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ABSTRACT
Objective An analysis of the timing of events is critical
for a deeper understanding of the course of events
within a patient record. The 2012 i2b2 NLP challenge
focused on the extraction of temporal relationships
between concepts within textual hospital discharge
summaries.
Materials and methods The team from the National
Research Council Canada (NRC) submitted three system
runs to the second track of the challenge: typifying the
time-relationship between pre-annotated entities.
The NRC system was designed around four specialist
modules containing statistical machine learning
classifiers. Each specialist targeted distinct sets of
relationships: local relationships, ‘sectime’-type
relationships, non-local overlap-type relationships, and
non-local causal relationships.
Results The best NRC submission achieved a precision
of 0.7499, a recall of 0.6431, and an F1 score of
0.6924, resulting in a statistical tie for first place. Post
hoc improvements led to a precision of 0.7537, a recall
of 0.6455, and an F1 score of 0.6954, giving the
highest scores reported on this task to date.
Discussion and conclusions Methods for general
relation extraction extended well to temporal relations,
and gave top-ranked state-of-the-art results. Careful
ordering of predictions within result sets proved critical
to this success.

INTRODUCTION
The 2012 i2b2 NLP challenge, the sixth in its
series, revolved around extraction of temporal rela-
tions from clinical text. It was designed as a two-
stage process: (1) extraction and formalization of
clinical and time concepts from the text, and (2)
pairwise linking of concepts using BEFORE/OVERLAP/
AFTER characterizations. The i2b2 challenge design
mimicked that of the TempEval challenge,1 part of
SemEval-2007.
The current article presents the contribution of

the National Research Council Canada (NRC) to
the 2012 challenge. It briefly outlines the chal-
lenge’s evaluation methodology, and then discusses
in turn the components of the NRC system, system
performance, limitations of the system, limitations
of evaluation, and possible future directions for this
type of research.

BACKGROUND AND SIGNIFICANCE
Temporal reasoning is essential for gaining a deeper
understanding of the course of events described in
a patient record, notably as a way to help establish
causal relationships between events. Zhou and

Hripcsak2 provide an excellent overview of tem-
poral reasoning with medical data, highlighting the
complexities and rationales, and listing related
research. Sun et al3 further discuss the motivation
for this research in their overview paper in this
issue of the journal.
Within the i2b2 challenge, we decided to con-

centrate on subtask (2)—pairwise linking of con-
cepts. We follow the approach of Mani et al,4

where statistical classifiers are used to determine
the temporal relation (if any) that links each pair of
entities. As such, we draw heavily from the litera-
ture on non-temporal relation extraction for clinical
documents.5 6 Our work results in two primary
contributions. First, we demonstrate that by divid-
ing relationships into groups to be handled by spe-
cialist modules, techniques for non-temporal
relation extraction can produce state-of-the-art
results on the temporal relation extraction task.
Second, our results highlight the importance of
careful ordering of the resulting relationship list,
and we call into question whether having an order-
dependent evaluation is desirable.

METHOD
Data
A total of 190 training documents were made avail-
able. Each document was a free-text discharge
summary for one patient’s hospital stay. Text had
been pre-split into sentences and pre-tokenized into
words. Section headings were not explicitly marked,
but could be inferred. On average, a document con-
tained about 28 sentences (median; mean: 33, range:
3–162) and 418 words (median; mean: 502, range:
50–1752). The test set document collection (n=120)
was designed to be entirely comparable, but appeared
to contain slightly longer documents on average,
with 38 lines per document (median; mean: 41,
range: 4–128) and 568 words per document
(median; mean: 657, range: 46–2248).
In addition to the textual material, files with

concept annotations were made available to partici-
pants in subtask (2). There were two main types of
concepts or ‘extents’: Events and Times (see
figure 1). An Event can be an occurrence, problem,
treatment, test, evidence, or clinical department.
This typification is embedded in the annotation.
Likewise, Times can be of type frequency, duration,
date, or time. If applicable, annotations for Times
and Events contained additional attributes for
modality, polarity, and value. Per text, an average of
12 Time concepts and 87 Event-type extents were
seen. For further details on the data and annota-
tions, see Sun et al.3
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Task
The task is to annotate pairs of extents as being in a time-
relationship of type BEFORE, OVERLAP, or AFTER. These relation-
ships are referred to as TLINKs. While temporal relationships
could be assigned to each pair of extents, that would result in
great redundancy. If it is known that A happened before B and
B before C, then A-before-C is redundant. Stating it explicitly is
unnecessary, and doing so is not rewarded in evaluation. To
guide the development of systems, ground truth linkage data
were provided for the training documents.

