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A B S T R A C T   

Background and objectives: The pandemic of novel coronavirus disease 2019 (COVID-19) has severely impacted 
human society with a massive death toll worldwide. There is an urgent need for early and reliable screening of 
COVID-19 patients to provide better and timely patient care and to combat the spread of the disease. In this 
context, recent studies have reported some key advantages of using routine blood tests for initial screening of 
COVID-19 patients. In this article, first we present a review of the emerging techniques for COVID-19 diagnosis 
using routine laboratory and/or clinical data. Then, we propose ERLX which is an ensemble learning model for 
COVID-19 diagnosis from routine blood tests. 
Method: The proposed model uses three well-known diverse classifiers, extra trees, random forest and logistic 
regression, which have different architectures and learning characteristics at the first level, and then combines 
their predictions by using a second level extreme gradient boosting (XGBoost) classifier to achieve a better 
performance. For data preparation, the proposed methodology employs a KNNImputer algorithm to handle null 
values in the dataset, isolation forest (iForest) to remove outlier data, and a synthetic minority oversampling 
technique (SMOTE) to balance data distribution. For model interpretability, features importance are reported by 
using the SHapley Additive exPlanations (SHAP) technique. 
Results: The proposed model was trained and evaluated by using a publicly available data set from Albert Einstein 
Hospital in Brazil, which consisted of 5644 data samples with 559 confirmed COVID-19 cases. The ensemble 
model achieved outstanding performance with an overall accuracy of 99.88% [95% CI: 99.6–100], AUC of 
99.38% [95% CI: 97.5–100], a sensitivity of 98.72% [95% CI: 94.6–100] and a specificity of 99.99% [95% CI: 
99.99–100]. 
Discussion: The proposed model revealed better performance when compared against existing state-of-the-art 
studies (Banerjee et al., 2020; de Freitas Barbosa et al., 2020; de Moraes Batista et al., 2020; Soares et al., 
2020) [3,22,56,71] for the same set of features employed by them. As compared to the best performing Bayes Net 
model (de Freitas Barbosa et al., 2020) [22] average accuracy of 95.159%, ERLX achieved an average accuracy of 
99.94%. In comparison with AUC of 85% reported by the SVM model (de Moraes Batista et al., 2020) [56], ERLX 
obtained AUC of 99.77% in addition to improvements in sensitivity, and specificity. As compared with ER-COV 
model (Soares et al., 2020) [71] average sensitivity of 70.25% and specificity of 85.98%, ERLX model achieved 
sensitivity of 99.47% and specificity of 99.99%. The ERLX model obtained a considerably higher score as 
compared with ANN model (Banerjee et al., 2020) [3] in all performance metrics. Therefore, the model presented 
is robust and can be deployed for reliable early and rapid screening of COVID-19 patients.   

1. Introduction 

The pandemic of novel coronavirus disease 2019 caused by severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is spreading 
rapidly all over the world and resulting in a massive death toll. As of July 
11, 2020, more than 12 million confirmed cases have been reported in 

216 countries and territories with more than 500,000 deaths due to this 
pandemic [75]. The COVID-19 pandemic has impacted virtually every 
aspect of human society in all geographic locations. Therefore, 
tremendous global efforts have been made for its quick and precise early 
detection and timely treatment to avoid the spread of the virus. The 
current gold standard test in COVID-19 diagnosis is the Reverse 
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Transcription Polymerase Chain Reaction (RT-PCR) with DNA 
sequencing and identification [16,17], but it is time consuming, costly, 
needs specialized equipment and has a roughly 20% false-negative rate 
[47]. Moreover, there is a shortage of the availability of RT-PCR test kits 
globally. Tests based on IgM/IgG antibodies have been used, but their 
drawbacks are a very low sensitivity (18.8%) and specificity (77.8%) in 
diagnosing COVID-19 during its early phase [13]. Therefore, other 
testing methods are imperative which are less expensive and more 
accessible. 

There has been a profound interest in exploring the potential of 
machine learning (ML) tools to combat the COVID-19 pandemic by 
contributing to disease diagnosis and prognosis, forecasting, prevention, 
treatment and management, disease surveillance and antiviral drug 
discovery [12,45]. In this article, we only address the use of ML tech-
niques to help medical specialists in the accurate and reliable early 
detection of COVID-19. In this context, ML based medical imaging such 
as computed tomography (CT) scans and chest X-rays images [74], have 
demonstrated promising results to complement the conventional diag-
nostic techniques of COVID-19 such as molecular biology (RT-PCR) and 
immune (IgM/IgG) assays. Due to the immense traction in use of ma-
chine learning for biomedical image analysis for COVID-19, there have 
been several recent reviews with exclusive focus on X-rays or CT scans 
[18,28,58,68]. However, CT scans cannot be utilized for screening tasks 
because of the radiation doses, the relative low number of devices 
available, and the related high costs. Recently, some research groups 
have advocated point-of-care ultrasound imaging for being non-invasive 
and radiation-free for COVID-19 detection specially for children and 
pregnant women [7,18]. Other research groups have explored the op-
portunities of speech and sound analysis for COVID-19 detection [34,65] 
by using ML systems. 

Recently, a number of clinical studies have revealed [5,19,24,41,61, 
70] that blood parameters of COVID-19 patients exhibit considerable 
change and the identification of these parameters can play a key role in 
the initial screening for COVID-19 [2,21,40,41,69]. Initial screening 
process provides an early probabilistic indication of the presence of the 
disease, while diagnosing confirms the presence/absence of disease. As 
reported in the study [27], it is difficult for even an experienced 
physician to extract all the information contained in routine blood tests. 
However, machine learning algorithms can learn and differentiate 
among various patterns observed in the routine blood test parameters. 
Therefore, some initial efforts have started in developing machine 
learning algorithms for the identification of COVID-19 from routine 
blood samples [11,22,43,56,66,71,79] as explained in details in related 
work section. However, the research work is still in the infancy stage. 

The blood tests based ML framework for COVID-19 early detection 
will provide a fast, easy to use, more accessible and less expensive 
alternative to costly and time consuming tests, such as imaging based 
studies and RT-PCR. Such a system will have a major impact in devel-
oping and low-income countries which suffer from a shortage of testing 
kits, laboratory supplies and specialized centers for PCR related exams. 
Other key advantages of such a quick and inexpensive system include 
smooth patient flow and speeding up results for potentially infected 
patients, and thus curbing the pandemic [11,66,71]. 

The aims of this article are two folds. First, we present a review of 
emerging COVID-19 automatic diagnosing models using routine labo-
ratory and/or clinical data. No such review exists to date for these 
techniques. We analyze these techniques from the perspective of dataset, 
feature selection, machine learning classifiers employed and perfor-
mance evaluation. It is envisioned that this review will provide readers 
with an overview of the state-of-the-art techniques for COVID-19 
detection from routine laboratory tests and will inspire researchers in 
developing better models to combat COVID-19. Then, we propose an 
ensemble learning model named ELRX for initial screening of COVID-19 
from routine blood tests. As compared with existing techniques, the 
ELRX model utilizes two levels of classifiers for enhanced performance. 
The first level diverse classifiers include random forest, extra trees and 

logistic regression whose outputs are fed to the second level extreme 
gradient boosting classifier. In addition, the ERLX model uses KNNIm-
puter algorithm to handle null values in the dataset, iForest to remove 
outlier data, and synthetic minority oversampling technique (SMOTE) to 
balance data distribution. Furthermore, features importance are re-
ported by using the SHapley Additive exPlanations (SHAP) technique for 
the model interpretability requirement in medical settings. The ERLX 
model is robust and achieved considerable improvement in performance 
metrics for diagnosing COVID-19 when compared against existing state- 
of-the-art studies for a publicly available dataset from Albert Einstein 
Hospital in Brazil. 

