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Simple Summary: 5-Fluorouracil (5-FU) is a chemotherapy drug that is commonly used to treat
multiple cancers. Many people who are treated with 5-FU experience severe toxicity to the drug, and
in severe cases, patients can die. This review discusses current methods for identifying people who
are at high risk for severe side effects to 5-FU therapy.

Abstract: Severe adverse events (toxicity) related to the use of the commonly used chemotherapeutic
drug 5-fluorouracil (5-FU) affect one in three patients and are the primary reason cited for premature
discontinuation of therapy. Deficiency of the 5-FU catabolic enzyme dihydropyrimidine dehydro-
genase (DPD, encoded by DPYD) has been recognized for the past 3 decades as a pharmacogenetic
syndrome associated with high risk of 5-FU toxicity. An appreciable fraction of patients with DPD
deficiency that receive 5-FU-based chemotherapy die as a result of toxicity. In this manuscript, we
review recent progress in identifying actionable markers of DPD deficiency and the current status
of integrating those markers into the clinical decision-making process. The limitations of currently
available tests, as well as the regulatory status of pre-therapeutic DPYD testing, are also discussed.

Keywords: pharmacogenetics; precision medicine; fluorouracil; chemotherapy; dihydropyrimidine
dehydrogenase; adverse events

1. Introduction

The fluoropyrimidine analog 5-fluorouracil (5-FU) was introduced as an anti-cancer
agent in the late 1950s and remains one of the most widely prescribed chemotherapeu-
tics, with an estimated 2 million people worldwide receiving 5-FU or one of its prodrug
forms (e.g., capecitabine) each year [1]. 5-FU is used to treat many types of cancers, most
predominantly colorectal cancer, where it is used as a component of first-line adjuvant
therapy and for advanced disease [2]. In addition, 5-FU continues to be used to treat
breast and pancreatic cancers [3,4], among others. Despite being well-tolerated in gen-
eral, therapy-related toxicity remains a high concern with 5-FU use. The prevalence of
severe (clinical grade 3 or greater) toxicity varies by treatment regimen. Using data from a
large prospective cooperative group clinical trial (Alliance N0147), investigators estimated
that approximately one in three patients that received current-generation multi-drug regi-
mens for the adjuvant treatment of colon cancer experienced grade 3 or higher toxicities
that are typically associated with 5-FU use [5]. Similarly high rates of toxicity have been
noted in other clinical trials utilizing 5-FU-based treatments [6–8]. However, it is noted
that the co-administration of additional therapeutics in modern therapeutic approaches
makes it difficult to pinpoint the exact number of toxicities that are specifically caused
by 5-FU and not related to concomitant drugs or interactions between the components of
multi-drug therapy [9].

Genetic factors are known to contribute to the risk of developing severe toxicity to 5-FU,
with those related to decreased function of the enzyme dihydropyrimidine dehydrogenase
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(DPD) emerging as a critical determinant of toxicity risk. DPD is the initial and rate-defining
step of the uracil catabolism pathway, which also converts 5-FU to inactive metabolites
(Figure 1) [10]. In the 1980s, it was recognized that patients who had experienced toxicity
to 5-FU tended to have elevated levels of uracil in the blood and urine [11,12], suggesting
that hepatic DPD deficiency could be an underlying cause of 5-FU toxicity. The first case of
DPD deficiency was confirmed by measuring DPD enzyme function in peripheral blood
mononuclear cells (PBMCs), and genetic inheritance was confirmed by expanded pedigree
analyses [10,12]. Subsequent studies within this family identified two deleterious variants
in the gene encoding DPD (DPYD) that segregated independently and demonstrated an
autosomal codominant pattern of inheritance [13]. The central role of DPD in determining
5-FU exposure and toxicity risk is further exemplified by the drug–drug interactions noted
between 5-FU and antiviral uracil nucleoside analogs. The antiviral drug Sorivudine
(1-beta-D-arabinofuranosyl-E-5-[2-bromovinyl] uracil) was lethal in patients treated with
5-FU [14–16]. The drug was later shown to inhibit hepatic DPD, leading to prolonged 5-FU
exposure and increased anabolism of 5-FU to cytotoxic metabolites [14,17,18].
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2. DPYD Variants Associated with 5-FU Toxicity