Evaluation
Sets of extracted relations are minimized (per document) to
eliminate redundancy, and then compared to the minimal non-
redundant ground truth set of relations. Matches between pre-
dicted relations and the ground truths are then summarized in
precision, recall, and F1 score. UzZaman and Allen7 describe
this evaluation method in more detail.

SYSTEM
Our system is built using machine-learning components, which
learn from patterns in the training material and then apply these
learned patterns to the test material. We employed a modular
system where four separate modules each predict links and thus
contribute to a final set of links for the predicted time graph:
(1) a local-link specialist, for links between extents within the
same sentence; (2) a ‘sectime’ specialist, for links between
extents in the text and the strictly defined time points for
Admission and Discharge; (3) a non-local specialist to predict
OVERLAP-type links between extents that occur further apart in
the text, especially those that co-refer to the same concept; and
(4) a high-precision rule-based specialist that finds links known
(or discovered) to be causal in nature.

Additionally, two central modules provide essential support to
these link-predicting modules: (1) a sorter module that receives
the predictions from the individual specialists and merges them
into an optimally tuned final list of predictions, and (2) a tem-
poral reasoning component. The temporal reasoning component
can both expand and contract a set of time-relation links.
Expansion allows for a larger coverage (or closure) of links
between extents and therefore a growth in meaningful training
material. Contraction allows for properly measuring the non-
redundant contribution of (sets of) temporal links. Also, the
temporal reasoning component serves to identify contradictions
in sets of relationships.

Throughout, development was guided by 10-fold cross-
validation; randomized assignment of documents to folds was
done once and remained unchanged for the various compo-
nents. In the paragraphs below, we describe the temporal rea-
soning module, the four specialized prediction modules, and the
prediction sorter module.

Temporal reasoning module
The space of possible TLINKs is very large, and the number of
gold-standard TLINKs is relatively small. We address this imbal-
ance by training all our machine-learned TLINK detectors on
the transitive closure of the gold-standard graph.4 This has the
benefit of both reducing the prevalence of the majority class
(‘no link’), as well as reducing the noise caused by true relations
that were missing from the ground truth.

Creating the transitive closure is a form of temporal inference.
With only BEFORE, AFTER, and OVERLAP type relations, this poten-
tially complex task8 has been highly simplified. We represent a
collection of TLINKs as a simple directed graph with labeled
arcs. BEFORE relations are inverted into AFTER relations, giving us
only two relation types in the graph: AFTER and OVERLAP. Our
graph has one node per extent, with each AFTER TLINK repre-
sented as a directed From→To arc labeled AFTER. Since the
OVERLAP relation is reflexive, each OVERLAP is represented as two
directed arcs, From→To and To→From, both labeled OVERLAP.
With this representation in place, we can carry out temporal
inference through the transitive closure of the directed graph,
using table 1 to determine the relation connecting A and C
from the relations connecting A, B and B, C.

We use a simple arc-incremental variant of the Floyd–
Warshall algorithm9 to carry out transitive closure. Mimicking
the organizer’s evaluation tool, we resolve contradictions during
incremental closure. TLINKs are added one by one in the order
they appear in a file. If the addition of any arc would result in
the inference of a TLINK ‘A AFTER A,’ we declare the arc as
contradictory, and omit it from the closure. Thus, closure
resolves contradictions as it infers new relations. We may also be
interested in finding the minimal set of links that can infer a
given input set. We can carry out greedy graph minimization
during incremental closure (as is done by the evaluation tool),
or we can conduct a full minimization through transitive reduc-
tion using the algorithm described by Aho et al.10 We use our
minimizations (both greedy and full) only to analyze our
system’s output and to critique the official evaluation tool. Our
predicted relations are actually presented to the evaluation tool
as is, without minimization.

The local-link specialist
The local-link specialist is a maximum entropy (ME) classifier
that typifies links between extents within the same sentence.

