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Introduction

Lung cancer is the primary and the secondary cause of 
cancer-related death for men and women worldwide, 
respectively (1). It is categorized into two main types, 

including small cell lung cancer (SCLC) and non-small cell 

lung cancer (NSCLC), the latter type accounts for about 

80–85% of all cases of lung cancer (2). More than 55% 

of all patients with NSCLC are diagnosed at advanced 
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Abstract: Lung cancer is the deadliest malignancy worldwide. An inflammatory microenvironment 
is a key factor contributing to lung tumor progression. Tumor-Associated Macrophages (TAMs) are 
prominent components of the cancer immune microenvironment with diverse supportive and inhibitory 
effects on growth, progression, and metastasis of lung tumors. Two main macrophage phenotypes with 
different functions have been identified. They include inflammatory or classically activated (M1) and anti-
inflammatory or alternatively activated (M2) macrophages. The contrasting functions of TAMs in relation to 
lung neoplasm progression stem from the presence of TAMs with varying tumor-promoting or anti-tumor 
activities. This wide spectrum of functions is governed by a network of cytokines and chemokines, cell-cell 
interactions, and signaling pathways. TAMs are promising therapeutic targets for non-small cell lung cancer 
(NSCLC) treatment. There are several strategies for TAM targeting and utilizing them for therapeutic 
purposes including limiting monocyte recruitment and localization through various pathways such as CCL2-
CCR2, CSF1-CSF1R, and CXCL12-CXCR4, targeting the activation of TAMs, genetic and epigenetic 
reprogramming of TAMs to antitumor phenotype, and utilizing TAMs as the carrier for anti-cancer drugs. In 
this review, we will outline the role of macrophages in the lung cancer initiation and progression, pathways 
regulating their function in lung cancer microenvironment as well as the role of these immune cells in the 
development of future therapeutic strategies. 
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stages of the disease (3). Available treatment options for 
NSCLC are surgical resection of the primary tumor or 
metastatic lesion, radiation therapy, and systemic therapies. 
Conventional chemotherapies, drugs targeting commonly 
mutated pathways in lung cancer, and immune checkpoint 
inhibitors are our current armamentarium of systemic 
therapies for NSCLC (4). Despite promising advances in 
the systemic management of lung cancer, 5-year survival 
rates for localized, regional, and metastatic lung cancer 
are 57.4%, 30.8%, and 5.2%, respectively (5). Cancer 
progression during or after treatment with systemic 
therapies are the major cause of death in NSCLC. Hence, 
resistance to systemic therapies is considered a serious 
obstacle in the therapy of NSCLC. Therefore, finding new 
therapeutic strategies can improve the prognosis of patients 
with NSCLC (6). 

The functional association between inflammation 
and cancer is extensively investigated. The link between 
inflammation and cancer dates back to the 19th century 
when Rudolf Virchow for the first time proved the presence 
of leukocytes within tumors (7). Subsequently, it has been 
revealed that cancer-related inflammation can impact all 
stages of tumorigenesis, including initiation, promotion, 
angiogenesis, and metastasis of established tumors (8,9). 
Likewise, lung cancer is one of the cancers associated 
with inflammation. Immune responses mediate the effect 
of environmental exposures on lung cancer initiation, 
control the invasion and metastasis of lung tumor, and are 
therapeutic targets for lung cancer treatment (10).

The tumor microenvironment is composed of tumor 
cells, innate and adaptive immune cells, fibroblasts, 
vascular and lymphatic endothelial cells, extracellular 
matr ix ,  g rowth  f ac tor s ,  cy tok ines ,  chemokines , 
hormones, and proteases among others (6,11). Interplays 
between tumor cells and immune cells in the tumor 
microenvironment, e.g., through production and secretion 
of tumor-regulating cytokines by immune cells, control 
tumor cell survival, and metastasis (12). Innate immune 
cells, particularly natural killer cells (NK cells) and 
macrophages exert a great impact on cancer and play a 
pivotal pattern in the regulation of tumor progression and 
inhibition (13).

