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Abstract 

Background:  Randomized controlled trials showed that sodium/glucose cotransporter-2 inhibitors (SGLT2i) protect 
the heart and kidney in an array of populations with type 2 diabetes (T2D) and increased cardiorenal risk. However, 
the extent of these benefits also in lower kidney-risk T2D populations needs further investigation.

Methods:  Members of Maccabi Healthcare Systems listed in their T2D registry who initiated new glucose lowering 
agents (GLA), were divided into SGLT2i initiators and other GLAs (oGLAs). Groups were propensity score-matched by 
baseline demographic and medical characteristics. Two composite cardiovascular outcomes were defined: all-cause 
mortality (ACM) or hospitalization for heart failure (hHF); and ACM, myocardial infraction (MI) or stroke. The cardiorenal 
outcome was: ACM, new end-stage kidney disease (ESKD) or  ≥  40% reduction from baseline estimated glomeru‑
lar filtration rate (eGFR). Renal-specific outcome was new ESKD or  ≥  40% eGFR reduction. Single components of 
cardiovascular and kidney outcomes were also assessed. Three subgroup definitions of low baseline kidney-risk were 
used: eGFR  >  90 ml/min/1.73 m2; urinary albumin below detectable levels; and low risk according to Kidney Disease: 
Improving Global Outcomes (KDIGO) classification. Analyses were performed utilizing an unadjusted model, and a 
model adjusted to baseline eGFR and urinary albumin-to-creatinine ratio.

Results:  Between April 1, 2015 and June 30, 2018; 68,187 patients initiated new GLAs — 11,321 SGLT2i initiators and 
42,077 oGLAs initiators were eligible. Propensity score-matching yielded two comparable cohorts; each included 9219 
participants. Median follow-up was 1.7 years. Compared to oGLAs, SGLT2i initiators had lower incidence of ACM or 
hHF [HR95%CI  =  0.62(0.51–0.75)]; ACM, MI or stroke [0.67(0.57–0.80)]; the cardiorenal outcome [0.65(0.56–0.76)]; and the renal-
specific outcome [0.70(0.57–0.85)]. SGLT2i initiators also had lower risk for ACM, hHF and  ≥  30%,  ≥  40%,  ≥  50%,  ≥  57% 
eGFR reduction. No difference between groups was observed for MI or stroke. In the low baseline kidney-risk sub‑
groups, SGLT2i initiation was generally associated with lower risk of the cardiovascular and cardiorenal outcomes, 
driven mainly by lower ACM incidence.
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Introduction
Cardiovascular (CV) and kidney outcomes trials (CVOTs 
and KOTs) have shown that sodium/glucose cotrans-
porter-2 inhibitors (SGLT2i) protect the heart and kid-
ney in a variety of high-risk populations. In the context of 
type 2 diabetes (T2D) these benefits were shown in pop-
ulations with established cardiovascular disease (CVD; 
EMPA-REG OUTCOME and to a lesser degree at VER-
TIS CV) [1–3] and/or with multiple CVD risk factors 
(CANVAS program, DECLARE-TIMI 58) [4–7]; chronic 
kidney disease (CKD; CREDENCE, SCORED, DAPA-
CKD) [8–11], or with heart failure and reduced ejection 
fraction (HFrEF; DAPA-HF, EMPEROR-Reduced, SOLO-
IST-WHF) [12–15].

Based on these findings, recent position statements 
such as the 2020 Kidney Disease: Improving Global Out-
comes (KDIGO) guidelines [16] and the 2021 Ameri-
can Diabetes Association (ADA) Standards of Care 
[17] recommended SGLT2i use in patients with T2D 
and increased risk for CKD, HFrEF and/or atheroscle-
rotic CVD (AsCVD). An open question persists how-
ever, whether SGLT2i also exerts these protective effects 
in lower risk populations of patients with T2D, such as 
those with normal kidney markers, comprising most 
of the patients with T2D in the primary-care setting. 
This debate has practical clinical consequences—should 
SGLT2i be recommended to the general population of 
patients with T2D for the purpose of cardiorenal protec-
tion, independently of glycemic control?

In this observational study, we used the registry of 
Maccabi Healthcare Services (MHS), Israel’s second 
largest Health Maintenance Organization (HMO) insur-
ing approximately 2.2 million subjects. Patients with 
T2D, who initiated a new glucose lowering agent (GLA) 
therapy between April 2015 and June 2018 were identi-
fied. SGLT2i initiators were propensity-scored matched 
with patients starting other GLAs (oGLAs), according 
to patients’ demographics, medical history, background 
medications and socioeconomic status. CV and kidney 
outcomes were analyzed in the entire population and in 
specific populations with low baseline kidney risk.