Table 1 Extending links through inference

B AFTER C B OVERLAP C

A AFTER B A AFTER C A AFTER C
A OVERLAP B A AFTER C A OVERLAP C

Figure 1 Example of a sentence from a discharge text, the provided annotations (balloons), and desired temporal relations (arrows).
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For such links, we can employ very rich syntactic and semantic
features. In addition, we use surface and structure features.
Extents are processed in the order in which they are encoun-
tered in the text, and if necessary, gold-standard link types are
reversed to reflect this (eg, ‘B AFTER A’ becomes ‘A BEFORE B’ if A
(…) B was the order in the text). To balance the class distribu-
tion after temporal closure, we added two more copies of the
negative (‘no link’) relations to the training data. This added
0.03 to our F1 score in cross-validation, using the provided
evaluation tool.

We chose ME11 because it showed as good performance as
Support Vector Machine (SVM) and other classifiers in our
prior research5 and operated fast enough to cross-validate a
wide variety of features in a limited development period. We
used the ME package of OpenNLP.12 We trained two different
ME classifiers, one for event–event relations and one for event–
time relations. We ignored all time–time relations since they are
rare—201 out of 17 821 non-sectime relations in the training
data, before closure expansion.

The feature engineering efforts in this task built upon our
previous work in non-temporal relation extraction,5 which
achieved top performance in the 2010 i2b2 NLP challenge. The
final set of features can be grouped into surface features, syntac-
tic features, semantic features, and structural features.
Supplementary online appendix A describes these in greater
detail.

Surface features
Surface features describe how two extents are superficially
linked within the text. These include word/extent n-grams,
word/extent sequences, discretized counts of words, punctu-
ation marks, and extents, as well as features that capture the
order of extents. In general, we replaced words with extents
where possible. For instance: given that ‘multiple angioplasty
stents’ was known to be an event extent with the type ‘treat-
ment,’ the phrase ‘post multiple angioplasty stents’ would yield
a hybrid 2-gram (‘post <event::treatment>’) rather than a word
4-gram. Clinical narrative often lists events in conjunction, for
example, ‘the patient experienced episode of tongue biting,
unresponsiveness, disorientation.’ We introduced special hand-
ling for these situations, allowing our feature templates to skip
over some extents when a lengthy conjunction separates a candi-
date extent pair. Specifically, we used rules to recognize and skip
pieces of text that contain only commas, conjunctions, and
extents.

Syntax features
Syntax features are derived from part-of-speech (POS) tags, as
well as dependency trees. We first parsed the input text using
Charniak’s ME reranking parser13 with its improved, self-
trained biomedical parsing model.14 The POS tags from these
trees were used to create n-gram POS features analogous to the
word n-gram features discussed above. Then, these constituent
trees were converted into Stanford dependencies15 and features
were extracted to describe the structure of these trees.
Specifically, we find the minimum-covering trees for each extent
in a candidate relation, as well as the tree connecting the two
extents. In cross-validation, syntax features added 0.017 to our
F1 score.

Semantic features
The limited quantity of labeled data leads to a sparseness of fea-
tures, which we attempt to reduce through smoothing by using
both a manually created lexicon and a knowledge base. The

lexicon consists of approximately 600 words and phrases that
express the concepts of before, after, causing, caused by, during,
starting, continuing, ending, suddenly, and currently.
Supplementary online appendix B contains the entire lexicon. If
a word or a phrase is in the lexicon, it is substituted with its sub-
category label (eg, causing). We also used MetaMap6 16 to map
extents to the semantic categories in the Unified Medical
Language System (UMLS), generating UMLS label pairs as fea-
tures for candidate relations.

Structural features
Up to now, relations are classified independently. We also
adapted the method proposed by Roberts et al17 to consider
prior decisions during classification, and it led to consistent
gains during development. The temporal relations of closer
extent pairs are predicted first and are then reused as features
for predictions on the pairs that are farther apart.

Sectime specialist
The annotation standard for the i2b2 task specifies that each
event in a document must be connected to either the admission
or discharge date, via a ‘sectime’ link. An event in the patient
history section links to the admission date, while an event in the
hospital course section links to the discharge date. Because these
sectime TLINKs are constrained by very specific rules, we target
them using a special-purpose classifier.

