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A position-specific 30UTR sequence that accelerates mRNA decay
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ABSTRACT
The 30 untranslated regions (30UTRs) of mammalian mRNAs direct an extensive range of alternative post-
transcriptional outcomes, including regulation of mRNA decay and translation, contributing significantly
to overall gene regulation. However, our knowledge of the underlying sequences and mechanisms is
incomplete. We identified a novel 30UTR sequence motif in mammals that targets mRNAs for transcript
degradation. The motif is found in hundreds of mRNAs and is enriched in transcripts encoding regulatory
proteins, such as transcription and signaling factors. Degradation of mRNAs containing the motif is
mediated by the CCR4-NOT deadenylation complex. We identified hnRNPs A1 and A2/B1 as trans factors
that directly bind to the motif, indicating a novel role for these proteins in deadenylation. Interestingly, a
genome-wide analysis of the impact of this new regulatory pathway showed that the most active motifs
are located within the 50 and 30-terminal portions of 30UTRs, whereas elements in the center tend to be
inactive. The highly position-specific function of the motif adds a new layer of regulation to gene
expression mediated by 30UTRs.
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The control of gene expression is fundamental to cell function.
Although much of this control occurs at the level of transcrip-
tion, post-transcriptional control is both prevalent and
consequential.1 In mammals, the 30 untranslated region of an
mRNA (30UTR) plays a major role in determining the mRNA’s
post-transcriptional fate.2 Mammalian 30UTRs contain almost
as much conserved sequence as that ascribed to transcriptional
regulatory elements, yet much of this conservation cannot be
attributed to known regulatory mechanisms. Furthermore, the
degree of sequence conservation is greater for mammalian
30UTRs than for those of other eukaryotes.3,4 Notably, tran-
scriptome-wide mapping of protein binding sites demonstrates
that 30UTRs are bound by a diverse set of several hundred dif-
ferent proteins, most of which are uncharacterized.5,6

Therefore, it is clear that 30UTR regulation involves myriad cis
sequences and trans factors, many of which remain to be dis-
covered and characterized. Thus, an essential component of
understanding 30UTR-mediated gene regulation is to decipher
the mechanistic details of specific regulatory pathways triggered
by cis-regulatory sequences within them.

We set out to understand the cellular function and underly-
ing molecular mechanism of a novel 30UTR motif (UAAC/
GUUAU), which drew our attention for its striking prevalence
(»7% of mammalian 30UTRs contain one or more copy) and
its strong conservation. We demonstrated that the motif is
repressive and established that the core 8 nucleotide sequence
is both necessary to mediate regulation and sufficient when
tested in many different sequence contexts. Moreover, the motif
is active only within 30UTRs and is ineffective in either introns
or 50UTRs. We found that regulation triggered by the motif
acts by accelerated transcript degradation, via mRNA deadeny-
lation mediated by the CCR4-NOT complex, the major mRNA

deadenylase complex (Fig. 1).7 We purified trans factors that
recognize the motif and identified the hnRNPs A1 and A2/B1,
which we confirmed bind directly to the motif with high
specificity. To examine the role of these trans factors genome-
wide, we profiled the transcriptomes of cells depleted for
hnRNP A1 and A2/B1 using RNAi. Our results confirm that
motif-dependent repression requires these trans factors and
indicate that hundreds of transcripts harboring the motif are
subject to regulation by hnRNP A1 and A2/B1.

Like many RNA binding proteins, both hnRNP A1 and
A2/B1 possess a variety of different cellular roles, including
mRNA processing, export, stability and translation.8-12 Our
work has established a new role for these proteins. The two pro-
teins are paralogs and, together with hnRNP A0 and A3, belong
to the A/B family of heterogeneous nuclear ribonucleoproteins.
The A/B family represents the most abundant cellular hnRNP
proteins, with »3£107 copies of hnRNP A2/B1 in HeLa
cells.12,13 Furthermore, mutations in hnRNP A1 and A2/B1 are
strongly associated with human diseases, including cancers and
neurological disorders,14,15 and abnormal regulation of these
proteins is observed in several cancers, including lung cancer.16

The impact of regulatory pathways can be gauged in several
ways; informative metrics include the quantitative outcome of
regulation and the number and types of targets impacted. The
UAAC/GUUAU motif mediates approximately 2-fold repres-
sion, which, although subtle, is comparable to that typically
mediated by individual miRNA target sites.17 The motif is
found in the 30UTRs of »7% of human genes and is frequently
deeply conserved, with conserved instances of the motif occur-
ring more than twice as frequently as expected by chance.
Thus, in terms of prevalence and conservation, this motif is
comparable to binding sites for some of the most deeply

CONTACT Andrew Grimson agrimson@cornell.edu 445 Biotechnology Building, Cornell University, Ithaca, NY 14853.
Published with license by Taylor & Francis Group, LLC © Rene Geissler and Andrew Grimson
This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unre-
stricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted.

RNA BIOLOGY
2016, VOL. 13, NO. 11, 1075–1077
http://dx.doi.org/10.1080/15476286.2016.1225645

http://dx.doi.org/10.1080/15476286.2016.1225645


conserved miRNAs, sites that are themselves among the most
prevalent and strongly conserved sequences within 30UTRs.4 It
is worth noting that transcripts encoding regulatory and signal-
ing proteins are enriched in the motif, which implies that the
pathway we have found contributes to large and complex regu-
latory networks. We also found effective instances of the motif
in 30UTRs of multiple core RNA decay enzymes, including the
50 exonuclease XRN1, the decapping complex (DCP1a) and the
CCR4-NOT deadenylase complex itself (CNOT1/4/6).
Together, these results imply a broad regulatory impact for the
pathway we have discovered, including auto-regulation of
mRNA decay.