Several DPYD variants have been studied in clinical studies of 5-FU toxicity and
in pre-clinical models of DPD function or 5-FU metabolism. Four variants have re-
producibly shown significant association with elevated risk of severe toxicity to 5-FU
(Table 1): c.1905+1G>A (DPYD*2A, IVS14+1G>A, rs3918290), c.1679T>G (DPYD*13, p.I560S,
rs55886062), c.2846A>T (p.D949V, rs67376798), c.1129-5923C>G(rs75017182) [19,20]. These
four variants demonstrate the wide variability of impacts that alleles can have on DPD
enzyme activity and toxicity risk. Overall, carriers of these four risk alleles are estimated to
be 1.6–4.4 times more likely to experience severe adverse events [19] and >25% more likely
to experience lethal toxicity [21] to 5-FU compared to non-carriers.

The most studied DPYD variant, c.1905+1G>A causes obligate in-frame skipping
of DPYD exon 14 [22–24], resulting in a catalytically inactive form of the protein [25,26].
Heterozygous carriers of c.1905+1G>A exhibit ~50% reduced DPD activity as measured
ex vivo in peripheral blood mononuclear cells (PBMCs) [13,27,28] and display prolonged
exposure to 5-FU and active metabolites [29].

The c.2846A>T allele was originally identified in a DPD-deficient family [30,31] and
was later shown to be associated with severe 5-FU toxicity [19,32]. Direct in vitro study of
this variant demonstrates that the translated protein retains partial DPD activity [25].

As the rarest of these four variants, c.1679T>G was also found to co-transmit with
DPD deficiency within a pedigree surrounding a patient who experienced severe 5-FU toxi-
city [13]. Functional studies demonstrate that the DPD protein translated from c.1679T>G
transcripts retains a low level of residual DPD activity [25]. While carriers of this variant
are more likely to experience severe 5-FU toxicity, the rarity precludes conclusive clinical
analyses [19], and the variant is the only one of these four that is not currently assigned a
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“strong” level of evidence for 5-FU toxicity association by the Clinical Pharmacogenetics
Implementation Consortium (CPIC) [20].

Table 1. Reference information for commonly tested DPYD variants associated with DPD deficiency
and increased risk of severe 5-FU toxicity.

rsID
RefSeqGene ID

(LRG_722
NG_008807.2)

Transcript Change
(NM_000110.3)

Amino Acid
Change

(NP_000101.2)
Other Names Functional Impact

rs3918290 g.476002G>A c.1905+1G>A N/A 1 IVS14+1G>A,
*2A Completely deleterious

rs55886062 g.410273T>G c.1679T>G p.I560S *13 Severely deleterious
rs67376798 g.843669A>T c.2846A>T p.D949V - Partially deleterious

rs75017182 g.346167C>G c.1129-5923C>G N/A 2
HapB3, rs56038477

(c.1236G>A,
p.E412E) 3

Partially deleterious

rs115232898 g.226586A>G c.557A>G p.Y186C - Partially deleterious

N/A, not applicable. 1 Does not directly encode for an amino acid change but causes alternative splicing and the
in-frame deletion of exon 14. 2 Does not directly encode for an amino acid change; causes non-obligate alternative
splicing that introduces a frameshift and premature stop codon. 3 The rs56038477 variant is in strong LD with the
causal variant (rs75017182), can be assessed using exome-level data, and is often used as a proxy for rs75017182.

As a less severely deleterious variant, c.1129-5923C>G creates a novel non-obligate
splice donor site within intron 10 that leads to partial alternative splicing to include an
additional out-of-frame exon [33–35]. This variant was originally identified as a collection
of alleles that was termed “HapB3” [36]; later studies demonstrated that HapB3 tagged the
deep-intronic splice-site variant rs75017182 [34], which was later shown to be causal [33].
A synonymous coding region variant c.1236G>A (p.E412E, rs56038477) is in near-perfect
linkage disequilibrium with rs75017182 and is often used as a genotyping proxy [7]. While
the impact on DPD function appears milder than other risk variants at the functional level,
current evidence suggests that the contributions or rs75017182 to toxicity risk could vary
by population (e.g., compare [7] and [37]), which might be due to differences in treatment
and/or variable co-transmission of other alleles that potentially exert mild-to-moderate
effects on DPD function [38].