We trained a multi-class SVM to categorize each event into
one of seven classes: BeforeAdmission, OverlapsAdmission,
AfterAdmission, BeforeDischarge, OverlapsDischarge,
AfterDischarge, Empty. We selected an SVM classifier over ME,
because it achieved higher accuracies in cross-validation, and
because precision is high enough that we did not feel we would
benefit from inducing probabilities over classes. Our SVM is an
in-house implementation, similar to LIBLINEAR.18

Cross-validated in isolation, this specialist achieved 89.6%
accuracy by constructing six binary feature templates from four
binary template atoms:

▸ Bias: A feature that is always on
▸ Loc: Indicates whether the event appears in the patient

history section or the hospital course section. These two
sections are separated by a ‘hospital course’ line, defined
heuristically as the shortest line that matches the case-
insensitive regular expression ‘hospital( )+course.’

▸ LineNo: Indicates the line number of the event, divided
into the following bins: 1, 2, 3, 4, 5, 6+.

▸ Str: Indicates the complete lowercased string correspond-
ing to this event as it appears in the text.

The atoms were composed into the following six templates,
where • indicates composition: Bias • Y, Loc • Y, LineNo • Y,
Str • Y, Loc • LineNo • Y, Loc • Str • Y. Note that every
feature is concatenated with the class Y to enable multi-class
classification.

Non-local event-overlap specialist
Our only machine-learned classifier for non-local TLINKs is an
event-to-event overlap specialist; it never assigns BEFORE or AFTER

relations. We were motivated to build this classifier by a number
of observations. Non-local TLINK predictions are extremely
risky, as there are far more extent–extent pairs that could be
linked than there are true links, even when considering the
closure of the gold-standard links. Therefore, every attempted
non-local link is likely to reduce precision. Also, due to the
nature of the default evaluation, BEFORE and AFTER links only
result in a recall gain if the proposed links are actually minimal.
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Because of their non-reflexive nature, non-minimal BEFORE and
AFTER links cannot be used to infer minimal ones. These rela-
tions are then a precision risk with little expected recall gain.
On the other hand, OVERLAP is reflexive, making reverse infer-
ence possible. That is, several non-minimal OVERLAPS can be used
to infer minimal ones. For example, take the minimal chain
A=B=C=D; given the alternative links A=D, A=C, B=D, we
can infer the entirety of the original chain. In contrast, none of
A<B<C<D can be recovered from A<D, A<C, B<D.
Therefore, OVERLAP bets are more likely to pay off in terms of
recall.

We observed that many non-local OVERLAP relations are in fact
well-understood co-reference relations between events. With
this in mind, we constrained our search space to event pairs
within five sentences and perfectly matching event attributes
(type, modality, and polarity). This gave roughly 34 k training
pairs, down from 999 k without this constraint, with a 17% a
priori label probability for OVERLAP. We trained a binary ME clas-
sifier to assign each event pair to either the OVERLAP or Other
class. Our features (see supplementary online appendix A) sum-
marized the two events involved in terms of their local contexts
and the words and extents that come between them. The result-
ing classifier built 2.5 M features from these templates. Unlike
all of our attempts at training a BEFORE—OVERLAP—AFTER non-
local TLINK classifier, the overlap specialist consistently
improved the complete system.

Non-local rule-based specialist
Despite the risk of non-local BEFORE or AFTER links, we included
a rule-based specialist for hypothesizing such links. This special-
ist applied rules to link substrings that appeared in two extents.
Specifically, the rules were of the form: Extent-A is BEFORE/AFTER
Extent-B if they both match or contain a specific trigger-(sub)
string. For example, ‘anesthetization’ happens before ‘resuscita-
tion,’ and ‘shortness of breath’ happens before ‘nebulizers.’ We
only considered rules that were accurate in the training data. In
particular, a rule was considered viable in the training data if it
appeared with a frequency of 10 or higher and with a precision
of 85% or higher. We filtered out accidental rules by requiring
plausibility to a human annotator. For example, there is a
simple explanation of why anaesthetization should occur before
resuscitation in a hospital visit, and why injury happens before
rehabilitation.