Macrophages within the tumor microenvironment are 
referred to as tumor-associated macrophages (TAMs). 
In the NSCLC microenvironment, TAMs constitute 
the predominant cellular component. They not only act 
as immunosuppressive cells enabling immune evasion 
of NSCLC but also directly contribute to cancer cell 

proliferation, survival, invasion, and metastasis (14). Two 
main macrophage phenotypes with different functions have 
been identified. They include inflammatory or classically 
activated (M1) and anti-inflammatory or alternatively 
activated (M2) macrophages (15). M1 macrophages usually 
arise in the setting of inflammatory surroundings that are 
usually induced by type 1 T helper (Th1) cytokines such 
as interferon gamma (IFN-γ), Toll-Like Receptor (TLR) 
agonists like lipopolysaccharide (LPS), and Granulocyte-
Monocyte Colony-Stimulating Factor (GM-CSF) (16,17). 
This type of macrophage secretes higher levels of pro-
inflammatory cytokines such as tumor necrosis factor-alpha 
(TNF-α), interleukin (IL)-1α/β, IL-6, IL-12, and IL-23, 
lower levels of IL-10 than M2 macrophages and produces 
inducible nitric oxide synthase (iNOS). The phosphorylated 
form of STAT1 as a transcription factor, CD80, CD86, and 
CD64 are some common M1 biomarkers (16,18-20). M1 
macrophages regulate a potent immune response against 
pro-inflammatory situations and microbial activity. M2 
macrophages are found in environments associated with 
type 2 T helper (Th2) cytokines. M2 phenotype consists of 
four well-defined subtypes including M2a induced by IL-4 
and IL-13; M2b induced by immune complexes and IL-1 
receptor agonists; M2c induced by IL-10, Transforming 
Growth Factor-Beta (TGF-β), and glucocorticoids; 
and M2d induced by IL-6, Leukemia Inhibitory Factor 
(LIF) and adenosine. Although M2 macrophage subtypes 
have anti-inflammatory and immunoregulatory roles 
in common, they also exhibit different functions. For 
example, M2a subtype is involved in tissue fibrosis, M2b 
subtype contributes to tumor progression, M2c subtype 
is responsible for tissue remodeling, and M2d subtype 
promotes angiogenesis (21). Some common markers for M2 
macrophages are arginase, CD206, CD204, and CD163. 
M2 macrophages are well-adapted to inflammatory response 
inhibitors and tumor progression (17,21) (Figure 1). 

Density, phenotype, and microanatomical localization of 
macrophages are considered efficient biological parameters 
for patient survival prediction (22). The increasing number 
of evidence indicates that M2 TAM density has a strong 
correlation with advanced tumor progression (23-25). Since 
M2 TAMs act as pro-tumoral macrophages and contribute 
to lung cancer progression (26), they are beginning to be 
assessed as promising therapeutic targets for lung cancer 
treatment. Strategies for TAM targeting and utilizing 
them for therapeutic purposes include limiting monocyte 
recruitment and localization, targeting the activation of 
TAMs, reprogramming TAMs to antitumor phenotype, and 
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Figure 1 Pulmonary macrophage polarization. Various induction signals polarize pulmonary macrophages into M1 or M2 phenotype. AP1, 
activator protein 1; GM-CSF, granulocyte-macrophage colony-stimulating factor; GR, glucocorticoid receptor; HIF1α, hypoxia-inducible 
factor alpha; ICs, immune complexes; IL, interleukin; IL-1R, interleukin-1 receptor; IL-1Ra, interleukin-1 receptor antagonist; iNOS, 
inducible nitric oxide synthase; IRF, interferon regulatory factor; JMJD3, Jumonji domain containing 3; KLF, kruppel-like factor; LIF, 
leukemia inhibitory factor; LPS, lipopolysaccharide; MHC, major histocompatibility complex; MMR, macrophage mannose receptor; NF-
κB, Nuclear Factor kappa-light-chain-enhancer of activated B cells; PPAR-γ, peroxisome proliferator-activated receptor gamma; STAT, 
signal transducer and activator of transcription; TGF, tissue growth factor; TLR, toll-like receptor; TNF, tumor necrosis factor; VEGF, 
vascular endothelial growth factor.
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utilizing TAMs as the carrier for anti-cancer drugs (27). A 
detailed assessment of TAMs and pathways by which TAMs 
are involved in lung cancer progression can shed some light 
on designing novel drugs for lung cancer with a focus on 
TAMs. 