Methods
Study population
The study population was composed of patients reg-
istered in MHS Diabetes Registry [18] who initiated a 

new GLA treatment between April 1, 2015 and June 30, 
2018. Index date was defined as the date of first filled 
prescription. Individuals with a previous prescription of 
that GLA class during the 365 days prior index date were 
not regarded as new users. Patients had to be  ≥  18-year-
old with at least 1 year of data history in the MHS prior 
to index date. Only those with at least one eGFR meas-
urement during the 180  days prior to the index date 
were included. Excluded were patients defined as type 
1 diabetes in the MHS Diabetes Registry [18] or treated 
with insulin alone with no other GLA in the year prior 
to the index date. Also omitted were those with end-
stage kidney disease (ESKD), on dialysis, or after kidney 
transplantation.

The sample population was also part of the main CVD-
REAL 3 main report that compared kidney outcomes 
amongst SGLT2i initiators and oGLAs in five countries 
[19]. However, the protocol of this analysis has been 
adjusted for the data in the MHS database that has base-
line urinary albumin-to-creatinine ratio (UACR) values 
for a remarkable portion of the participants, enabling 
specific focus on lower kidney-risk populations. Spe-
cifically, baseline UACR (and eGFR) values were used to 
develop the propensity-score model, and were adjusted 
to in the  cox model. Specific subgroups of low-kidney 
risk patients were defined based on baseline UACR (and 
eGFR) values. To avoid immortal time bias [20, 21], the 
CVD-REAL 3 study included all episodes of GLA initia-
tion during follow up. In the current analysis, to avoid 
this bias, each patient was included once, and only the 
first GLA initiation during the study period was defined 
as index date. The index medication was defined accord-
ingly. In the main analysis patients who initiated a second 
GLA were kept in their original cohort. In a sensitivity 
analysis [‘strict on treatment’ (sOT) follow up definition], 
initiation of a second GLA resulted in follow-up termina-
tion (see below ‘follow up definition’).

The study received approval from MHS Institutional 
Review Board (IRB) committee at Bait Balev Hospital. 
Due to de-identified data extracting, informed consent 
was not requested by the IRB.

Definitions of main variables
Laboratory measurements were performed in certified 
laboratories run by the MHS. eGFR was calculated using 
the Chronic Kidney Disease Epidemiology Collaboration 

Conclusions:  Our findings in the general population of patients with T2D demonstrates lower risk of cardiorenal out‑
comes associated with initiation of SGLT2i compared with oGLAs, including specifically in patients with low baseline 
kidney-risk.
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(CKD-EPI) Equation [22], and the lower limit of detec-
tion of urinary albumin was 1.1  mg/dL. Baseline eGFR 
slope (per year) was calculated during the 4  years prior 
to the index date. Slope was calculated only for the par-
ticipants with at-least 180  days interval between their 
first and their last (i.e., before index date) eGFR measure-
ment during this period. All measurements were taken 
in a community setting, rather than during hospitaliza-
tion, to reduce variations due to acute states, and defined 
as last evaluation within a year prior to the index date 
[except for baseline eGFR (180 days) and eGFR-slope cal-
culation (4  years), as above]. Additional file  1: Table  S1 
presents the relevant ICD-9 (diagnosis) and ATC (medi-
cations) codes used in this study. History of established 
CVD, myocardial infarction (MI), heart failure (HF), 
stroke, transient ischemic attack (TIA), atrial fibrillation, 
hypertension and cancer were defined by inclusion in 
specific validated MHS registries [23–25] until the index 
date. Other co-morbidities were defined as having that 
diagnosis within a year prior to the index date. Baseline 
medications were defined as having at least one medica-
tion purchased during the year prior to index-date (not 
including index-date). Residential socioeconomic sta-
tus (SES) was coded on a 1–10 scale developed by the 
Israeli Central Bureau of Statistics. This parameter was 
categorized into 4 groups (low [1–3], low-medium [4, 5], 
medium [6, 7] and high [8–10]).

Follow up definitions
Patients were followed until migration, leaving the MHS, 
last date of data collection (set on June 30, 2018) or death 
date. The end of the intention to treat (ITT) period was 
defined by the last date of data collection or date of leav-
ing the MHS (due to death or other reason), whichever 
came first. In a first sensitivity analysis, on treatment 
(OT) follow-up period was defined as the exposure time 
until last date of data collection, date of leaving the MHS 
or until treatment discontinuation—whichever came 
first. For this purpose, treatment discontinuation was 
defined as having a gap of more than 90  days, plus the 
treatment-period specified in the last prescription before 
treatment-cessation. In those that discontinued treat-
ment, the follow-up ended once the number of days spec-
ified in the last prescription had passed, with the addition 
of 30-day grace period. In a second sensitivity analysis, a 
strict on treatment (sOT) follow-up period was defined. 
Criteria for sOT follow-up termination were those used 
for the OT definition, added by occasions of new GLA 
initiation. Analysis by the sOT definition was added to 
correct for possible biases associated with additional 
GLA(s) initiations (including SGLT2i’ in the oGLAs arm) 
during follow-up.

