BMPR2 has a unique signaling
capacity only for BMP signal transduction, chiefly relayed by
SMAD1, 5 and 8 (Ehrlich et al.47). Around 70% of familial
PAH patients were found to have heritable genetic mutations of
BMPR2. Moreover, genetic alteration of BMPR2 was found in
about 10% to 40% of idiopathic PAH (IPAH) patients.61,62

However, the potential susceptibility to genetic alteration of
BMPR2 in heritable PAH and IPAH is relatively low, as ~ 20%
of individuals have heritable mutations, suggesting incomplete
penetrance of PAH and the requirement for another secondary
cue to promote development of PAH.63 The germline mutation
of BMPR2 is regarded as the most common causative factor
and can be targeted for primary therapeutic application in
advance. Currently, the involvement of epigenetic alteration
or regulation of BMPR2 in PAH progression has not been
clearly defined; however, there are several examples of the
involvement of epigenetic regulation of BMPR2 in various
pathological conditions including cardiovascular disorders. For
example, miR-17-5p and miR-20a were reported to be closely
related to BMPR2 expression in PH pathogenesis, having a
role in BMPR2 downregulation in PAEC and PASMC64,65

(Figure 2). On the other hand, the involvement of other
epigenetic regulations such as histone modification and DNA
methylation of BMPR2 are largely unknown and little have

been suggested. In recent times, the CpG island on the BMPR2
promoter was found to be hypermethylated in scleroderma
endothelial cells, whereas treatment with a DNMT inhibitor
and/or HDAC inhibitor reversed the enhanced apoptosis of the
cells, illuminating the possible contribution of abnormal DNA
methylation in scleroderma pathogenesis.66 These epigenetic
contributions might also have a relation to other cardiovascular
disorders, including PAH, and should be addressed further in
PAEC and PASMC beds, to reveal possible roles in PAH.

Endoglin: co-receptor of TGF-β/BMP signaling. Although
endoglin was originally identified as a TGF-β receptor, it is
now regarded as a co-receptor for TGF-β and BMP signaling.
In particular, the receptor activity of ALK1, which dominantly
binds with the BMP9 or 10 ligands, can be modified by the
presence or absence of endoglin. In human cardiovascular
pathogenesis, endoglin has been identified as the causal gene for
hereditary hemorrhagic telangiectasia type I, classified by the
clinical presence of recurrent epistaxis and spontaneous arterial
venous malformation, sometimes followed by PH or PAH.67

Several epigenetic mechanisms regulating the expression of
endoglin were reported in tumor conditions. For example,
endoglin was reported to be critically downregulated in
numerous esophageal squamous cell carcinoma tissues, due
to promoter hypermethylation of the endoglin locus.
Treatment with a demethylation agent restored the endoglin
expression in carcinoma cell lines, suggesting the potential
epigenetic regulation of the endoglin promoter.68 Moreover,
several miRNAs are known to target endoglin in endothelial
cells or cardiac myocytes. In particular, miR-208a repressed
endoglin expression in the heart, whereas miR-370 was
negatively correlated with endoglin expression in endometrioid
ovarian cancer cells.69,70