The rest of the paper is structured as follows: Section 2 reviews the 
related work in the field. The proposed design methodology is detailed 
in Section 3 and experimental results are discussed in Section 4. Finally, 
concluding remarks are made in Section 5. 

2. Related work 

This section presents review of almost all the machine learning 
techniques reported at the time of writing this article for early detection 
of COVID-19 based on routine laboratory tests and/or clinical data. 

Wu et al. [79] reported the first study by employing a random forest 
(RF) classification algorithm [10] to detect COVID-19 from blood tests. 
The authors collected a dataset of 253 blood samples with 105 
confirmed COVID-19 cases from different hospitals in Lanzhou, China. 
The authors identified the 11 key features out of the 49 features in the 
given blood samples. The model trained with 11 key features resulted in 
a sensitivity of 95.12%, a specificity of 96.97% and an overall accuracy 
of 96.95%. However, the performance of the algorithm was a bit lower 
on external blood samples. Furthermore, the dataset has a quite high 
ratio of positives (41.5%) and performance will suffer for low ratio of 
COVID-19 positives in the dataset. 

Wu et al. [77] designed a least absolute shrinkage and selection 
operator (LASSO) logistic regression (LR) model [53] based on blood 
results for COVID-19 detection. The dataset consisted of 110 patient 
blood samples from Tongji Hospital, China, where 80% of the data was 
used for training the model and the remaining 20% for validation. The 
blood features were reduced from 47 to 15 by removing non-significant 
features by applying the maximum relevance minimum redundancy 
(mRMR) algorithm [60]. The application of LASSO further reduced the 
features to 7 for training the model. The model achieved 98% [93%, 
100%] sensitivity and 91% [84%, 99%] specificity in COVID-19 pre-
diction. However, the model considered few features and the data size is 
very small from a single center to be applicable in real settings. 

Yan et al. [80] used an extreme gradient boosting (XGBoost) machine 
learning model [15] to predict the survival rate of critically ill patients 
with COVID-19 infection based on epidemiological and clinical data. 
The authors tested single-tree and multi-tree variants of XGBoost algo-
rithm with data of 375 patients from Tongji Hospital of Wuhan. The 
authors identified the three key clinical features (lactic dehydrogenase, 
lymphocyte and C-reactive protein) to quickly assess the risk of death. 
Although the study is useful, the dataset is of a very small size and from a 
single source. 

Feng et al. [20] developed an innovative predictive model for an 
early identification of COVID-19 on admission. For the model, four 
different classifiers were chosen including LR with LASSO, LR with 
Ridge regularization [53], decision trees (DT) [63] and Adaboost algo-
rithms. The key strength of the model lies in the selection of candidate 
features which included 2 variables of demographic information, 4 
variables of vital signs, 20 variables of blood routine values, 17 variables 
of clinical signs and symptoms, 2 infection-related biomarkers and 1 
other variable related to admission. The dataset from 132 patients (26 
positives) with the required features were collected from the First 
Medical Center, General Hospital of People’s Liberation Army, Beijing, 
China. With LASSO, only 18 features among the above 46 features were 
selected to train the model. Based on the results, LR with LASSO 
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achieved the best performance, with an area under curve (AUC) of 
93.8%, a sensitivity of 100% and a specificity of 77.8%. The study has 
several strengths such as integration of the most routinely available data 
features on admission for accurately identifying the COVID-19. How-
ever, because of the very small data size from a single center, further 
external validation is required for the success of the model in real 
settings. 

Soares et al. [71] designed a ML based framework called ER-CoV 
based on blood exams to perform initial screening of suspect 
COVID-19 patients. The proposed model utilized a combination of three 
techniques: support vector machine (SVM) [8], SMOTEBoost [14] and 
ensemble [62]. To improve the classification performance of SVM due to 
the small number of positive samples in the dataset, oversampling was 
performed using SMOTEBoost. In addition, ensemble methods were 
employed that combined predictions from 10 SVM-based SMOTEBoost 
models and the final prediction was based on the average probability 
from all 10 models. The ER-CoV was evaluated by using a publicly 
available dataset from Albert Einstein Hospital in Brazil, which con-
sisted of 599 blood samples with 81 confirmed COVID-19 cases. From 
the 108 features of dataset samples, only 16 blood features were selected 
to train and test the model. The ER-CoV model achieved a sensitivity of 
70.25%, a specificity of 85.98% and an AUC of 86.78%, respectively. 

Banerjee et al. [3] tested four machine learning models based on 
blood tests to perform initial screening of suspect COVID-19 patients. 
The models utilized were RF [38], artificial neural network (ANN) [29], 
LR [31] and Lasso-elastic-net regularized generalized linear network 
(GLMNET). The models were evaluated by using the dataset from Albert 
Einstein Hospital in Brazil, which consisted of 598 blood samples with 
81 confirmed COVID-19 cases. From the 108 features of dataset samples, 
only 14 blood features were selected to train and test the model. The 
models achieved an accuracy of 81–87%, a sensitivity of 43–65%, a 
specificity of 81–91% and an AUC of 80–86%, respectively. The authors 
also reported results with only 4 key features. However, more testing 
and validation is needed to evaluate the models in clinical settings. 

Brinati et al. [11] investigated different classes of machine learning 
classifiers for COVID-19 detection from routine blood samples. The 
authors considered these models: DT [63]; extremely randomized trees 
(ET) [25]; K-nearest neighbors (KNN) [1]; LR [31]; Naive Bayes (NB) 
[46]; RF [38] and SVM [64]. In addition, the authors modified the RF 
algorithm to 3-way RF classifier in order to improve accuracy. A dataset 
of 279 routine blood samples was obtained from patients admitted to 
San Raffaele Hospital, Milan, Italy. The dataset contained 177 confirmed 
COVID-19 samples and only 15 features of blood samples were consid-
ered. The models were trained and evaluated resulting in an accuracy of 
82%–86% and a sensitivity of 92%–95%. The RF model was the best 
performing classifier. Some of the limitations of their technique are the 
relatively small data size, a single source of data with a high ratio of 
positives (63.44%) and a limited set of blood sample features. 

Batista et al. [56] reported a study to predict COVID-19 diagnosis 
using ML algorithms from emergency care blood samples. Five 
well-known machine learning models (neural networks (NN), RF, 
gradient boosting trees (GBT), LR and SVM) [23,29,31,38,64] were 
utilized for classification. The authors collected the dataset from Albert 
Einstein Hospital in Brazil, which consisted of 235 blood samples with 
102 confirmed COVID-19 cases. From the blood samples, only 15 fea-
tures were selected to train and test the model. The best predictive 
performance was obtained by the SVM algorithm with a sensitivity of 
68%, a specificity of 85% and an AUC of 85%. 