Outcomes and subgroup definitions
Two composite CV outcomes were defined: (1) all-
cause mortality (ACM) or hHF; and (2) ACM, stroke or 
MI. The cardiorenal outcome was defined as ACM, new 
ESKD or  ≥  40% reduction in eGFR from the last meas-
urement prior the index date. The renal specific outcome 
included new ESKD or  ≥  40% reduction in eGFR. Single 
event outcomes were components of the composite out-
come, as well as  ≥  30%,  ≥  50%, or  ≥  57% (i.e., doubling 
of serum creatinine) reduction in eGFR.

Incidence analyses of the study outcome in the matched 
cohort were conducted by treatment groups of the 
entire cohort and by baseline low kidney risk subgroups, 
defined in three different ways: (1) low KDIGO risk 
(UACR  <  30 mg/g and eGFR  >  60 ml/min/1.73 m2) [26]; 
(2) eGFR  >  90  ml/min/1.73  m2; (3) or urinary albumin 
below detectable levels (BDL). All patients had baseline 
eGFR values (i.e., 180 days prior the index date). Patients 
lacking baseline UACR values were included in the low 
KDIGO risk cohort, as long as they had eGFR  >  60 ml/
min/1.73 m2.

Statistical analysis
Propensity score was developed using a multivari-
ate logistic regression model where the dependent 
binary variable indicated if the indexed medication was 
SGLT2i (= 1) or indexed medication was oGLA (= 0). 
Matching was generated on each eGFR layer separately 
(eGFR  >  90, 60–90 and  <  60  ml/min/1.73  m2). More 
than 40 demographics and medical covariates prior to 
treatment initiation were used for the propensity score. 
Continuous laboratory measurements were categorized, 
and a missing value was defined as “missing” category to 
allow all patients to be matched. All variable definitions 
are described in the supplementary methods. Briefly, 
amongst the included covariates were age, sex, index 
year, HbA1c, BMI, eGFR, UACR (below detectable levels 
(BDL),  <  30, 30–300 and  >  300 mg/g), diabetes and car-
diovascular complications (based on diagnosis or MHS’s 
CVD registries [23–25]; Additional file  1: Table  S1), 
glucose lowering agents, and cardiovascular or other 
medications.

Propensity score estimates the probability of initiating 
SGLT2i or other GLA given the covariates in the model. 
Patients were matched in 1:1 ratio by using greedy match-
ing, which select SGLT2i treated patients and match the 
nearest oGLA-initiating subject. Caliper matching was 
defined as caliper  =  0.25 multiplied by the standard 
deviation of the propensity score distribution [27].

Patients’ demographic and medical characteristics were 
described at baseline period (prior to treatment initia-
tion). Mean and standard deviation were used to describe 
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continuous variables, while numbers of patients and per-
centages were used to describe categorical variables. Dif-
ferences between patients who initiated SGLT2i or oGLA 
were assessed using standardized difference (STD). Sig-
nificant difference in STD between groups was consid-
ered to be higher than 10%.

Only the first episode of the pre-defined cardiovascu-
lar or kidney event was included in the incidence analy-
sis. Person-time at risk for each patient was the length 
of the index exposure episode, defined as the number of 
days from the day after the index prescription start date 
to the last day of follow-up. For each outcome of inter-
est, the crude incidence rate in each index exposure 
group was the number of incident events divided by the 
total number of person-years at risk and was expressed 
per 100 person-years. The incidence rates for the SGLT2i 
group and the control group were then compared using a 
hazard ratio and corresponding 95% confidence interval. 
This analysis was performed using Cox proportional haz-
ards regression and repeated in an unadjusted model and 
a model adjusted for baseline eGFR as a continuous vari-
able and to baseline UACR as categorical variable (urine 
albumin BDL; UACR  >  0– <  30; 30– <  300;  ≥  300 mg/g).

In addition, these models were repeated within each 
of the low baseline kidney risk categories. Specifically 

for the analysis of the urinary albumin BDL category, the 
model was adjusted only by baseline eGFR.

Role of the funding sources
No funding was received for this analysis.