The sensitivity of the functional impact of the UAAC/
GUUAU motif to its location within the 30UTR is striking.
Indeed, analysis of transcriptome profiling to discover func-
tional sites suggests that only motifs located within the
terminal portions of 30UTRs (first and last »300 nucleoti-
des) are competent to attenuate transcript abundance. This
finding is reminiscent of miRNA target sites, which tend to
be more effective when located toward the ends of 30UTRs
rather than in the center, although the degree of position-
specificity appears significantly stronger for the UAAC/
GUUAU than for miRNA target sites.17,18 For both miRNA
target sites and the UAAC/GUUAU motif, the physical or
biochemical mechanisms underlying their position-depen-
dent effects remain unclear – investigating and understand-
ing these mechanisms represent important opportunities for
insights into the biology of 30UTRs.

Several possible models could explain the positional sensitiv-
ity of 30UTR regulatory elements. First, the central regions of
30UTRs might be more likely to form occlusive secondary
structures, thereby limiting access of trans factors to regulatory
elements. Second, proximity of the motifs to the poly(A) tail
and proteins that interact with the 30 terminal mRNP might
potentiate certain regulatory pathways. For example, it is easy
to envision that trans factors found close to the 30 terminus of a
30UTR could have more effective interactions with PABP, dead-
enylases, or even the translation initiation machinery, when
compared with such interactions with same trans factor bound
elsewhere in a 30UTR. These models are not mutually exclusive,
nor may a single explanation apply to all sequence motifs. Nev-
ertheless, it is likely that mechanistic insights into the phenom-
enon will be valuable in building toward a more comprehensive
understanding of 30UTR mediated gene regulation.

The enhanced efficacy of the UAAC/GUUAU motif when
located toward the 50 terminus of a 30UTR is more difficult to
rationalize. The most prevalent internal mRNA modification of
higher eukaryotes is m6A (N6-methyladenosine). This

modification has been implicated in affecting diverse aspects of
post-transcriptional gene regulation, including mRNA transla-
tion, decay, splicing, alternative polyadenylation, and heat
shock response.19-24 Transcriptome-wide maps indicate that
m6A is found in at least »50% of mammalian mRNAs. More
importantly, m6A is preferentially found within the 50 end of
30UTRs, suggesting a regulatory role restricted to a certain
region within 30UTRs. Importantly, analyzing CLIP-seq data,9

we found that hnRNP A2/B1 and A1 preferentially bind ele-
ments at the 50 end of 30UTRs, indicating a potential connec-
tion to m6A sites (Fig. 2). Consistent with this model, hnRNP
A2/B1 was recently identified as an m6A-binding protein.25 We
are currently exploring whether the abundance of m6A modifi-
cations close to the stop codon results in more effective
recruitment (or activity) of hnRNP A2/B1 to UAAC/GUUAU
motifs located near the 50 end of 30UTRs.

Irrespective of the mechanistic basis for the position effect of
the UAAC/GUUAU motif and other regulatory elements in
30UTRs, there are clear implications when the prevalence of
alternative 30UTR isoforms are considered. Alternative splicing
and, even more so, alternative polyadenylation can alter the
length and composition of 30UTRs for different transcripts
of the same gene.26,27 Thus, a single gene may gain or lose
cis-regulatory sites and consequential post-transcriptional gene
regulation due to alternative mRNA processing. In addition,
because the pathway we have found is so sensitive to the posi-
tion of the motif within the 30UTR, we suspect that alternative
30UTR processing may have even greater impacts upon tran-
scripts harboring the motif than for other cis-regulatory sites in
30UTRs. That is, depending on the location of a motif, and the

Figure 1. Model of UAASUUAU-mediated mRNA deadenylation. hnRNP A2/B1 and A1 bind to UAASUUAU (black rectangles, S D G or C) preferentially at the 50 and
30 edges of 30UTRs (first and last »300 nt) and recruit the CCR4-NOT complex to mRNAs to promote deadenylation.

Figure 2. Abundance of genome-wide binding sites for hnRNP A2/B1 and A1
(region ¡600 to 600 nt from the stop codon) within mRNAs analyzed using public
CLIP-seq datasets,9 m6A abundance according to Ke et al. 20
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specific 30UTR isoform(s) produced, alternative transcripts of
the same gene will gain or lose sensitivity to the pathway we
describe even in conditions where different isoforms all contain
the motif. Moreover, even though hnRNP A1 and A2/B1 are
expressed ubiquitously,12 dynamic regulation dependent on the
motif will still occur as a result of alternative 30UTR processing.

The 50 and 30 untranslated regions of human mRNAs
contain hundreds of different cis-regulatory elements, creating
an extraordinarily complex collection of post-transcriptional
events with the potential to significantly impact gene
regulation. Despite the remarkable progress in understanding
post-transcriptional biology, it seems likely, in addition to posi-
tion-specific effects of sequence motifs, that many novel layers
affecting 30UTR regulation remain to be discovered. Although
the last decade has seen remarkable progress toward under-
standing the roles of 30UTRs in gene regulation, the abundance
of new approaches and techniques suited to the study of gene
regulation will likely propel many additional insights into
30UTR biology in the near future.
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