Bao et al. [4] investigated RF [38] and SVM [64] models for the early 
detection of COVID-19 based on routine blood tests. Dataset of 294 
blood samples (including 208 positives) were collected from Wuhan 
Union Hospital, and Kunshan People’s Hospital, in Kunshan, China. 
Three types of classification tasks were performed (moderate vs viral, 
severe vs. viral and severe vs. moderate). A maximum of fifteen blood 
features was selected to train the models. The SVM-based classifier 
performed the best with an accuracy of 84%, a sensitivity of 88%, a 

specificity of 80%, and a precision of 92%. 
Kukar et al. [43] selected the extreme gradient boosting (XGBoost) 

machine learning model [15] instead of RF or deep neural networks 
(DNN) because of its higher performance, less computational resources 
requirement and its intrinsic ability to handle missing data. The dataset 
of 5333 blood samples with various bacterial and viral infections, and 
160 confirmed COVID-19 samples were collected from University 
Medical Center Ljubljana, Slovenia. Out of the 117 dataset features, only 
the prominent 35 features were selected for the model. The proposed 
model was trained, tested and cross-validated with the given dataset. 
The results revealed a sensitivity of 81.9%, a specificity of 97.9% and an 
AUC of 97%. However, the dataset for building the model has a very low 
ratio of positives (2.91%), which makes it difficult to assess the quality 
of results. 

Barbosa et al. [22] created a cheap COVID-19 detection system from 
routine blood samples by utilizing several ML classifiers such as multi-
layer perceptron [29], SVM [64], RT, RF [10,25,38], bayesian networks 
(BN) and NB [29,46]. The authors collected the dataset from Albert 
Einstein Hospital in Brazil, which consisted of 5644 data samples with 
559 confirmed COVID-19 cases. SMOTE [1] was used for oversampling 
to improve the performance of their models due to small number of 
positive samples in the dataset. From the dataset with 108 features, 
Particle Swarm Optimization (PSO) [39] and Evolutionary Search (ES) 
[49] optimization algorithms were employed to reduce the features to 
63 and 62, respectively. In order to further reduce cost and time of blood 
tests, features were reduced to 24 by hand to train and test their models. 
Results achieved high classification performance with 95.159% of an 
overall accuracy, a sensitivity of 96.8%, a precision of 93.8% and a 
specificity of 93.6%. Experiments revealed that BN had superior per-
formance with respect to other models. 

Yang et al. [81] constructed machine learning models incorporating 
patient demographic features (age, sex, gender, race) with 27 blood test 
features for COVID-19 detection. The classifiers considered were LR 
[31], DT [63], RF [38] and gradient boosted decision trees (GBDT) [23]. 
These models were trained and tested with a dataset of 3346 patients 
(1394 positives) collected from New York Presbyterian Hospital/Weil 
Cornell Medicine. However, for validation dataset of 1822 patients (549 
positives) collected from New York Presbyterian Hospital/Lower Man-
hattan was used. The GBDT classifier reported the best results among the 
four classifiers with a sensitivity of 75.8%, a specificity of 80.2% and an 
AUC of 85.3%. However, the study was developed with a control group 
and cannot be generalized. 

Sun et al. [57] employed five types of classification models: SVM 
[64], LR [31], DT [63], RF [38] as well as deep neural network (DNN) 
[29] to identify the best model for diagnosing the early COVID-19 
infection with significant clinical value. The authors collected clinical 
data of 912 patients (361 positives) from 18 hospitals in Zhejiang 
Province. Each patient’s clinical record contains 31 features including 
gender, age, coexisting diseases, epidemiological information, labora-
tory tests, clinical symptoms and imaging findings. The authors selected 
10 features from the 31 features mentioned above. The LR classification 
model resulted in the best performance among five classifiers with an 
accuracy of 91%, a sensitivity of 87%, an AUC of 97.1%, and a specificity 
of 95%. The study revealed that the lack of epidemiological information 
greatly affected the accuracy, specificity and sensitivity of the model. 
However, more testing and validation is required for general clinical 
settings. 

Joshi et al. [36] developed a LR [31] model to predict COVID-19 
from 3 blood count components (absolute neutrophil count, absolute 
lymphocyte count, and hematocrit) and patient sex. The model was 
trained with dataset of 390 patient samples (with 33 confirmed positive) 
collected from Stanford Health Care. The trained model was validated 
with datasets from diverse locations including Seattle, Washington, 
Northern California, Chicago, and South Korea. The model achieved a 
sensitivity of 86–93% and a specificity of 35–55%. Although, the model 
was validated with diverse patient populations, the study only selected 
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few blood features. 
Li et al. [48] reported a study aimed at finding the correlation among 

clinical variables (signs, symptoms and laboratory tests variables), 
clustering the patients into groups based on a similarity distance metric 
and to develop a COVID-19 diagnosis model based on important clinical 
variables. The authors compiled the key 42 clinical variables from 151 
published studies comprising 413 patients. Then associations among 
variables were discovered by computing correlations among these 42 
variables using different statistical tests based on the type of variable. A 
self-organizing-map (SOM) machine learning [42] algorithm was 
applied on patients to form clusters based on Euclidian distance mea-
sure. Only 27 clinical variables were found to be important in decision 
making. Finally, a XGBoost algorithm [15] based diagnostic model was 
trained using only 19 clinical variables with a dataset from multiple 
sources to differentiate between COVID-19 and influenza patients. The 
model achieved a sensitivity of 92.5% and a specificity of 97.9%. Despite 
the usefulness of the study in revealing associations among clinical 
variables, the sample size was too small for the model to be generalized. 

Bayat et al. [6] developed a RF [10,38] based COVID-19 predictive 
model by using a combination of vital signs with common laboratory 
tests. The dataset consisting of 68 features of 5002 individuals with 1079 
confirmed COVID-19 was collected from different Veterans Health 
Administration sites across USA. The authors applied pairwise correla-
tion among features to select 54 most significant ones. The model was 
trained with 40–54 features resulting in an accuracy of 88.3%, a sensi-
tivity of 83.4%, a specificity of 89.8% and an AUC of 92.8%. The authors 
also identified the minimum 9 key features that can produce an 
acceptable level of accuracy for the model. The proposed predictive 
model also has the ability to discriminate between patients with 
COVID-19 versus other respiratory virus infections such as Influenza, 
Respiratory Syncytial Virus, and seasonal human coronaviruses. One of 
the limitations of the model was that it was trained on older and mostly 
male patients. 

Langer et al. [44] tested a number of ML models including variants of 
ANNs [29], DT [63], RF [38] and LR [31] for the early diagnosis of 
COVID-19 patients in emergency departments by using basic clinical, 
radiological and routine laboratory data. The dataset consisting of 74 
features of 199 individuals with 127 confirmed COVID-19 was collected 
from one of the main hospitals in Milan, Italy. The authors applied a 
feature selection algorithm to select 42 most significant features of the 
dataset among 74 features to train the machine learning models. The 
best performing architecture was one of the ANNs model, which ach-
ieved an accuracy of 91.4%, a sensitivity of 94.1% and a specificity of 
88.5%. The usefulness of the study lies in the good selection of the 
clinical data which is generally available in the emergency departments 
to make a quick decision to prevent the spread of the disease. However, 
the study suffers from some limitations such as a single-center study, a 
very small sample size and lack of some clinical and epidemiological 
data which may be valuable for improving the accuracy of the model. 