Results
Study structure, baseline characteristics, and initiated 
medications
Between April 1st 2015 and June 30th 2018; 12,949 
patients initiated treatment with SGLT2i and 55,238 
patients initiated other GLAs (oGLAs). 11,321 SGLT2i 
initiators and 42,077 oGLAs initiators met the crite-
ria to be included in this analysis (Fig.  1). Both groups 
were propensity score-matched according to their base-
line demographic and clinical characteristics result-
ing in two comparable cohorts each included 9219 
patients (Table  1, Additional file  1: Table  S2). The pop-
ulation in this analysis included 39.7% women, mean 
(SD) age of 62.4  (10.3)  years, most of them overweight 
(BMI  ≥  25  kg/m2) and 57.0% with diabetes duration 
longer than 10  years. Approximately 29.3% had estab-
lished CVD history [24] and 19.5% had history of MI, 
coronary artery bypass grafting (CABG) or percutane-
ous coronary intervention (PCI) with stent. Mean (SD) 

Fig. 1  Participants flow chart. GLA glucose lowering agent; SGLT2i Sodium/glucose cotransporter-2 inhibitors; ESKD end stage kidney disease; MHS 
Maccabi Health Systems; T1D type 1 diabetes; eGFR estimated glomerular filtration rate
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Table 1  Patients’ baseline characteristics post propensity-matching

Characteristic Level Study group

SGLT2-I (N  =  9219) oGLAs (N  =  9219) STD

Demographic characteristics

 Women n (%) 3683 (40.0%) 3635 (39.4%) 0.01

 Age (years) Mean (SD) 62.3 (9.6) 62.5 (11.0) − 0.01

 Years in diabetes registry, n (%) ≤ 2 369 (4.0%) 362 (3.9%)  0.4

2–5 1124 (12.2%) 1112 (12.1%)

5–10 2504 (27.2%) 2457 (26.7%)

> 10 5222 (56.6%) 5288 (57.4%)

 Socioeconomic status, n (%) 1–3 (low) 962 (10.4%) 881 (9.6%) 0.00

4–5 (low-medium) 2825 (30.6%) 2930 (31.8%)

6–7 (medium) 3530 (38.3%) 3539 (38.4%)

8–10 (high) 1891 (20.5%) 1858 (20.2%)

Missing 11 (0.1%) 11 (0.1%)

Baseline measures

 BMI Mean (SD) in kg/m2 31.7 (5.4) 31.6 (5.4) 0.02

 HbA1c (%)/mmol/mol Mean (SD) 8.3 (1.5)/67.2 (2.3) 8.3 (1.6)/67.2(2.3) − 0.04

 eGFR (mL/min/1.73 m2), n (%)a > 90 ml/min/1.73 m2 5026 (54.5%) 5026 (54.5%)

60–90 ml/min/1.73 m2 3407 (37.0%) 3407 (37.0%)

< 60 ml/min/1.73 m2 786 (8.5%) 786 (8.5%)

 UACR, n (%) Urinary albumin BDL 3510 (38.1%) 3566 (38.7%) 0.06

< 30 mg/g 2370 (25.7%) 2372 (25.7%)

30– < 300 mg/g 2312 (25.1%) 2295 (24.9%)

> 300 mg/g 664 (7.2%) 655 (7.1%)

Missing 363 (3.9%) 331 (3.6%)

 KDIGO risk [26], n (%) Low-risk 5832 (63.3%) 5936 (64.4%) 0.05

Moderate-risk 2439 (26.5%) 2250 (24.4%)

High and very high-risk 948 (10.3%) 1033 (11.2%)

 Change in eGFR, n (%)b < 3 mL/min/1.73 m2/year 8757 (95.0%) 8645 (93.8%) − 0.04

≥ 3 mL/min/1.73 m2/year 358 (3.9%) 430 (4.7%)

≥ 5 mL/min/1.73 m2/year 110 (1.2%) 124 (1.3%) − 0.01

Missing 104 (1.1%) 144 (1.6%)

Baseline medications

 Metformin n (%) 8571 (93.0%) 8544 (92.7%) 0.01

 Sulfonylureas n (%) 2502 (27.1%) 2549 (27.6%) − 0.01

 DPP4i n (%) 4402 (47.7%) 4373 (47.4%) 0.01

 GLP-1 RA n (%) 1806 (19.6%) 1880 (20.4%) − 0.02

 Metiglinides n (%) 1093 (11.9%) 1074 (11.6%) 0.01

 TZDs n (%) 620 (6.7%) 667 (7.2%) − 0.02

 Acarbose n (%) 210 (2.3%) 214 (2.3%) − 0.00

 Insulin n (%) 2474 (26.8%) 2295 (24.9%) 0.04

 Short-acting n (%) 582 (6.3%) 557 (6.0%) 0.01

 Long-acting n (%) 2171 (23.5%) 2105 (22.8%) 0.02

 ACEi/ARBs n (%) 6595 (71.5%) 6436 (69.8%) 0.04

 Beta blockers n (%) 3664 (39.7%) 3634 (39.4%) 0.01

 Aldosterone antagonists n (%) 413 (4.5%) 415 (4.5%) − 0.00

Medical history

 Established CVD history [24] n (%) 2705 (29.3%) 2697 (29.3%) 0.00

 Myocardial infarction/CABG/PCI with stent n (%) 1795 (19.5%) 1796 (19.5%) − 0.00

 Microvascular complicationsc n (%) 5624 (61.0%) 5495 (59.6%) 0.03
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baseline eGFR was 88.3 (18.5) ml/min/1.73  m2, mean 
annual eGFR slope was − 1.1 (2.7) mL/min/1.73 m2/year 
and median [IQR] baseline UACR was 13 (urine albumin 
BDL-49)  mg/g. 11,768 (63.8%) had low KDIGO risk at 
baseline. 