While these four variants have been studied in depth, they are unlikely to be the only
variants associated with risk. By measuring DPD activity ex vivo using PBMCs collected
from a population of volunteer subjects, DPYD-c.557A>G (p.Y186C, rs115232898) was
identified in individuals with self-declared African American race/ancestry [28] and has
since been recognized as a risk variant (Table 1). Carriers of c.557A>G had significantly
lower PBMC DPD activity compared to non-carriers [28]. The variant was later found
in patients that suffered severe, and in one case lethal, toxicity to 5-FU [39–41]. In vitro
characterization of p.Y186C confirmed that the variant was deleterious to function [39],
and the variant is directly mentioned as a risk variant for 5-FU toxicity in the current CPIC
Guideline for Fluoropyrimidines and DPYD [20]. Additional studies that were conducted in
individuals of African ancestry identified multiple additional risk variants using sequencing
coupled with in vitro functional analyses [42], suggesting that the contribution of previously
unrecognized risk variants is likely higher in under-studied populations.

Most clinical studies and, by extension, meta-analyses have been conducted ex-
clusively in Europe or in individuals of European ancestry (e.g., self-declared “white”
individuals) [19,21,43,44]. The studies within African American populations demonstrated
that the four well-studied risk variants discussed earlier are all but absent from ancestral
African haplotypes [28,42]; additional studies of large publicly available sequence reposito-
ries strongly suggest that those variants are highly enriched in European/white ancestral
haplotypes and are likely of limited utility as biomarkers in other populations [45].

Case reports and population-agnostic functional studies that utilize cellular or in vitro
models of DPD deficiency have been instrumental in identifying additional candidate 5-FU
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risk variants within DPYD. Neonatal screening programs based in the Netherlands have
identified numerous cases of pyrimidine imbalance that were linked to DPYD variants
in both the domestic Netherlands and international populations [46–49]. Large-scale
sequencing efforts have also identified hundreds of additional nonsynonymous variants of
unknown significance in DPYD. The analysis of carriers and the use of patient-agnostic
approaches to characterize these variants have greatly improved our understanding of the
repertoire of DPD-deficiency-associated alleles [25,45,50–52].

3. Identifying DPD Deficiency

The clinical data linking DPD deficiency to 5-FU toxicity, as well as the well-studied
metabolism pathway DPD as the major 5-FU catabolic enzyme, have made identifying
patients with DPD deficiency a clinical priority for potential therapeutic dose adjustment.
Varied methods of assessing DPD deficiency have been developed, each with potential
advantages and disadvantages. These tests include genetic tests of varying coverage, the
measurement of blood metabolites as an indicator of DPD function, measurement of DPD
function directly in PBMCs as a proxy for liver function, and others. The following sections
will outline these varied approaches and review the literature relevant to their use. Because
of the rapid evolution occurring in the field of DPD testing, specific companies and products
will not be named.

4. Genetic Tests to Identify DPD Deficiency

Genotype-based approaches to identify DPD deficiency are becoming more common
and offer potential advantages over phenotypic tests, including high diagnostic accuracy
with results that are not influenced by environmental factors or methodological differences
in sample handling and processing [53]. As such, genetic tests have seen more wide-spread
availability and the development of evidence-driven recommendations for dose adjustment
based on genotype [20,54,55].

4.1. Targeted Genotyping for Specific DPYD Variants

Most genotypic tests for DPD deficiency use targeted assays to identify the allele status
for individual preselected single nucleotide variations (SNVs). Some commercially offered
tests only provide the genotype for a single DPYD variant, most commonly c.1905+1G>A,
and do not genotype for any other risk variants. Therefore, it is important for users to
understand the limitations of incomplete genotyping, especially since the more common
causal alleles in Europeans (i.e., c.1129-5923C>G and c.2846A>T) might not be genotyped
by a targeted test.

Within most European populations, targeted tests for the four well-studied variants
discussed above will likely identify most carriers for variants associated with DPD de-
ficiency. While individual risk variants outside of the four commonly studied variants
are individually rare, when considered collectively, these variants are likely carried by a
measurable fraction of the European population [45]. Furthermore, the recent discovery of
multi-marker contributors to DPD activity indicate that targeted genotype panels may not
be as comprehensive as previously believed and that expanded panels may be necessary to
more accurately predict risk [38].