In this review, we aim to describe pathways involved in 
macrophage polarization and discuss hopeful researches in 
TAM targeting strategies with a focus on lung cancer that 
leads to suppression of cancer progression and metastasis 
and improves patient prognosis. To obtain relevant 
literature, we searched Medline (via PubMed) using 
keywords “lung cancer”, “macrophage”, and “TAM” from 
the inception of the database to March 2020. Our search 
was restricted to publications in English language. We 

retrieved other eligible studies by manual searching of the 
reference lists of included studies.

We present the study in accordance with the Narrative 
Review reporting checklist (available at http://dx.doi.
org/10.21037/tlcr-20-1241). 

TAMs and lung tumor growth

Macrophages are involved in all stages of tumor progression. 
From the early pre-invasion stage, tumor cells attract 
macrophages and other inflammatory cells into the tumor 
stroma through the release of cytokines and exosomes (28), 
and in this place, macrophage directly evokes the tumor 
growth, migration, and metastasis (29). 

http://dx.doi.org/10.21037/tlcr-20-1241
http://dx.doi.org/10.21037/tlcr-20-1241
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Despite the fact that alveolar macrophages are 
increased and constitute the main cellular component in 
the bronchoalveolar lavage fluid of lung cancer patients 
(30,31), they may show diminished phagocytic abilities (32)  
and reduced expression of markers characteristic of M1 
macrophages such as HLA-DR, CD83, and ICAM-1 
(32,33). In addition, alveolar macrophages in lung cancer 
patients secrete lower levels of inflammatory cytokines such 
as IL-1 and TNF-α (32). 

M2 TAMs induce invasion and progression of tumor 
cells, which lead to poor prognosis in NSCLC patients 
(34,35). TAMs release some molecules such as matrix 
metalloproteinases (MMPs), growth factors, cytokines, 
chemokines, and other inflammatory mediators to create an 
inflammatory environment and drive tumor growth (36-38).  
Many of these molecules, like vascular endothelial growth 
factor (VEGF), platelet-derived growth factor (PDGF), 
and IL-10 are related to lung cancer progression and 
metastasis. VEGF-C not only affects tumor migration 
and angiogenesis but also promotes tumor progression 
and development through autocrine and/or paracrine 
pathways (39). Macrophages enhanced the expression of 
IL-8 in A549, CL1-0, CL1-5, and PC14 lung cancer cell 
lines. There was a certain correlation between macrophage 
infiltration density, and intra-tumor microvessels, and also 
a negative correlation with the survival of patients with 
NSCLC (40). Studies in lung cancer demonstrated that 
during tumor formation, TAMs expressed M1 markers (41),  
and macrophage phenotype switching from M1 into M2 
occurred during lung cancer progression (41,42). Yuan 
and colleagues revealed that M2a and M2c raised invasion 
and xenograft tumor growth of A549 cells, whereas M1 
macrophages significantly decreased the expression of 
fibrinogens and TGF-β, which support tumor progression 
in the cancer cells (43). Some studies have shown that 
upregulation of IL-10 in M2 TAMs in NSCLC and 
other malignancies are associated with poor prognosis, 
and overexpression of IL-10 in TAMs showed a positive 
correlation with the late stage of NSCLC (44-46). IL-
10 provides tumor cells an immunosuppressive milieu by 
interacting with regulatory T lymphocytes (47). In addition, 
IL-10 confers resistance to apoptosis in Lewis lung 
carcinoma (LLC) cells (48).