We wrapped these rules in a ME classifier by defining features
for each rule, so the resulting links could be assigned probabil-
ities. Unfortunately, as training-data precision was a major com-
ponent in rule selection, the classifier’s probabilities tended to
be overly confident. For similar reasons, we were uncertain that
cross-validation on the training data would give realistic esti-
mates of rule performance. Because of this, we only included
these rules in two of our three system submissions.

Prediction sorter module
Our predictions, as generated by the sectime specialist, the local
specialist, the non-local overlap specialist, and the non-local
rule-based specialist, are collated by a prediction sorter module.
It optimizes the order in which TLINKs are presented to the
official evaluation script, as we discovered this to have a signifi-
cant impact on the final score. There are two reasons for this
order-dependence.

First, the evaluation script carries out temporal reasoning
through its own incremental transitive closure, as the closure of
the set of system TLINKs is required to calculate recall. During
closure, links are added by their order in the file, and if any link

results in a contradiction, it is dropped from the closure. By
listing high-confidence links first, they are more likely to con-
tribute to the closure and improve recall.

Second, and less obviously, the order of TLINKs can affect
the system’s precision. The evaluation script carries out tem-
poral minimization of the system TLINKs before calculating pre-
cision. Each link in the minimal system graph is checked against
the closure of the gold standard, and precision is calculated as:

# links in system min graph that are also in gold closure
# links in system min graph

The minimization carried out by the evaluation is actually order-
dependent. Links are added one by one, constructing the transi-
tive closure incrementally. If a link to be added is already in the
closure, it is left out of the minimized graph. The resulting
graphs are not truly minimal. Imagine a minimal graph
A<B<C<D, and an adversary that presents the ordered list of
links A<D, A<C, B<D, C<D, B<C, A<B; the greedy mini-
mization would contain all six links, as the three redundant
links A<D, A<C, and B<D are placed before the links that
make them redundant. Thus, placing high-precision links near
the top of the file can improve precision as well as recall, as
these links are less likely to be minimized away, allowing them
to increment both the numerator and denominator when calcu-
lating precision. The larger denominator limits the impact of
later precision errors. This provides further motivation to sort
our links according to their confidence.

Our final submission sorted the system output as follows.
Lacking probabilities, the SVM-driven sectimes are simply
placed first, as they are very accurate. Following these are links
from the remaining three components, sorted together accord-
ing to their ME posterior probabilities. In general, links pro-
duced by rules tended to be near the top of the lists, while the
non-local overlap specialist and the local specialist mingled
more evenly. No correction was carried out for redundancy or
contradiction, as either reduced our F1 score using the official
evaluation tool.

RESULTS AND DISCUSSION
The challenge allowed submission of result sets from three
systems. All three of our systems employed the same local spe-
cialist, sectime specialist, and non-local event-overlap specialist.
The non-local rule-based specialist was not used in System 1,
was used with a limited set of rules in System 2, and with an
expanded set of rules in System 3. Table 2 shows that perform-
ance gains of rules during development did not carry over into
the test phase. Our best test scores were achieved without any
rules (System 1). Among all challenge submissions, it statistically
tied for first place with Vanderbilt (F1 score of 0.6932). An
alternative System 1, modified during post hoc analyses and

Table 2 Training set and test set performance of system
submissions

Training set (n=190) Test set (n=120)

Precision Recall F1 score Precision Recall F1 score

System 1 0.7573 0.6499 0.6995 0.7499 0.6431 0.6924

System 2 0.7727 0.6543 0.7086 0.7474 0.6433 0.6914
System 3 0.7825 0.6567 0.7141 0.7273 0.6449 0.6837
Post-hoc 0.7686 0.6570 0.7085 0.7537 0.6455 0.6954
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discussed later in this section, scored higher than both with an
F1 score of 0.6954, and stands at this time as the highest
reported score on this task. In document-by-document compari-
son, F1 scores are significantly higher for the post hoc system
than for System 1 (two-tailed paired t test, p<0.001).

In table 3, we compare the four specialists according to their
performance on the test set. As a basis, we take System 3, which
contains all components. First, we evaluated each of our four com-
ponents in isolation, then a system with that component taken out.