Unfortunately, targeted genetic tests likely have extremely limited utility in individu-
als with non-European ancestry, where the four well-studied risk variants are exceedingly
uncommon and other variants predominate. As new information has been gained in the
field, some testing laboratories are introducing expanded tests to keep pace with develop-
ments. For example, the c.557A>G variant and additional rare deleterious DPYD variants
are now included on some targeted genotyping panels offered by a small number of testing
laboratories. Given the discrepancies between test offerings from various laboratories, it
is critical that those ordering genetics tests be aware of the variants that are included in a
given test.
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4.2. Sequence-Based Testing for DPD Deficiency and Interpretation of Novel Alleles

Targeted genotyping can be advantageous for cost and turnaround considerations;
however, the tests do not provide information outside of the specific SNVs being tested.
As an alternative approach, sequence-based genotype assessment is starting to be offered
by some testing laboratories. Sequencing has the potential to identify deleterious variants
that would be missed by variant-specific genotype methods [56], making it an appealing
choice for patients with non-European ancestry who may carry other risk alleles that are
not commonly included on targeted genetic tests.

While sequence-based genotyping has the potential to overcome some of the limi-
tations with SNV-specific assays, the contributions to 5-FU toxicity risk for the variants
that are detected may not always be interpretable. Treatment guidance may be available
for carriers of some alleles [20]; however, if an identified variant has not been previously
characterized and reported, there is no information on which to base treatment decisions.
Prediction tools aimed at classifying unknown variants using large databases of general-
izable information from other variants have long attempted to fill this gap with varying
degrees of success. Generalized prediction tools, such as SIFT [57] and Polyphen [58], were
developed by training models to assess generalized protein features for contribution to
known genetic diseases. In pharmacogenetic conditions such as DPD deficiency, it is unclear
if the same underlying principles of protein function apply since the consequences may
not manifest until after treatment with a drug. As such, variants that do not cause an overt
disease state in the absence of a compound’s use can still be pharmacologically relevant. At-
tempts to apply generalized protein prediction tools to pharmacogenomics have confirmed
their low performance at distinguishing deleterious from benign pharmacovariants [45,59]

A new generation of prediction tools seeks to fill that gap. With respect to DPYD
variants, we developed a gene-specific variant classifier that was developed using features
intrinsic to DPYD and 5-FU metabolism and trained using a robust in vitro measure of SNV
impacts on DPD enzyme activity [45]. Using extensive cross validation and independent
variant sets, we were able to assess the accuracy of DPYD-Varifier at predicting which DPYD
variants were deleterious. A comparison of this new tool with existing general classifiers
demonstrated that the gene-specific tool was more accurate than conventional general tools
and correctly classified all well-studied variants and most novel ones [45]. Additionally,
Zhou et al. recently incorporated published in vitro functional data for missense DPYD
and TPMT variants using an ensemble learning approach and confirmed that gene-specific
variant classifiers have the potential to dramatically improve prediction accuracy for DPYD
variants of unknown significance [60]. Companion analyses with additional class-specific
tools such as MMSplice [61] and RegSNPs-intron [62] have the potential to further improve
classification of DPYD variants identified through sequencing.

5. Phenotypic Methods to Identify DPD Deficiency

Phenotypic approaches for measuring DPD activity were developed as research tools
to identify DPD deficiency and subsequently characterize the genetics of the condition in
pedigrees linked to individuals with severe 5-FU toxicity (e.g., [12,30,31,46,63–65]). These
approaches estimate the ability of DPD to catabolize 5-FU in vivo and have the potential to
identify individuals with DPD deficiencies due to factors outside of known causal alleles
detected by genetic tests. While phenotypic tests have been instrumental as research tools,
they have not been as widely accepted in clinical decision making as genetic tests. This
may be in part due to the high degree of variability noted within and between phenotypic
DPD tests [28,66], particularly when specimens are collected and analyzed at more than
one site [38,67]. In addition, while clear correlations with clinical 5-FU toxicity have been
established at the individual level for genetic risk factors, the same level of evidence for
toxicity association has not been demonstrated for phenotypic tests. Regardless, multiple
attempts at establishing non-genetic tests for 5-FU toxicity risk have been made with
varying degrees of success.
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5.1. DPD Enzyme Assay in Peripheral Blood Mononuclear Cells (PBMCs)

While the liver is the main site of DPD activity, it cannot be non-invasively sampled to
screen for DPD deficiency. Peripheral blood mononuclear cells (PBMCs) express functional
DPD, and modest correlation has been noted between DPD activity measured in PBMCs
and liver biopsies from the same patients [68,69], making them an attractive minimally
invasive proxy for liver DPD function. Additionally, PBMCs are easily fractionated from
whole blood using Ficoll-Paque [69], and PBMC DPD activity has been used to identify and
characterize multiple deleterious DPYD variants (e.g., [70,71]). To measure DPD activity,
PBMC lysates are incubated with labeled 5-FU, and degradation products are separated
and measured using HPLC and a radio-isotope detector or mass spectrometry, depending
on the type of label used [63,72].