In the SGLT2i group, 34.0% of treatment initiations 
were with dapagliflozin and 66.0% were with empagliflo-
zin. In the oGLAs group most patients initiated DPP4i 
(31.1%), metformin (18.2%), glucagon-like peptide-1 
receptor agonists (GLP-1 RAs; 16.8%), insulin (11.1%), 
sulfonylurea (9.7%) or meglitinides (6.6%). Others ini-
tiated a regimen which included thiazolidinediones or 
acarbose. For the ITT follow up definition the mean 
exposure time was 1.7 (0.9) years. The distribution of 
each GLA within the cohorts, including the duration of 
follow up per each definition is presented in Additional 
file 1: Table S3.

CV and kidney outcomes in the total cohort
Figure  2 presents the hazard ratios for the different CV 
and kidney outcomes in those initiating SGLT2i com-
pared with oGLAs in the ITT follow-up definition. 
Generally consistent results were obtained in an unad-
justed model and in a model adjusted to baseline UACR 
and eGFR. Those that initiated SGLT2i experienced 
lower event-rates of both CV composite outcomes: 
hHF or ACM [HR (95% CI)  =  0.62 (0.51–0.75)adjusted] 
as well as ACM, MI or stroke [HR (95% CI)  =  0.67 
(0.57–0.80)adjusted]. These differences were mostly driven 
from lower risk of ACM in the SGLT2i cohort [HR (95% 
CI)  =  0.57 (0.45–0.71)adjusted], and for hHF [HR (95% 
CI) 0.77 (0.58–1.03)adjusted]. The event rate for stroke and 
MI were not significantly different between initiators of 
SGLT2i and oGLAs.

SGLT2i initiators had lower risk for adverse kidney 
events, including the composite cardiorenal [ACM, 
ESKD or  ≥  40% reduction in eGFR; HR (95% CI)  =  0.65 
(0.56–0.76)adjusted] and renal specific outcomes [ESKD 

or  ≥  40% reduction in eGFR; HR (95% CI)  =  and 0.70 
(0.57–0.85) adjusted]. The SGLT2i cohort had lower risk for 
most of the tested single kidney outcomes, except for the 
risk of new ESKD outcome, which was limited by small 
number of events, and in which adjustment to baseline 
kidney markers attenuated the between group differences 
[n(SGLT2i)  =  5 and n(oGLAs)  =  26; HR (95% CI)  =  0.20 
(0.08–0.51)unadjusted and 0.61 (0.23–1.67)adjusted].

CV and kidney outcomes in populations of low kidney risk 
at baseline
The risk for adverse CV and kidney outcomes was also 
tested in the three different definitions of low base-
line kidney risk subgroups: low KDIGO risk [UACR  <  
30 mg/g and eGFR  >  60 ml/min/1.73 m2; 11,768 (63.8%) 
patients]; baseline eGFR  >  90  ml/min/1.73  m2 [10,052 
(54.5%) patients]; urinary albumin BDL [7076 (38.4%) 
patients]. Due to lack of ESKD events in these low-risk 
subgroups, kidney outcomes were analyzed without new 
ESKD events. The presented results were obtained with 
the model adjusted to baseline kidney function; the unad-
justed model yielded highly similar results.

Compared with oGLAs, initiation of SGLT2i was 
generally associated with lower event rates of the two 
composite cardiovascular outcomes as well as the 
cardiorenal outcome, across the different low kidney 
risk subgroups (Fig.  3). Specifically, the hazard ratio 
of the risk for the composite CV outcome of ACM, 
stroke or MI in SGLT2i initiators ranged between 
0.67 and 0.76 in the low kidney risk subgroups. For 
the hHF or ACM composite outcome, SGLT2i ini-
tiation was associated with lower event rates in those 
with baseline low KDIGO risk and those with eGFR  >  
90 ml/min/1.73  m2, but no statistical significance was 
observed in the group of baseline urinary albumin 
below detectable levels [HR (95% CI)  =  0.74 (0.52–
1.06)] (Fig.  3A). The risk of composite cardiorenal 