As these results show that our strongest and most important
component is the local specialist, which impacts F1 by roughly
0.24, with the sectime specialist following close behind with an
F1 impact of 0.19. The two non-local components play a minor
role. The overlap specialist buys some recall at the cost of preci-
sion, with a small but significant benefit to the F1 score (two-
tailed paired t test, p<0.001). Non-local rules brought improve-
ments to precision on the training data, but this effect failed to
materialize on the test data.

For each specialist, we also calculated the percentage of
TLINKs that proved redundant after minimization in our cross-
validation data: 64.4% of sectime TLINKs were redundant with
links from the other components, as were 43.7% of local
TLINKs, 39.4% of the overlap specialist TLINKs, and 59.6% of
the rule TLINKs. It is interesting to note that the evaluation
provides no incentive to add non-redundant, non-minimal links
to the temporal graph; for example, if the gold standard con-
tains A<B and B<C, no credit or penalty is given to a system
that returns A<C. Such links add information, but because it is
at the wrong scale, it is ignored in recall calculations.

As noted, the evaluation uses a greedy minimization; there-
fore, the order of TLINKs can affect the system’s reported preci-
sion. To illustrate this effect, we reverse the order of TLINKS in
the output of our System 1 on the test set (which had a preci-
sion of 0.7499, recall of 0.6431, and F1 score of 0.6924). The
same set of predicted links—but now sorted in reverse order—
causes the evaluation script to report a precision of 0.6443,
recall of 0.6320, and F1 score of 0.6381, for a loss of 0.054 F1,
due almost entirely to a 0.1 drop in precision.

Over the course of our post hoc analyses, we realized more
fully how OVERLAP-type links carried lower precision/recall risk
than BEFORE/AFTER links, so the prediction sorter module was
altered to sort OVERLAP links ahead of all other non-sectime
links. By changing the sort order alone, both precision and
recall improved, and the F1 score increased for both the training
set, from 0.6995 to 0.7085, and the test set, from 0.6924 to
0.6954 (table 2, bottom row).

Our analyzes suggest that in the future, it may be worthwhile
to evaluate temporal relations in a manner that does not depend
on the order of the system’s link list. This would require the use
of a complete minimization, as well as a method to handle con-
tradictions in an order-independent manner.

CONCLUSION
For the 2012 i2b2 NLP challenge on temporal relation extrac-
tion, the team from National Research Council Canada devel-
oped an ensemble system consisting of a core of four
prediction specialists. Our highest scoring system configuration,
developed after the competition closed, gave a precision of
0.7537, recall of 0.6455, and F1 score of 0.6954, resulting in
the highest reported score on this task to date. Our best sub-
mitted system resulted in an F1 score of 0.6924, a statistical tie
for first place.

Each prediction specialist targeted a distinct subgroup of pos-
sible links, using machine learning classifiers trained on the
expanded transitive closure of the gold-standard data. The
sectime specialist concentrated solely on links between any
extent in the text and the admission or discharge date of the
report. The local specialist was motivated by the observed high
link density between extents within the same sentence, and
proved able to leverage syntactic relationships between extents
to infer the temporal ones. By targeting co-reference-type links,
the non-local overlap specialist only searched for OVERLAP-type
links, which are more likely to pay off in terms of recall due to
their reflexive nature. The non-local rule-based specialist would
try to capture the BEFORE and AFTER links and tried to mitigate
the inherent risk of including such links by forcing the rules to
be of high precision.

An important finding was the effect that ordering had on the
final scores, due to design decisions in the evaluation method-
ology. The very same set of results but sorted in reverse order,
would cause a drop in the F1 score of no less than 0.054.
It underlines that evaluation with complete minimization, com-
bined with an alternative way to handle contradictions, would
be invaluable to the field.
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Table 3 Ablation test results

Specialist

Specialist tested alone System without specialist

Delta F1Precision Recall F1 score Precision Recall F1 score

All 0.7273 0.6449 0.6837 0.7273 0.6449 0.6837 –

Sectime 0.9274 0.2661 0.4136 0.6541 0.3997 0.4962 −0.1875
Local 0.5960 0.3573 0.4468 0.8333 0.3005 0.4417 −0.2420
Non-local overlap 0.6166 0.0358 0.0676 0.7316 0.6142 0.6678 −0.0159
Non-local rules 0.7623 0.0030 0.0060 0.7499 0.6431 0.6924 0.0083
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