Despite well-established methods for measuring DPD activity in PBMCs, the technical
and time-consuming nature of the assay limits its use to primarily the research setting.
In addition, numerous contributors to variability within the assay have been identified.
For example, the choice of anticoagulant and time between blood collection and PBMC
isolation can lead to variable capture of cellular types and inconsistent measurements of
DPD activity [73–75]. The activity of DPD measured in PBMCs also displays a circadian
rhythm with as much as a two-fold variation in a 24 h period [63,76], meaning that the
timing of blood collection should ideally be standardized. The number of freeze–thaw
cycles that PBMCs or lysates undergo has also been shown to greatly impact the measured
DPD activity [69]. Because of these technical and practical limitations, PBMC DPD activity
is not routinely used to screen patients for DPD deficiency, and to our knowledge, no
commercial laboratories currently offer this test.

5.2. Pretreatment Uracil or Dihydrouracil:Uracil Ratio

As an alternative approach to estimating systemic DPD function, the levels of uracil
(U) and the DPD-metabolism product dihydrouracil (UH2) can be measured in blood
plasma [77,78]. If an individual is DPD-deficient, the catabolism of U to UH2 is reduced,
resulting in elevated U and a reduced ratio of UH2:U. Exceptionally high levels of plasma U
have been shown to indicate complete DPD deficiency and be predictive of elevated risk for
severe 5-FU toxicity [79–81]. Threshold levels of plasma U have been proposed as indicative
of DPD deficiency [79–81]. However, these cutoff levels have not been clinically validated as
predictive of severe toxicity [67], and no prospective clinical trials have demonstrated that
pre-treatment metabolite levels or ratios can be used to improve patient safety. In addition,
extreme center-to-center differences have been reported for metabolite measures [38,66,67],
and both circadian variation and food intake have been shown to affect plasma metabolite
levels [76,82]. While the high variability inherent in these assays limits the interpretation
of results at the individual level, the method has been highly useful as a research tool to
identify DNA biomarkers of DPD deficiency.

5.3. 2-13C-Uracil Breath Test

The 2-13C-uracil breath test was developed as a modification of the 2-13C-urea breath
test that was used to screen for Helicobacter pylori infection [83]. For this test, subjects ingest
an aqueous solution of 2-13C-uracil. The levels of 13CO2 are subsequently measured in ex-
haled breath at various time intervals using IR spectroscopy. An initial study demonstrated
that the amount of 13CO2 released and detected by the infrared detector was proportional
to the level of DPD activity present [83]. A later study showed that the method had only a
moderate ability to identify patients who would later experience severe 5-FU toxicity [84].
While this test has been shown to be non-invasive and rapid, the need for a specialized
UBiT-IR300 spectrophotometer and the high cost of 2-13C-uracil likely contributed to the
lack of further development and the adoption of this method for detecting DPD deficiency.
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5.4. Oral Uracil Loading Test

The oral uracil loading test combines components of both the 2-13C-uracil breath
test and the plasma UH2:U test. Like the breath test, a standardized test dose of uracil
is administered to the subject as an aqueous solution. The ratio of UH2 to U is then
measured in blood plasma at a set time. The rationale is that the catabolism of the bolus
of uracil will correlate with systemic DPD function. The high uracil dose that is used is
expected to surpass homeostatic levels of steady-state U and UH2, which can be affected
by other pathways beyond DPD, thereby potentially offering a better indication of DPD
function. Using PBMC DPD activity as a standard, the test showed promising sensitivity
and specificity for identifying patients with reduced DPD activity [85,86]. Because the test
uses unlabeled U, it is cost-effective to administer compared to the solution of labeled 2-13C-
uracil needed for the breath test. However, the test does require an additional prolonged
office visit to accommodate administration of the test dose and collection of a plasma
specimen 2 h later [86]. Additionally, the performance of this test at predicting 5-FU toxicity
has not been determined, nor have actionable levels for 5-FU dose adjustment been defined
based on loading test results. As such, this test is also not widely used.