SMADs: main mediators of BMP signaling. Several receptor-
mediated SMADs such as SMAD1, 5, 8 or 9 and a common-
mediator SMAD, SMAD4, are involved in canonical BMP
signal transduction in various biological processes including the
development and homeostasis of the cardiovascular system.
Some functional and genetic involvements of these signaling
mediators have been reported. The truncating mutation of
SMAD9 was identified in familial PAH patients, and genetic
variants in SMAD1 and SMAD4 were identified as a causative
factor for IPAH.71,72 Interestingly, the pathological results from
a SMAD9 knockout mouse model strongly support the
functional involvement of SMAD genes in the progression of
human PAH.56 It was demonstrated that the translation of
SMAD genes is epigenetically modified by multiple sets of
miRNAs in various cell types such as endothelial and vascular
smooth muscle cells, as well as mesenchymal stem cells, for
bone differentiation. For example, miR-4448, -4708 and -4773
target SMAD1 and SMAD4 transcripts, to induce osteoblast
differentiation from mesenchymal stem cells.73 Moreover,
miR-26a, -30b and -205 are more closely involved in the
cardiovascular system. miR-30b represses SMAD1 expression
in aortic valve interstitial cells and its reduction might lead to
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calcific aortic valve disease.74 Several reports in the literature
have suggested that SMAD1 and SMAD4 are common targets
of miR-205 and -26a in endothelial and vascular smooth
muscle cells, respectively, which are major contributors to
lung homeostasis.75,76 The translation of SMAD5 can be
repressed by miR-155 and its similar sequence homolog,
miR-K12-11, which is encoded by Kaposi’s sarcoma-associated
herpesvirus.77,78 Although the contribution of miRNAs target-
ing multiple SMAD genes in PAH has not yet been evaluated
clearly, the possible involvement may be considerable.

Caveolin-1. Caveolin-1 is a membrane protein, which has the
role of forming caveolae, and mainly functions in the
endocytosis.79 In recent times, it was discovered that two
frameshift mutations, a c.474delA and c.473delC, in the highly
conserved C terminus amino acid sequence of caveolin-1 are
related to familial PAH and IPAH.63 Interestingly, several
reports suggest that the caveolae is able to control multiple
signaling inputs in the endothelium, including BMPR2 and
nitric oxide (NO) signaling.80,81 Contributions of epigenetic
DNA methylation to the expression of caveolin-1 have been
suggested in adipocyte differentiation and soft tissue sarcoma.
In particular, methylation of the promoter, exon1 and
first intron region of caveolin-1 is extensively removed,
inducing strong expression of caveolin-1 during adipocyte
differentiation.82 Moreover, epigenetic regulation of caveolin-
1 by multiple miRNAs such as a miR-133a, 802, 103, 107,
199a-3p, 199a-5p, 203 and 124 has been reported in diverse
biological environments, including in insulin signaling, tumor
cell proliferation and migration, and kidney homeostasis.83–87

Although the direct involvement of epigenetic regulation of
caveolin-1 has not been revealed in the cardiovascular system,
some of the suggested epigenetic mechanisms listed above
may also be involved in cardiovascular pathogenesis,
including PAH.

KCNK3 potassium channel. KCNK3 (Potassium channel
subfamily K member 3) is a two-pore potassium channel
majorly expressed in PASMC. In hypoxic conditions, KCNK3
is responsible for the control of membrane potential home-
ostasis. Currently, six cases of missense mutation (T8K, G97R,
E182K, Y192C, G203D and V221L) have been reported in
familial PAH and IPAH patients.88,89 The mechanisms for
epigenetic control of this gene in the cardiovascular system
have not yet been elucidated, as this genetic alteration was only
recently identified as a pathogenic cue of PAH.

CURRENT THERAPIES FOR PH

The current therapies for PAH patients commonly aim to
reverse the imbalance of pulmonary vasoactive mediators. NO
and prostacyclin are known vasodilators, whereas endothelin-1
(ET-1) and thromboxane A2 are known to function for
vasoconstriction in PAEC and PASMC. Prostacyclin, a lipid
produced by endothelial cells, causes vasodilatation and pre-
vents the coagulation of platelets. It was reported in the 1990s
that intravenous therapy with epoprostenol, a synthetic