Soltan et al. [72] investigated two early-detection predictive models 
to identify COVID-19 using routinely collected data. One of the models 
classify the patients at emergency departments as being COVID-19 
positive or negative, while the second model determines whether the 
COVID-19 positive patients will be admitted to hospital or not. The 
authors employed LR [31], RF [38] and XGBoost [15] classifiers for their 
predictive models. A huge dataset of clinical variables consisting of 
laboratory blood tests, point-of-care blood gas readings, changes in 
laboratory blood results from pre-admission baseline, vital signs and 
Charlson Comorbidity Index (CCI) from Oxford University Hospitals, UK 
were analyzed. XGBoost classifier demonstrated the highest predictive 
performance for COVID-19 with an accuracy of 92.3%, a sensitivity of 
77.4% and a specificity of 95.7%. A limitation of the study is the lack of 
diversity of the data source. 

Schwab et al. [66] conducted an important study using machine 
learning models based on routinely collected clinical data to classify 
patients into four classes: (i) COVID-19 negative, (ii) COVID-19 positive 

which require swab test, (iii) require hospitalization, and (iv) require 
intensive care. Five different classification models were chosen 
including LR [31], NN [29], RF [38], SVM [64], and gradient boosting 
(XGB) [15,23]. The dataset from Albert Einstein Hospital in Brazil, 
which consisted of 5644 blood samples with 279 confirmed COVID-19 
cases, were used. In the data clean-up stage, some features were 
removed resulting in 97 features to train and test the model. Based on 
the performance metrics (AUC, sensitivity and specificity) thresholds, 
the models were successful in classifying the patients into their proper 
class. The authors highlighted important clinical features appropriate 
for each classification class. However, the experimental evaluation was 
based on data collected from a single study site, and its results may 
therefore not generalize to settings with significantly different patient 
populations, admission criteria, and testing guidelines. 

A summary of the related techniques with their key characteristics is 
given in Table 1. Most of the techniques utilize proprietary datasets and 
these datasets are generally small in size. The two most popular classi-
fiers are the LR and RF, which is the reason for their selection in the 
proposed model. The feature set varies from one technique to another 
and so are the performance evaluations. As one can observe from 
Table 1, most of the techniques utilize single level classifiers with the 
exception of [71], which employed an ensemble method to combine 
predictions from 10 SVM models and the final prediction was based on 
the average probability from all 10 models. The existing studies did not 
exploit the opportunities of utilizing ensemble models to enhance 
COVID-19 prediction models based on routine laboratory and clinical 
data, which inspired us to explore this fertile area of research. 

3. Design methodology 

This section provides detailed explanation of the methodology used 
to develop the proposed classification model. The first subsection de-
scribes the dataset used and the selected features. The data preparation 
process is described next. The last subsection, demonstrates the imple-
mentation details of the proposed model. 

3.1. Dataset description and features selection 

The dataset used in our study was obtained from 5644 patients 
admitted to the Albert Einstein Israelita Hospital located in Saulo Paulo, 
Brazil [37]. Kaggle made the dataset available for public access. The 
dataset was collected from the March 28, 2020 to April 3, 2020, with 
more than 100 laboratory tests including blood tests, urine tests, 
SARS-CoV-2 test, rt-PCR test, influenza A viruses presence, to name a 
few. The clinical data were normalized to have a mean of zero and a unit 
standard deviation. Among 5644 patients, 559 patients were infected 
with SARS-Cov2. The Albert Einstein dataset has SARS-Cov2 attribute 
which gives COVID-19 diagnosis as string values: negative and positive. 
In the proposed model those values have been converted to integers 
where zero is assigned to negative cases and one for positive cases. 

Feature selection is an important process in building a machine 
learning model. Selecting the appropriate features helps in reducing 
data redundancy and avoiding noisy data, thus, improving model per-
formance. There are 108 features in the Albert Einstein dataset, in the 
proposed model 18 features have been selected based on their impor-
tance in detecting COVID-19 based on clinical studies [19,40,41,70] as 
well as reported by earlier machine learning prediction models [3,22,56, 
71]. Those features are: Hemoglobin, Platelets, Leukocytes, Lympho-
cytes, Basophils, Eosinophils, Monocytes, Neutrophils, Age, Urea, C 
reactive Protein, Creatinine, Potassium, Sodium, Alanine transaminase, 
Aspartate transaminase, International normalized ratio (INR), Albumin, 
D-Dimer, and Prothrombin time. However, the proposed model can 
handle any set of features. 
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3.2. Data preparation 

The data preparation process consists of three phases: handling 
missing values, outliers elimination, and balancing the data. To handle 
missing values the proposed ERLX model utilized KNNImputer from 
sklearn.impute Python library. The KNNImputer employs k-nearest 
neighbors to impute missing values using the mean value from nearest 
neighbors. In the proposed model the number of nearest neighbors is set 
after tuning it and found that seven neighbors was a suitable candidate. 

Outliers detection is a method for detecting anomalies in a given 
dataset. Anomalies are different than normal records in terms of quan-
tity and quality. Therefore, removing outliers helps in increasing the 
performance of a classification model. In this article, isolation forest 
(iForest) [50] has been used to eliminate outliers from the COVID-19 
dataset. The iForest is applied from Python scikit-learn library [59] 
ensemble class. For a given dataset, iForest creates an ensemble of 
isolation trees (iTrees). To detect outliers, iForest computes the average 
path lengths for instances on the iTrees, outliers are those instances with 
short average length. In fact, iForest works efficiently with a small 
subsample size and a suitable number of trees. These two parameters in 
scikit-learn iForest are max_samples and n_estimators. After tuning the 
parameters, n_estimators the base estimators number has been set to 
150. Each base estimator is trained with 621 samples by setting max_-
samples parameter to 621. Another important parameter is 

contamination that determines outliers proportion in the dataset. In 
ERLX model, contamination parameter has been set to 7%. Those pa-
rameters settings lead to 393 outliers in the COVID-19 dataset. 

After outliers removal, the entire dataset was randomly divided into 
80% for the training set and 20% for the test set. The next step is 
balancing the dataset. Imbalanced data has significant impact on clas-
sification model, specifically on the training data. In fact, imbalanced 
data makes the classification model tends to be biased toward the ma-
jority class. This increases the occurrence of both false positive and false 
negative which degrades the performance of the classification model. 
Therefore, the proposed classification model balances COVID-19 
training data to gain performance improvement. The Albert Einstein 
dataset has 9.9% percent of SARS-CoV-2 positive patients and around 
90.1% percent of SARS-CoV-2 negative cases. Hence, the dataset is 
obviously imbalanced towards negative cases. The proposed model 
utilizes SMOTE from imblearn Python library. SMOTE balances the data 
by randomly creating minority class instances, to over sample the mi-
nority class. 