ACEi angiotensin-converting enzyme inhibitors; ARBs Angiotensin II receptor blocker; BDL below detectable levels; CABG coronary artery bypass grafting; DPP4i 
Dipeptidyl peptidase-4 inhibitor; eGFR estimated glomerular filtration rate; GLP-1 RAs glucagon-like peptide-1 receptor agonists; KDIGO Kidney Disease: Improving 
Global Outcome; oGLA other glucose lowering agent; PCI percutaneous coronary intervention; STD standardized difference; TZD Thiazolidinediones; UACR​ urinary 
albumin to creatinine ratio
a The propensity score matching was generated on each eGFR layer separately, therefore the number of participants in each arm’s eGFR layer is equal by definition
b Baseline eGFR slope (per year) was calculated during the 4 years prior to the index date. Slope was calculated only for the participants with at-least 180 days interval 
between their first and their last (i.e., before index date) eGFR measurement during this period
c Microvascular complications was defined as: diabetic eye complication, neuropathy, diabetic foot/ peripheral angiopathy or diabetic kidney disease (i.e., 
nephropathy, eGFR  <  60 or UACR  >  100)

Table 1  (continued)

Characteristic Level Study group

SGLT2-I (N  =  9219) oGLAs (N  =  9219) STD

 Heart failure (24) n (%) 344 (3.7%) 307 (3.3%) 0.02
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outcome was consistently lower in SGLT2i initiators in 
all the tested low baseline kidney risk subgroups, with 
HR ranging between 0.69 and 0.72 (Fig. 3B).

Single component CV and kidney outcomes were 
also analyzed. While the risk for MI or stroke was 
not significantly different between groups, the inci-
dence of ACM was lower in SGLT2i initiators across 
all low kidney risk subgroups. The risk of hHF was 
lower in SGLT2i initiators within the eGFR  >  90  ml/
min/1.73  m2 subgroup, while no significant changes 
were observed in the other tested  baseline kidney 
functions subgroups (Fig.  3A). The single kidney out-
comes are presented in Fig. 3B.

Analysis of the CV and kidney outcomes by OT and 
sOT follow up definitions showed generally consistent 
results. The outcomes for the entire cohort are pre-
sented in Additional file 2: Figure S1, Additional file 5: 
FigureS3 and for the low baseline kidney risk sub-
groups in Additional files 3, 4: Figure S2, Additional 
files 6, 7: Figure S4, for the OT and sOT definitions, 
respectively.

Discussion
In this observational study, patients with T2D who initi-
ated SGLT2i were propensity-score matched with those 
who initiated oGLAs. SGLT2i initiation was associated 

with improvement in two tested composite CV out-
comes; [1] ACM, MI or stroke; [2] ACM or hHF, as well 
as in the cardiorenal and the renal specific compos-
ite outcomes. SGLT2i initiators also experienced lower 
event rates of most of the single outcomes: ACM, hHF, 
eGFR reduction from baseline of  ≥  30%,  ≥  40%,  ≥  50% 
or  ≥  57%. The incidence of stroke or MI was not signifi-
cantly different between the groups across all follow-up 
definitions. Importantly, similar trends were observed in 
subgroups defined by their low kidney risk at baseline: 
low KDIGO risk; eGFR  >  90  ml/min/1.73  m2; and uri-
nary albumin BDL. To the best of our knowledge, this is 
the first time that SGLT2i associated reduction in cardio-
renal risk is shown in populations with urinary albumin 
BDL. Together these findings consolidate the CV and 
kidney protective role of SGLT2i in a real-world setting 
in comparison to other GLAs, and in populations with 
healthy kidney status.

Robust observational studies from well-phenotyped 
patient populations are a good data source for evaluations 
of low-risk patients, that are often excluded from RCTs. 
Several CVOTs (EMPA-REG OUTCOME [1, 2], CAN-
VAS program [4], DECLARE-TIMI 58 [6] and VERTIS 
CV [3]) tested the CV safety and efficacy of SGLT2i in 
patients with T2D and increased CV risk. Other studies 
specifically focused on populations with T2D and CKD 

Fig. 2  Risk for cardiovascular and kidney outcome in SGLT2i initiators compared to oGLAs in the entire cohort, during the ITT follow up definition. 
Event rates are presented as number of events per 100 person years of follow up. In black—the unadjusted model; and in grey—the model 
adjusted to baseline eGFR (as continuous variable) and UACR (as categorical variable). SGLT2i sodium/glucose cotransporter-2 inhibitors; oGLAs 
other glucose lowering agents; ITT intention to treat; hHF hospitalization for heart failure; ACM all-cause mortality; MI myocardial infract; eGFR 
estimated glomerular filtration rate; ESKD end stage kidney disease; ER event rate
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or HFrEF [8, 9, 14]. They generally found that compared 
with placebo SGLT2i protect the kidney and reduce the 
incidence of hHF [2–4, 6, 8–10, 12–14, 28, 29]. How-
ever, due to the relatively high baseline risk of the par-
ticipants in these trials, external validity to the general 
T2D population has been questioned [30]. For example, 
the prevalence of established CVD in these CVOTs var-
ied between 40.6% in the DECLARE-TIMI 58 trial [31], 
65.6% in the CANVAS program [4], and the entire sam-
ple populations of EMPA-REG OUTCOME and VER-
TIS CV [1, 3]. In comparison, our propensity-matched 
cohort had only 29.3% baseline prevalence of established 
CVD (Table  1), similar to other cross-sectional reports 
of the general T2D population in different countries [30, 
32, 33]. Kidney-wise, baseline mean eGFR of the par-
ticipants in our analysis was 88.3  ml/min/1.73  m2 com-
pared with 74.2–77.2 ml/min/1.73 m2 in the EMPA-REG 
OUTCOME, CANVAS program and VERTIS CV [2–4], 
and 85.3 ml/min/1.73 m2 in the DECLARE-TIMI 58 [6]. 
Baseline eGFR slope of this trial’s subjects was − 1.1 ml/
min/1.73 m2/year; only 4.3% had a baseline annual eGFR 
slope of  ≥  3  ml/min/1.73  m2/year (fast-decliners) and 
1.2% of  ≥  5 ml/min/1.73 m2/year (severe-decliners). All 
in all, our sample population seems to have lower base-
line kidney and CV risk than the participants in these 