prostacyclin derivative, in combination with conventional
therapies such as treatment with anticoagulants, cardiac glyco-
sides and supplemental oxygen can reverse the severe progres-
sion of IPAH. Moreover, continuous infusion therapy with
epoprostenol was found to be effective for several types of PAH
patients, including those with PAH caused by systemic sclerosis
or other connective tissue disease. To attenuate the progression
of PAH, prostacyclin analogs are also available for inhalation as
an aerosol formulation, or treatment as an orally active
sustained release form.90,91 Currently, many medical research
groups are developing application methods for prostacyclin
treatment, most of which are in clinical trials for multiple types
of PAH patients including IPAH, connective tissue disease-
associated PAH, HIV-associated PAH and congenital heart
disease-associated PAH. Another target for PAH treatment is
the ET receptor.91 ET is produced by endothelial cells and has a
role in smooth muscle contraction. Mechanistically, ET binds
to ET receptor type A (ET-A) and type B. Interestingly, the
signaling output through ET receptor type B can cause a
decline in the effects of ET-A, inducing mitogenic effects and
vasoconstriction of vascular smooth muscle cells.92 It was
suggested that in PAH progression, inhibition of ET-A signal-
ing might relieve the pressure on the pulmonary artery by
reducing the vasoconstriction of vascular smooth muscle
cells.93 Several ET receptor antagonists such as bosentan,
ambrisentan and macitentan have already been developed
and approved, or are in trial for PAH treatment. Although
the inhibition of ET-A activity by ET-A-selective or non-
selective agents causes hepatotoxicity during PAH treatment, it
provides sustained functional and physiological improvements
to the pulmonary artery and relief of PAH symptoms.93,94 It
has long been regarded that NO is an important factor in
vascular homeostasis. NO is released from the endothelium
and modulates pulmonary and systemic vascular smooth
muscle tones. Mechanistically, NO can activate soluble guany-
late cyclase, resulting in increased levels of intracellular cyclic
GMP. It was also reported that NO production is greatly
reduced in PAH patients, whereas phosphodiesterase type 5, a
major enzyme for cyclic GMP clearance, demonstrated
increased expression, suggesting that the inhibition of
phosphodiesterase type 5 might reverse PAH progression
by relaxation of smooth muscle and inhibition of cell
proliferation.95,96 Several lines of phosphodiesterase type 5
inhibitors including sildenafil, tadalafil and vardenafil have
been approved for PAH treatment. The improvement of PAH
progression by phosphodiesterase type 5 inhibitor therapy has
been well evaluated in multiple case reports, along with the
tolerated levels of side effects such as headache, sudden visual
loss and sudden hearing loss.97 Recently, several antiprolifera-
tive strategies using tyrosine kinase inhibitors were also
developed. Platelet-derived growth factor receptor, epidermal
growth factor receptor and fibroblast growth factor signal
through tyrosine kinase receptors in the pathological remodel-
ing of the vascular bed and have been targeted by multiple
chemical inhibitors including imatinib, nilotinib, gefitinib,
sorafenib and sunitinib, for reversal of PAH progression.98,99
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Although a greater understanding of the pathogenesis of PAH
and PAH-specific therapies has led to significant advances, the
disease is still incurable and ultimately fatal. Future therapies
need to consider both regulation of pulmonary vascular tone
and restoration of pulmonary vascular remodeling, to provide a
more effective treatment for PAH through modulation of all
the multifactorial factors such as epigenetic changes, pathobio-
logical injurious events and genetic factors affecting PAH
development.