3.3. Ensemble learning classification model 

Stacking [76] is an ensemble machine learning paradigm that com-
bines several classification algorithms to generate a single model. The 
architecture of a stacking model consists of multiple levels. For instance, 

Table 1 
Comparison of related techniques.  

Ref. Dataset Source Dataset Size (COVID- 
19) 

Total Features 
(Selected) 

Model Used Accuracy Sensitivity Specificity 

[79] Hospitals, Lanzhou, China 253 (105) 49 (11) RF 96.95% 95.12% 96.97%  

[77] Tongji Hospital of Wuhan, China 110 (− ) 47 (7) LASSO-LR – 98% 91%  

[80] Tongji Hospital of Wuhan, China 375 (201) 300 (3) XGBoost – 83% –  

[20] First Medical Center, Beijing, China 132 (26) 46 (18) LASSO-LR, DT, Adaboost – 100% 77.8%  

[71] Albert Einstein Hospital, Brazil 599 (81) 108 (16) Ensemble of 10 SVM models – 70.25% 85.98%  

[3] Albert Einstein Hospital, Brazil 598 (81) 108 (14) RF, LR, GLMNET, ANN 81%– 
87% 

43%–65% 81%–91%  

[11] San Raffaele Hospital, Milan, Italy 279 (177) - (15) DT, ET, KNN, LR, NB, RF, 
SVM 

82%– 
86% 

92%–95% –  

[56] Albert Einstein Hospital, Brazil 253 (102) 108 (15) NN, RF, GBT, LR, SVM – 68% 85%  

[4] Hospitals in Wuhan, China 294 (208) 15 (− ) RF, SVM 84% 88% 80%  

[43] University Medical Center, Ljubljana, 
Slovenia 

5333 (160) 117 (35) XGBoost, RF, DNN – 81.9% 97.9%  

[22] Albert Einstein Hospital, Brazil 5644 (559) 108 (24) XMLP, SVM, RT, RF, BN, NB 95.159% 96.8% 93.6%  

[81] New York Presbyterian Hospital/WCM, LMH, 
USA 

3346 (1394) 1822 
(549) 

685 (33) RF, LR, DT, GBDT – 75.8% 80.2%  

[57] Hospitals in Zhejiang, China 912 (361) 31 (10) LR, DT, RF, SVM. DNN 91% 87% 95%  

[36] Stanford Health Care, CA, USA 390 (31) - (4) LR – 86–93% 35–55%  

[48] – 398 (− ) 42 (19) SOM, XGBoost – 92.5% 97.9%  

[6] Veterans Health Administration Sites, USA 5002 (1079) 68 (54) RF 83.3% 83.4% 89.8%  

[44] Hospital in Milan, Italy 199 (127) 74 (42) ANNs, LR, RF, DT 91.4% 94.1% 88.7%  

[66] Oxford University Hospitals, UK 40732 (437) 74 (− ) RF, LR, XGBoost 92.3% 77.4% 95.7%  

[72] Albert Einstein Hospital, Brazil 5644 (279) 106 (97) LR, NN, RF, SVM, XGB – 80% 98%  
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a two levels stacking model has the base level that constructs from 
different machine learning models. The predictions of the base level are 
used as inputs of features to the second level. Stacking uses 
cross-validation to avoid overfitting. All the aforementioned methods 
make a stacking model robust with improved accuracy. In this context, 
the ERLX model utilizes vecstack [35] Python package to build a two 
level stacking model. As illustrated in Fig. 1, the first level consists of 
three classifiers including extra trees [67], random forest [38], and lo-
gistic regression [31]. To develop a robust stacking model, it is recom-
mended to build the first level from algorithms that have different 
prediction methodology. In spite of the fact that both random forest and 
extra trees are ensemble learning model based on the decision tree al-
gorithm. There are differences between their core methodology, random 
forest subsamples the data with replacement. Subsampling data in-
creases data diversity which helps in training the model with highly 
discriminating training data. On the other hand, extra trees uses the 
whole data which reduces bias. Indeed, increasing data diversity and 
reducing bias enhance model performance and makes ERLX more 
effective. Further, both algorithms split nodes in a different way, 
random forest splits nodes by finding the optimum split while extra trees 
split nodes randomly. The random split in extra trees reduces data 
variance. Thereby, both extra trees and random forest in the first level of 
ERLX model keep bias and variance in an optimal balance. Another 
reason for selecting random forest and extra trees for the first level 
because they are algorithms based on an ensemble of decision trees 
which makes them perform better than the traditional decision tree al-
gorithm. In addition to that in Ref. [33], results demonstrate that 
random forest (RF) is a good candidate classifier for diagnosing type 2 
diabetes and hypertension. The last algorithm in the first level of ERLX is 
logistic regression (LR), which demonstrated enhanced performance for 
various health datasets [26,54,78]. Accordingly, logistic regression (LR) 

has been selected to build ERLX. The second level in the ERLX model is 
an extreme gradient boosting (XGBoost) classifier [15]. XGBoost is an 
ensemble algorithm based on decision trees and gradient boosting 
framework. XGBoost applies several system optimizations to enhance its 
performance including parallelization, tree pruning, and 
cross-validation, to name a few. In addition, XGBoost reduces overfitting 
by employing regularization technique. For those reasons, using 
XGBoost to build the second level in ERLX model produces superior 
results as will be shown in Section 4. 

For parameters setting, both extra trees and random forest classifiers 
have 300 estimators with the maximum depth set to 17. In logistic 
regression classifier, the max_iter parameter of logistic regression is set 
to 500 iterations. Moreover, the first level of the stacking model used ten 
fold cross-validation with data shuffling. The ERLX model sets number 
of estimators (trees) in XGBoost to 300 with a maximum depth of 17. To 
prevent overfitting, XGBoost uses a step size shrinkage named learning 
rate parameter, that ranges between 0 and 1. The learning rate in ERLX 
is set to one. 

4. Performance evaluation and discussions 

This section evaluates the proposed ERLX model and discusses re-
sults. The first subsection shows the impact of removing outliers and 
imputing COVID-19 dataset. The second subsection compares ERLX with 
other existing models. 

4.1. Performance metrics 

There are several performance metrics used to evaluate ML predic-
tion models. To assess the accuracy of ERLX model the following per-
formance metrics were employed: AUC, accuracy, sensitivity and 
specificity. Those performance metrics are computed based on confusion 
matrix values: true positive (TP), true negative (TN), false positive (FP), 
and false negative (FN). TP and TN are the cases when the actual class is 
predicted correctly. On the other hand, FP and FN are the cases when the 
model predicted the actual class incorrectly. The receiver operating 
characteristic (ROC) curve (also known as AUC) depicts the relation 
between true positive (TP) and false positive (FP) rate, where the x-axis 
is FP and the y-axis is TP. The higher the AUC the better the model is in 
distinguishing between its two different classes. The study [9] demon-
strated the need for AUC as a single figure to measure the classifier 
performance. Thus, AUC shows the trend of TP and FP. 