5.5. Therapeutic Drug Monitoring

Therapeutic drug monitoring (TDM) is another approach for identifying DPD defi-
ciency. Early TDM research utilized subtherapeutic test doses of 5-FU that were adminis-
tered to patients, and the circulating levels of 5-FU and metabolites were directly measured
in blood thereafter using a variety of analytical approaches (e.g., [87–90]). With this method,
there is concern that the test dose of 5-FU, although low, could still elicit adverse toxicity in
severely DPD-deficient patients. Furthermore, because 5-FU is administered for diagnostic,
not therapeutic, purposes, additional concerns were raised regarding potential impacts on
tumor therapeutic resistance. Additional research has focused on applying TDM during
therapy as a means of optimizing the dose of 5-FU with the goal of maintaining metabolite
levels within the therapeutic range [91,92]. The most recent genotype-guided dose adjust-
ment guidelines for 5-FU published by CPIC also recommend that TDM be used in patients
who receive a reduced dose of 5-FU due to carrier status for a deleterious DPYD variant to
optimize the dose to remain within the therapeutic range [20].

6. Current Regulatory Status of DPD Testing

Recommendations for pre-treatment testing for DPD deficiency vary by region/country,
with the most prominent guidance at present coming from the European Medicines Agency
(EMA). In 2020, the EMA published a direct healthcare professional communication (DHPC)
that recommends testing for DPD deficiency prior to 5-FU treatment [93]. Additional re-
gions within Europe have published their own, more specific, guidelines for testing, includ-
ing a consortium of clinicians and researchers from Germany, Switzerland, and Austria [94],
the National Health Service (NHS) of the United Kingdom [95], the Netherlands [96], and
France [97]. U.S. medical organizations, including the Food and Drug Administration
(FDA), National Comprehensive Cancer Network (NCCN), and the American Society for
Clinical Oncology (ASCO), have not yet provided recommendations for universal pretreat-
ment genotyping. Even though specific testing recommendations have not been given, the
FDA does list “intermediate/poor metabolizer DPYD genotypes” as risk factors for severe
or lethal toxicity on the “FDA table of pharmacogenetic associations with data supporting
therapeutic management” [98], and the NCCN notes strong links between DPYD variants
and toxicity risk as well as the potential benefits of testing [99].

7. Economic Considerations for DPYD Testing

Studies into the cost-effectiveness of pre-treatment testing for DPD deficiency have, to
date, been limited to those that have used genotyping; the cost-effectiveness of phenotypic
tests is unknown at present. Two studies in the Netherlands that used prospective genotyp-
ing prior to 5-FU treatment demonstrated that upfront genotyping for DPYD variants was
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modestly cost-saving, with the degree of cost-effectiveness most sensitive to hospitalization
risk in variant carriers, the number and frequency of genotypes tested, and the cost of
the test itself [100,101]. In a retrospective analysis of 20 colorectal cancer patients who
developed severe neutropenia, Spanish researchers concluded that DPYD would be cost-
effective if at least 2.1 cases of neutropenia were avoided out of 1000 patients tested [102].
A study of 134 patients that received first-line fluoropyrimidine therapy for colon cancer in
Ireland similarly concluded that pre-treatment DPYD testing could be cost-saving, using
data from [103]. A study of 550 colorectal cancer patients in Italy who were treated with
fluoropyrimidines and retrospectively genotyped concluded that patients with deleterious
DPYD variants incurred higher costs associated with managing toxicity than non-carriers
and were at elevated risk for hospitalization related to toxicity [104]. Another retrospective
study conducted in Italy showed that carriers of deleterious DPYD variants had higher
healthcare-associated costs, poorer survival, and lower quality of life metrics [105]. Overall,
these data indicate that the use of genetic testing to identify DPD-deficient patients is likely
cost-saving to the healthcare industry and patients as a whole.

8. Conclusions

Deficiency of DPD is strongly linked to an increased risk of severe and potentially fatal
toxicity to the commonly used chemotherapeutic 5-FU. Many methods have been used to
identify patients with DPD deficiency. While phenotype-based tests have been instrumental
in the research setting, genetic tests currently show the greatest promise for 5-FU dose
individualization due to well-defined risk and dose-adjustment metrics for variant carriers.
Recommendations for testing have been gaining momentum, with the EMA publication
of guidelines for universal DPD testing prior to 5-FU use likely serving as what will be
viewed in hindsight as a pivotal policy implementation in the field.
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