CVOTs. Thus, the observed reduction in cardiorenal 
risk associated with SGLT2i initiation suggests that these 
benefits may apply to broader populations with T2D.

While associated risks for ACM or hHF were gener-
ally lower following treatment with SGLT2i, we did not 
find a significant reduction in the risk for MI and stroke 
(especially in the OT and sOT follow-up definitions). 
Such trends were observed in other CVOTs and other 
real-world evidence (RWE) [2–4, 6, 34]. Of note, in these 
reports SGLT2i reduce hHF episodes more overtly rela-
tive to ACM [6, 28]. Here, however, in the low baseline 
kidney risk categories ACM incidence was consistently 
lower in SGLT2i initiators, while the risk for hHF was 
not stable, i.e., significant between group differences 
were observed only in the eGFR  >  90  ml/min/1.73  m2 
category. Unlike ACM, hHF is a clinical diagnosis that 
relies on physicians’ reporting, introducing a limitation 
to the interpretation of this outcome in RWE settings. 
Importantly, hHF event, as well as ESKD, rarely occur 
in patients with healthy kidney markers, precluding the 
capture of outcome differences in low kidney risk popula-
tions [35].

The cardiorenal improvement seen here with SGLT2i 
treatment has been similarly documented in other RWE 
studies [19, 34, 36–40]. The sample used for this study 

Fig. 3  Risk for cardiovascular and kidney outcomes in SGLT2i initiators compared to oGLAs in low kidney risk populations, during the ITT follow 
up definition. A Cardiovascular outcomes. B Kidney outcomes. Event rates are presented as number of events per 100 person-years of follow up. 
Low KDIGO risk is defined as eGFR  >  60 ml/min/1.73 m2 and UACR  <  30 mg/g. For the low KDIGO risk and eGFR  >  90 ml/min/1.73 m2, the model 
was adjusted to baseline eGFR (as continuous variable) and UACR (as categorical variable). Outcome analysis of the urine albumin BDL category 
was only adjusted to baseline eGFR as continuous variable. *BDL  =  Below detectable levels. SGLT2i sodium/glucose cotransporter-2 inhibitors; 
oGLAs other glucose lowering agents; ITT intention to treat; hHF hospitalization for heart failure; ACM all-cause mortality; MI myocardial infract; eGFR 
estimated glomerular filtration rate; UACR​ urinary albumin to creatinine ratio; KDIGO kidney disease: improving global outcomes; ER event rate
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has been part of the CVD-REAL 3 study [19] that found 
better kidney outcomes in SGLT2i initiators compared 
to oGLAs across five countries. Here we used slightly 
different follow up definitions, further consolidating 
the results of the CVD-REAL 3, using a complementary 
approach (see “Methods” Section). While CVD-REAL 3 
mainly focused on kidney outcomes, here we also tested 
CV outcomes. Importantly, the cardiorenal risk associ-
ated with SGLT2i initiation compared to oGLAs was 
specifically tested in different populations defined by 
their low baseline kidney risk. The current analysis was 
designed to emphasize the strengths of the MHS data-
base. Additional variables were introduced into the pro-
pensity score matching, such as patients’ SES information 
and baseline UACR. Presence of UACR values for most 
of the participants (96.5%), provided a unique opportu-
nity to analyze populations defined as low-kidney risk by 
both baseline eGFR and UACR. Specifically, we found 
SGLT2i-associated improvement in the cardiorenal out-
come even in those with urinary albumin BDL, a rela-
tively novel kidney definition based on cumulative results 
that any urinary albumin excretion, even within the nor-
moalbuminuric range, is associated with worse outcomes 
[41–45]. Relevantly, SGLT2i were reported to improve 
albuminuria status—serving as a surrogate for kidney 
decline and a possible mediator– even in patients with 
T2D and normal kidney markers [5, 45, 46]. These results 
suggest a beneficial role for SGLT2i early in the disease 
process.