Accuracy gives the proportion of correctly predicted cases (TP and 
TN) out of the whole dataset predictions. Accuracy exhibits a general 
view of model performance. The measurement of accuracy is given in 
equation (1): 

Accuracy=
TP + TN

TP + TN + FP + FN
*100 (1) 

The proportion of true negative is called specificity. For instance, the 
proportion of the patients who are not infected with SARS-Cov2 and 
ERLX model predicted them as negative cases. Classification model with 
high specificity has higher value of TN and lower value of FP that boost 
model performance. Equation (2) gives the formula for computing 
specificity: 

Specificity=
TN

TN + FP
(2) 

The proportion of true positive is called sensitivity. For example, the 
proportion of the actual COVID-19 patients that ERLX model correctly 
predicted them as COVID-19 patients. The higher the sensitivity is the 
better the model performs as higher sensitivity means higher TP and 
lower value of FN. Sensitivity is calculated as shown in equation (3): 

Sensitivity=
TP

TP + FN
(3) 

Fig. 1. The ERLX model.  
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4.2. Impact of eliminating outliers and balancing data 

Table 2 lists accuracy, area under the curve (AUC), sensitivity, and 
specificity of ERLX model on the COVID-19 dataset. The first row shows 
the performance metric of the dataset with its outliers and imbalanced 
class distributions. While the last row represents the balanced dataset 
without outliers. Results of the remaining combination of data balancing 
and outliers are shown in the second and the third row. Results indicate 
that outliers impact AUC as the second row in Table 2 has the lowest 
AUC. Obviously, the balanced COVID-19 dataset without outliers out-
performs imbalanced dataset with outliers in all performance metric, 
distinctly in AUC and sensitivity. Further, Fig. 2 illustrates the receiver 
operating characteristic (ROC) for ERLX model on the COVID-19 dataset 
after removing outliers and balancing the dataset. Moreover, the 
average confusion matrix obtained from 100 replications of ERLX model 
is illustrated in Fig. 3. On average the model was able to correctly pre-
dict 773.843 of COVID-19 negative cases and 65.4059 of COVID-19 
positive cases. In addition, the false negatives average is 0.8614, while 
the false positives average is 0.1089, those low values corroborate the 
robustness of the ERLX model. 

4.3. Comparison with other classification models 

This subsection evaluates the proposed model ERLX by comparing it 
with other classification models from previous studies [3,22,56,71]. The 
comparison is in terms of model accuracy, the area under the curve 
(AUC) of the receiver operating characteristic (ROC), sensitivity, and 
specificity. Both ERLX and previous studies [3,22,56,71] used the same 
publicly available COVID-19 dataset provided by Kaggle [37]. All results 
from previous studies are taken from the reported results in their article. 
For comparison fairness, ERLX set the selected features same as each 
study that was compared with. However, the samples used may be 
different because of data balancing and other preprocessing steps. 
Experimental results for ERLX model are obtained from 100 repetitions. 
Each repetition has different data partitions where 80% of the dataset is 
allocated for the training data and 20% of the dataset is assigned for 
testing ERLX performance. The average of 100 repetitions and the 95% 
confidence interval are computed through bootstrapping the dataset 
randomly. The size of the bootstrap sample in each repetition is set to 
80% of the whole dataset. From sklearn the resample () function is 
applied to select the bootstrap sample with replacement that means the 
records which are not in the bootstrap training sample are selected to the 
test sample data. Thereby, the 95% confidence intervals is computed in a 
robust way. 

In this experiment, first the ERLX model is compared with the ER- 
CoV model [71]. The ER-CoV model is an ensemble-based classifier 
[62] built based on SMOTEBoost [14], SVM [8], and kNN algorithm 
[73] which handles C reactive protein missing values. There are simi-
larities between ERLX and ER-CoV in the techniques used to build the 
two models. Both models balanced the imbalanced training data in 

Covid-19 dataset, however each model used a different algorithm: ERLX 
utilized SMOTE while ER-CoV used SMOTEBoost. The second similarity 
is handling missing values, ERLX utilized KNNImputer with seven 
neighbors while ER-CoV used kNN with five neighbors. Moreover, the 
ERLX model handled all missing values in its selected 18 features, while 
the ER-CoV handled just the missing values in C reactive protein feature. 
The third similarity is ensemble-based classifier, ER-CoV is based on ten 
SVM models, on the other hand, ERLX is a two levels ensemble-based 
classifier where the first level consists of three classifiers: extra trees, 
random forest, and logistic regression. Then, the second level is a 
XGBoost classifier. In the study [71], model accuracy is not reported. 
Thus, the comparison in this experiment is based on AUC, sensitivity, 

Table 2 
Outliers removal and data balancing impacts on performance metric.  

Dataset Accuracy AUC Sensitivity Specificity 

Imbal w/ 
outliers 

99.24% [95% 
CI: 98.7–99.7] 

98.81% [95% 
CI: 97.1–100] 

93.66% [95% 
CI: 88.7–98.7] 

99.85% [95% 
CI: 99.5–100]  

Bal w/ 
outliers 

99.35% [95% 
CI: 98.7–99.8] 

97.83% [95% 
CI: 94.1–99.9] 

95.69% [95% 
CI: 90.2–100] 

99.75% [95% 
CI: 99.3–100]  

Imbal w/ 
o 
outliers 

99.85% [95% 
CI: 99.5–100] 

99.79% [95% 
CI: 98.8–100] 

98.43% [95% 
CI: 95.0–100] 

99.97% [95% 
CI: 99.8–100]  

Bal w/o 
outliers 

99.88% [95% 
CI: 99.6–100] 

99.38% [95% 
CI: 97.5–100] 

98.72% [95% 
CI: 94.6–100] 

99.99% [95% 
CI: 99.99–100]  

Fig. 2. The Receiver operating characteristic (ROC) curve for the test set.  

Fig. 3. Average confusion matrix obtained from 100 replications of ERLX.  

Table 3 
95% C.I. model performance of ERLX vs ER-CoV.  

Model AUC Sensitivity Specificity 

ERLX with 
[71] 
features 

99.73% [95%CI: 
98.6–100] 

99.47% [95%CI: 
97.2–100] 

99.99% [95%CI: 
99.9–100]  

ER-CoV [71] 86.78% [95% CI: 
85.65–87.90] 

70.25% [95% CI: 
66.57–73.12] 

85.98% [95% 
CI:84.94–86.84]  
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and specificity. Table 3 lists the 95% CI model performance for ERLX 
and ER-CoV. Obviously the proposed ERLX outperforms the ER-CoV in 
all metrics with an AUC, a sensitivity, and a specificity values of 99.73% 
[95% CI: 98.6–100], 99.47% [95% CI: 97.2–100], and 99.99% [95% CI: 
99.9–100], respectively. Compared to the existing ER-CoV model which 
achieves an AUC, a sensitivity, and a specificity values of 86.78% [95% 
CI: 85.65–87.90], 70.25% [95% CI: 66.57–73.12], and 85.98% [95% CI: 
84.94–86.84], respectively. Results confirm that ERLX is better than 
ER-CoV. Furthermore, the 99.73% [95% CI: 98.6–100] AUC of the 
proposed ERLX model is immensely higher than ER-CoV AUC 86.78% 
[95% CI: 85.65–87.90]. In addition, the low values of the false negatives 
and the false positives as shown in Fig. 4 imply that ERLX has significant 
ability to distinguish between positive and negative COVID-19 diag-
nosis. The results provide that the techniques used to build ERLX model 
lead to more accurate and reliable classification. 