EPIGENETIC MODULATION-BASED THERAPIES FOR PH

Recent accumulating evidence has suggested that PAH is a
complex and multifactorial disorder including overall
endothelial malfunction, hyperproliferative vascular cells,
anti-apoptosis of multiple compositions of the lung and
proinflammatory response in the vascular bed, demonstrating
the ‘maladaptive status’ of pulmonary arteries. This pathogenic
concept gives credit to the environment and epigenetic altera-
tions as a cause of PAH. Overall, it has been proposed that the
progression and phenotypic variability of PAH may be affected
by multifactorial factors such as genetic background, epigenetic
changes, gender and pathobiological injurious events (virus,
drug, toxin, hypoxia, inflammation and so on), whereas in a
genetically susceptible background the effects of epigenetic
changes and/or pathobiological injurious events may aggravate
the disease severity6 (Figure 1). Interestingly, several experi-
mental improvements through epigenetic modulations have
been reported, which should be further evaluated for applica-
tion to PAH patients. Among the epigenetic mechanisms,
miRNAs have the capacity to regulate multiple target genes that
may be involved in the pathogenesis of PAH, whereas
dysregulation of miRNA expression could lead to the patho-
genesis of PAH, which is a representative multifactorial disease.
Alterations in the expression patterns of many miRNAs have
been reported in PAH. Therefore, strategies to restore aberrant
miRNA expression hold potential therapeutic value. Stable,
efficient and nontoxic properties of miRNA mimics or
inhibitors in vivo are an attractive therapeutic approach for
the restoration of altered miRNA expression to physiological
levels in PAH, while rescuing the expressions of target genes.
However, a specific delivery strategy needs to be developed, to
allow targeting of the lung vasculature to minimize off-target
effects.1,35 Pursuit of the transcriptional mechanisms of miRNA
expression may also be a key field of research in PAH. Altered
miRNA expression could be restored via modulation of the
transcriptional mechanisms of miRNA expression. Several
medical research groups are currently testing the therapeutic
capability of modulation of HDAC in PAH pathogenesis,
which are known to regulate cell proliferation and survival,
as the results of both broad spectrum HDAC inhibitors and
selective inhibitors demonstrated rescue of experimental PH in
a rodent model.8,9,100 However, broad-spectrum HDAC inhi-
bitors such as trichostatin A have displayed adverse clinical
effects such as right ventricular dysfunction and marked
induction of cellular apoptosis in coronary artery endothelial
cells, indicating that particular attention is needed before their

use as therapeutic agents in PAH subjects.101 Interestingly,
most of the recent studies have indicated that the adverse
effects observed could be avoided through selective inhibition
of class IIa HDACs, suggesting that class IIa HDACs inhibitors
may be a promising new treatment strategy for PAH, while
allowing minimization of the side effects.9 The exploration of
specific functional targets of histone modification and enhance-
ment of selectivity of the chemical inhibitors to histone-
modifying enzymes will be needed before application to PAH
patients. Lastly, the use of DNMT inhibitors is another option
to reverse the progressions of PAH associated with environ-
mental and epigenetic alteration. For example, the down-
expressional change of SOD2 was reported in a rat PAH
model, which can be reversed by treatment with 5-azacytidine,
a DNMT inhibitor. Although, the overall therapeutic concepts
regarding epigenetic modulation in PAH are still being tested at
the level of experimental conditions, gaining a precise biofunc-
tional understanding of the genetic (for example, miRNAs) and
chemical modulators (for example, inhibitors of histone and
DNA-modifying enzymes) might open the door for novel
treatment of PAH patients. However, careful attention should
be given to epigenetic modulation-based therapies for PAH, to
ensure their specificity.

CONCLUSION

Although epigenetic changes through DNA methylation and
histone modification have been well defined in the pathogen-
esis of many human diseases such as cancer and peripheral
hypertension,44,102,103 their application in the pathogenesis of
PAH still remains in critical need of examination. A large
amount of the research has been conducted on determining the
role of miRNA and other epigenetic mechanisms.35 In order to
gain a better understanding of the cause of PAH development,
the intricate intersecting pathways between histone modifica-
tion/DNA methylation and miRNA, which can be regulated by
miRNA, histone modification or DNA methylation, need to be
established. In addition, as epigenetic technology has been
advanced to allow DNA methylation analysis, DNA/protein
interaction analysis and chromatin accessibility/conformation
assays, employment of such methods may allow the complex
network of the many genes regulated by epigenetic mechanisms
to be uncovered. The application of these epigenetic
technologies to PAH research will provide a greatly improved
understanding for the development of new drugs via novel
targets and signaling pathways associated with PAH, and key
insights into potential therapeutic strategies for PAH. Thus,
future studies are needed to examine the role of epigenetics in
the pathogenesis of PAH, as well as the therapeutic potential in
experimental PH models.
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