According to the 2021 ADA Standards of Care, SGLT2i 
are indicated for cardiorenal protection purposes in 
patients with T2D and CKD, HF or atherosclerotic car-
diovascular disease (AsCVD)—independent of glycemic 
control or previous metformin use [17]. Similarly, the 
KDIGO guidelines recommend to treat most patients 
with T2D and CKD with SGLT2i [16]. A controversy per-
sists whether SGLT2i have a cardiorenal preventive role 
in patients with T2D and normal kidney markers. In this 
analysis, the lower incidence of the composite CV and 
cardiorenal outcomes was generally conserved in the dif-
ferent low baseline kidney risk categories, with some var-
iations. Importantly, lower risk for ACM was observed in 
the defined low baseline kidney risk categories. However, 
variation of the HR values for the other single component 
outcomes in this population precludes a specific conclu-
sion. Thus, although our findings support a cardiorenal 
protective role of SGLT2i in patients with T2D and low 
baseline kidney risk, longer follow up on more partici-
pants may be required for more definitive answers.

Recent years have brought a renaissance in the treat-
ment of diabetes kidney disease (DKD). The gold 
standard of risk factor modifications and angiotensin-
converting enzyme inhibitors/angiotensin II receptor 

blockers (ACEi/ARBs) [47–49] is now joined by SGLT2i 
therapy. Finerenone, a non-steroidal mineralocorticoid 
receptor antagonist (MRA), improved kidney outcomes 
in patients with DKD (the FIDELIO-DKD trial [50], and 
an ongoing study tests CV outcome (The FIGARO-DKD 
trial, NCT02545049). Cumulative evidence indicate that 
GLP-1 RAs may also have a kidney protective role [38, 
51, 52], and the FLOW KOT [NCT03819153 (53)] is 
expected to provide a more definite answer. The SONAR 
trial indicated that specific patients with DKD could ben-
efit from endothelin receptor antagonists (ERA) [54]. 
However, to date no medications have been approved 
for DKD prevention purposes in patients with T2D and 
healthy kidney markers. Our findings of lower cardio-
renal risk following SGLT2i initiation, as well as recent 
post-hoc analyses from RCTs and other RWE, suggest 
that SGLT2i may exert such a role [7, 40, 52].

This study enjoys several strengths. In the final 
matched-cohort 3.5% lacked UACR measurement and 
1.1% did not have a calculated eGFR slope at baseline. 
The completeness of the data, including medical history, 
background medication, and socioeconomic status, has 
allowed the formation of comparable cohorts. Baseline 
eGFR slope was not included in the propensity-score 
and yet was comparable in both arms, testifying for the 
relatively balanced nature of the cohorts. The relatively 
large proportion of patients with low baseline kidney risk 
enabled meaningful results in these specific subgroups of 
interest.

The study also has several limitations. First and fore-
most, treatment allocation was not assigned in a rand-
omized controlled manner. It is possible that unknown 
confounders, that were not part of the propensity-match-
ing, influenced the study outcome. Initiation of other 
GLAs or other cardiovascular or kidney medications (e.g., 
GLP-1 RAs or ACEi/ARBs amongst others) following the 
index date was also not accounted for. Baseline allocation 
of UACR and eGFR values were based on a single meas-
urement, although these markers have some day-to-day 
variability. Another limitation is the lack of data regard-
ing treatment adherence and specific changes in GLAs 
regimen during follow up. The risk for each outcome 
was therefore calculated for ITT, OT and sOT follow-up 
definitions; each has its own advantages and limitations, 
with generally similar findings. Lack of prospective data 
collection also affected the outcome definitions. Our reg-
istry does not specify the cause of death, precluding us 
from testing the association between SGLT2i initiations 
and CV death, as a component of the classical major 
adverse cardiovascular event (MACE) composite out-
come, amongst other possible causes of death. Relevantly, 
several SGLT2i randomized controlled trials (RCTs) and 
RWEs have found lower incidence of ACM, suggesting 
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an effect that may extend beyond MACE (EMPA-REG 
OUTCOME, DAPA-CKD) [1, 10, 28, 34]. Other out-
comes (e.g., hHF) may be affected by variations between 
physicians’ reporting. Finally, we focused on populations 
with low baseline kidney risk, however we did not test 
stricter low baseline risk definitions e.g., those lacking 
CVD—this question should be analyzed in larger cohorts 
with longer follow up.

Conclusion
In conclusion, this observational, propensity-score 
matched analysis demonstrates that initiation of SGLT2i 
treatment  in patients with T2D is associated with lower 
risk for adverse cardiorenal outcomes. These findings 
were generally consistent in populations of patients 
defined by their lower baseline kidney risk.
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MI = myocardial infract; eGFR = estimated glomerular filtration rate; UACR 
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