The second comparison in this experiment is shown in Table 4. In 
Ref. [3] ANN model is used to classify data and SMOTE algorithm is 
applied to balance training data similar to ERLX model. However, ERLX 
obtained considerable higher scores than ANN with SMOTE in all per-
formance metrics. As expected, because ERLX is an ensemble-based 
classifier which combines multiple classification models to improve 
the prediction. In addition, ERLX uses iForest to eliminate outliers that 
also improves the classifier. The study in Ref. [22] tests different clas-
sification models, and results showed that the Bayes Net model achieved 
the best results. Even though, the proposed ERLX has better results than 
the Bayes Net in terms of accuracy, sensitivity and specificity as shown 
in Table 4. Further comparison, in the study [56] SVM recorded the best 
performance metrics in terms of AUC, sensitivity, and specificity. 
Nevertheless, Table 4 shows that ERLX significantly improves over SVM 
in AUC, sensitivity, and specificity. For additional COVID-19 diagnosing 
model blood tests based, the readers are referred to several accom-
plished works in this field [11,43,66,79]. Due to the unavailability of the 
COVID-19 dataset used in those studies, ERLX was not compared with 
them. 

The results of ERLX demonstrate that the integration of KNNImputer, 
iForest, and SMOTE enhance the model performance compared to other 
models in the literature. Results reveal that imputing the missing values 
by applying KNNImputer helps in preventing loss of COVID-19 dataset 
records. Hence, the model trains with more qualified records which 
improve performance. In addition, the usage of iForest, and SMOTE raise 
the model robustness. Furthermore, the basic blocks of ERLX which is a 
two levels ensemble classification model yield to a robust prediction as it 
combines predictions from different classification models. 

Consequently, results demonstrate the efficacy of ERLX in diagnosing 
COVID-19 patients from routine blood tests. The source codes of the 
proposed ERLX classification model are publicly available at htt 
ps://github.com/Maryom/ERLX. Despite the great results of ERLX 
model, ERLX has some drawbacks, the main limitation is that all the 
results are based on single data source. Thus, the model suffers from a 
limited generalizability. Further, ERLX selected features manually 
without applying any of the well known features selection methods. 

4.4. Feature importance 

The clinical decisions made with the assistance of ML models in 
healthcare settings may affect the lives of patients in addition to other 
legal and ethical accountability. Therefore, in these applications, it is 
highly demanded to have prediction models that are both accurate and 
interpretable [55]. In the context of medical field, the model interpret-
ability means that healthcare practitioners can understand how the 
model uses the input features to make predictions, be able to verify 
model outputs before acting on them, and defend care decisions based 
on the ML model [30]. Hence, causality-based feature importance esti-
mates play a central role both for the interpretability and robustness of 
predictive models. In order to interpret the proposed ensemble model, 
we adopted the SHapley Additive exPlanations (SHAP) technique [51] 
to assess each feature importance in determining the predicted output. 

SHAP interprets a model based on Shapley values, which explain the 
contribution of each feature to the prediction. Fig. 5 depicts a density 
scatter plot of SHAP values which integrates feature importance with 
feature effect regarding to positive cases of COVID-19. On the left side 
features are sorted according to their importance. The color on the right 
side represents feature value; the red color corresponds to a higher value 
whereas the blue color represents a lower value. Fig. 5 shows that 
monocytes contribute the most to the predictive model in determining 
COVID-19 positive cases. Common laboratory findings found in positive 
patients in clinical settings include low eosinophils, low platelets, high 
C-reactive protein and high aspartate transaminase [70], all of which 
show strong correlation values in our predictive model, as shown Fig. 5. 

5. Conclusions 

Early detection of COVID-19 patients is critical for timely interven-
tion and prevention of the spread of the pandemic. Recent studies have 
revealed the use of routine blood tests for initial screening of COVID-19 
patients supported by the fact that blood tests are relatively quick, less 

Fig. 4. Average confusion matrix obtained from 100 replications of ERLX with 
[71] features. 

Table 4 
Average performance metrics for each model.  

Model Accuracy AUC Sensitivity Specificity 

ERLX with 
[3] 
features 

99.94% [95% 
CI: 99.8–100] 

99.7% [95% 
CI: 98.7–100] 

99.38% [95% 
CI: 97.3–100] 

99.99% [95% 
CI: 99.9–100]  

ANN with 
SMOTE 
[3] 

87% 80% ± 0.09  43% 91%  

ERLX with 
[22] 
features 

99.94% [95% 
CI: 99.6–100] 

99.69% [95% 
CI: 98.3–100] 

99.93% [95% 
CI: 99.6–100] 

99.96% [95% 
CI: 99.4–100]  

Bayes Net 
[22] 

95.159% ±
0.693  

– 96.8% ±
0.007  

93.6% ±
0.011   

ERLX with 
[56] 
features 

99.94% [95% 
CI: 99.6–100] 

99.77% [95% 
CI: 98.3–100] 

99.55% [95% 
CI: 96.5–100] 

99.98% [95% 
CI: 99.9–100]  

SVM [56] – 85% 68% 85%  
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expensive, and readily available in all patient care locations. In this 
article, we first presented a review of the state-of-the-art techniques for 
COVID-19 detection using routine laboratory and clinical data to inspire 
the researchers in developing better prediction models to combat the 
disease. Then we developed an ensemble learning model called ERLX for 
diagnosing COVID-19 from routine blood tests. The proposed model 
utilized structural diversity by employing two level of classifiers, the 
prediction from the first level classifiers (extra trees, RF, LR) was fed to 
the second level classifier (XGBoost) to enhance the predictor capabil-
ities. A number of data preparation steps were performed by using 
KNNImputer algorithm to handle null values in the dataset, isolation 
forest (iForest) to remove outlier data, and synthetic minority over-
sampling technique (SMOTE) to balance data distribution. The effec-
tiveness and reliability of the ensemble learning model for diagnosing 
COVID-19 was demonstrated by comparing the results against existing 
state-of-the-art studies for a publicly available dataset from Albert Ein-
stein Hospital in Brazil. The proposed prediction model performance 
gains were mainly from using an ensemble modeling approach that 
exploits the strength of a number of diverse classifiers and then 
combining their predictions via stacking. Ensemble models are very 
effective, robust, and extremely versatile in their performance since 
diversity is their key guiding principle to capture underlying structure of 
training data. To further interpret the proposed ensemble model, we 
adopted the SHAP technique to assess each feature importance in 
determining the predicted output. 

Nevertheless, in order for machine learning models to make progress 
in automated and accurate COVID-19 diagnosis in clinical healthcare 
settings, some challenges need to be addressed including the availability 
of diverse high quality datasets, rigorous testing and external validation 
under the guidance from clinicians and health care providers [32], and 
construction of multi-modal machine learning models that can process 
and fuse information from many diverse sources of data [52] such as 
information from patient history, clinical signs and symptoms, physical 
examination, vital signs, X-rays medical imaging, epidemiological and 
clinical laboratory studies [20,44,48,72,80]. 
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of machine learning to haematological diagnosis. Sci Rep 2018;8:1–12. 

Fig. 5. Shap summary plot.  

M. AlJame et al.                                                                                                                                                                                                                                

http://refhub.elsevier.com/S2352-9148(20)30599-2/sref1
http://refhub.elsevier.com/S2352-9148(20)30599-2/sref1
https://doi.org/10.1101/2020.06.25.20137935
http://refhub.elsevier.com/S2352-9148(20)30599-2/sref3
http://refhub.elsevier.com/S2352-9148(20)30599-2/sref3
http://refhub.elsevier.com/S2352-9148(20)30599-2/sref3
http://refhub.elsevier.com/S2352-9148(20)30599-2/sref4
http://refhub.elsevier.com/S2352-9148(20)30599-2/sref4
http://refhub.elsevier.com/S2352-9148(20)30599-2/sref4
https://doi.org/10.1016/j.cca.2020.06.009
https://doi.org/10.2139/ssrn.3594614
http://refhub.elsevier.com/S2352-9148(20)30599-2/sref7
http://refhub.elsevier.com/S2352-9148(20)30599-2/sref7
http://refhub.elsevier.com/S2352-9148(20)30599-2/sref7
http://refhub.elsevier.com/S2352-9148(20)30599-2/sref8
http://refhub.elsevier.com/S2352-9148(20)30599-2/sref8
http://refhub.elsevier.com/S2352-9148(20)30599-2/sref8
http://refhub.elsevier.com/S2352-9148(20)30599-2/sref9
http://refhub.elsevier.com/S2352-9148(20)30599-2/sref9
http://refhub.elsevier.com/S2352-9148(20)30599-2/sref10
https://doi.org/10.1007/s10916-020-01597-4
http://refhub.elsevier.com/S2352-9148(20)30599-2/sref12
http://refhub.elsevier.com/S2352-9148(20)30599-2/sref12
http://refhub.elsevier.com/S2352-9148(20)30599-2/sref12
http://refhub.elsevier.com/S2352-9148(20)30599-2/sref13
http://refhub.elsevier.com/S2352-9148(20)30599-2/sref13
http://refhub.elsevier.com/S2352-9148(20)30599-2/sref13
http://refhub.elsevier.com/S2352-9148(20)30599-2/sref14
http://refhub.elsevier.com/S2352-9148(20)30599-2/sref14
http://refhub.elsevier.com/S2352-9148(20)30599-2/sref14
http://refhub.elsevier.com/S2352-9148(20)30599-2/sref15
http://refhub.elsevier.com/S2352-9148(20)30599-2/sref15
http://refhub.elsevier.com/S2352-9148(20)30599-2/sref15
http://refhub.elsevier.com/S2352-9148(20)30599-2/sref16
http://refhub.elsevier.com/S2352-9148(20)30599-2/sref16
http://refhub.elsevier.com/S2352-9148(20)30599-2/sref16
https://doi.org/10.1016/j.puhe.2020.04.009
https://doi.org/10.1109/RBME.2020.2990959
https://doi.org/10.1109/RBME.2020.2990959
http://refhub.elsevier.com/S2352-9148(20)30599-2/sref19
http://refhub.elsevier.com/S2352-9148(20)30599-2/sref19
http://refhub.elsevier.com/S2352-9148(20)30599-2/sref19
https://doi.org/10.1101/2020.03.19.20039099
https://doi.org/10.1101/2020.03.19.20039099
https://doi.org/10.1515/cclm-2020-0398
https://doi.org/10.1101/2020.05.14.20102533
https://doi.org/10.1101/2020.05.14.20102533
http://refhub.elsevier.com/S2352-9148(20)30599-2/sref23
http://refhub.elsevier.com/S2352-9148(20)30599-2/sref23
https://doi.org/10.1002/jmv.25770
http://refhub.elsevier.com/S2352-9148(20)30599-2/sref25
http://refhub.elsevier.com/S2352-9148(20)30599-2/sref25
https://doi.org/10.1155/2014/637635
http://refhub.elsevier.com/S2352-9148(20)30599-2/sref27
http://refhub.elsevier.com/S2352-9148(20)30599-2/sref27


Informatics in Medicine Unlocked 21 (2020) 100449

10

[28] rekha Hanumanthu S. Role of intelligent computing in covid-19 prognosis: a state- 
of-the-art review. Chaos: Solitons & Fractals; 2020. 109947. 

[29] Haykin S. Neural networks: principles and practice. Bookman 2001;11:900. 
[30] Holzinger A, Langs G, Denk H, Zatloukal K, Müller H. Causability and 

explainability of artificial intelligence in medicine. Wiley Interdisciplinary 
Reviews: Data Min Knowl Discov 2019;9:e1312. 

[31] Hosmer Jr DW, Lemeshow S, Sturdivant RX. Applied logistic regression, 398. John 
Wiley & Sons; 2013. 

[32] Hu Y, Jacob J, Parker GJ, Hawkes DJ, Hurst JR, Stoyanov D. The challenges of 
deploying artificial intelligence models in a rapidly evolving pandemic. Nature 
Machine Intelligence 2020:1–3. 

[33] Ijaz MF, Alfian G, Syafrudin M, Rhee J. Hybrid prediction model for type 2 diabetes 
and hypertension using dbscan-based outlier detection, synthetic minority over 
sampling technique (smote), and random forest. Appl Sci 2018;8:1325. 

[34] Imran A, Posokhova I, Qureshi HN, Masood U, Riaz S, Ali K, John CN, Nabeel M. 
Ai4covid-19: ai enabled preliminary diagnosis for covid-19 from cough samples via 
an app. 2020. https://doi.org/10.1016/j.imu.2020.100378. arXiv preprint arXiv: 
2004.01275 URL. 

[35] Ivanov I. Vecstack. 2016. https://github.com/vecxoz/vecstack. 
[36] Joshi RP, Pejaver V, Hammarlund NE, Sung H, Lee SK, Furmanchuk A, Lee HY, 

Scott G, Gombar S, Shah N, et al. A predictive tool for identification of sars-cov-2 
pcr-negative emergency department patients using routine test results. J Clin Virol 
2020. 104502. 

[37] Kaggle. Diagnosis of covid-19 and its clinical spectrum | kaggle. 2020. https: 
//www.kaggle.com/einsteindata4u/covid19. Accessed on 07/18/2020. 

[38] Kam HT. Random decision forest. In: Proceedings of the 3rd international 
conference on document analysis and recognition. Montreal: Canada; 1995, 
278282. August. 

[39] Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of ICNN’95- 
international conference on neural networks. IEEE; 1995. p. 1942–8. 

[40] Kermali M, Khalsa RK, Pillai K, Ismail Z, Harky A. The role of biomarkers in 
diagnosis of covid-19–a systematic review. Life Sciences; 2020. 117788. 

[41] Khartabil T, Russcher H, van der Ven A, de Rijke Y. A summary of the diagnostic 
and prognostic value of hemocytometry markers in covid-19 patients. Crit Rev Clin 
Lab Sci 2020;1–17. 

[42] Kohonen T. Essentials of the self-organizing map. Neural Network 2013;37:52–65. 
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