Several reports of the association between macrophage 
density in lung tumor and patients’ outcomes in terms 
of survival produce contradicting results (49). These 
conflicting results may stem from the different roles of 
macrophage phenotypic subtypes, the micro-distribution 

of TAMs in tumors of lung cancer patients, variability in 
the characterization methods of macrophage subtypes, 
insufficient statistical power, or using a particular tumor 
stage (50-52). A number of studies have shown that M2-
polarized macrophage density is correlated with worse 
survival in lung cancer (53-56). Meanwhile, M1-polarized 
macrophage density is associated with better overall  
survival (49). The micro-distribution of TAMs in the 
tumor niche influences lung cancer progression. A few 
reports showed that the high density of CD68+ cells and 
CD68+HLA-DR+ M1 TAMs in lung cancer tumor islets 
was associated with better overall survival, although 
CD68+CD163+ M2 density in tumor islets was not 
connected with overall survival. High stromal CD68+ TAMs 
or CD204+M2 TAMs were associated with poor overall 
survival and advanced lymph node stages, while the density 
of stromal CD68+HLA-DR+ M1 and CD68+CD163+ M2 
TAM was irrelevant to overall survival. A low fraction 
of islet to stromal CD68+ TAM displayed poor overall 
survival and showed that the localization of TAMs could 
be a prognostic predictor in NSCLC (49,51,57). The most 
common molecular marker used to recognize TAMs is the 
CD68 antibody. However, this surface molecule is not only 
expressed by TAMs but also by other components of tumor 
tissue such as malignant epithelial and stromal cells (58). 
In addition, labeling of macrophages just based on CD68 
cannot discriminate between M1 and M2 subtypes (59).

Introduction to main pathways involved in 
macrophage polarization in cancers and take 
advantage of them in lung cancer researches

Since macrophages encounter various signals in the cellular 
microenvironment, the molecular mechanisms behind the 
macrophage polarization have not been fully characterized 
yet (60,61). However, in the most recent decade, there 
has been great progress in demystifying macrophage 
polarization under physiological and pathological conditions 
such as cancer. Macrophage polarization is a highly plastic 
process (62,63). The local cytokine microenvironment 
control macrophage polarization. Th1 cytokines, such as 
IFN-γ and TNF-α, drive macrophages to M1 phenotype, 
that produce pro-inflammatory cytokines including TNF-α, 
IL-6, IL-12, IL-1α, and IL-1β, through which remove 
pathogens during infection (64). Th2 cytokines, including 
IL-4 and IL-13, induces macrophage M2 polarization. 
This is mediated by STAT6 induction via IL-4 receptor 
alpha activation (64). So, cytokines are considered pivotal 
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Figure 2 TAM targeting in lung cancer. Induction of TLR4 and IFN-γ receptor by their agonists skewed TAMs into anti-tumoral M1 
phenotype. miRNA-130a by targeting PPAR-γ transcription factor regulates M1-related genes expression in TAMs in lung cancer. Targeting 
CSF1 and IL-6 by specific inhibitors prevents M2-polarized TAMs and suppresses lung cancer. Siltuximab by inhibition of STAT3 signaling 
prevents lung tumor growth. CSF, colony stimulating factor; IRF, interferon regulatory factor; PA-MSHA, pseudomonas aeruginosa-
mannose-sensitive hemagglutinin; PPAR-γ, peroxisome proliferator-activated receptor gamma; STAT, signal transducer and activator of 
transcription. 

lung tumor cells

Cell growth IFN-γ IFNγ-R

PA-MSHA TLR4 

miRNA-130a

M1 phenotype

M2 phenotype

TAM 
Siltuximab

IL-6 IL-6R

CSF1 CSF1R

Imatinib

p-STAT6
p-STAT6

p-STAT1

PPAR-γ

IRF3

contributors to macrophage polarization (Figure 1). 
Furthermore, macrophage switching is connected to the 
differential expression of diverse Toll-Like Receptors 
(TLRs) on macrophages (65).

IFN-γ

M1 macrophages augment tumor regression, while M2 
macrophages promote tumor progression (66). IFN-γ, 
previously known as macrophage-activating factor (MAF), 
leads to polarization of TAMs from M2 toward M1 
phenotype in the tumor niche. IFN-γ by upregulation of 
cytotoxicity-associated markers like NKG2D and granzyme 
A/B (67), is identified as a potent agent responsible for 
inducing macrophage tumoricidal activity (68). IFN-γ 
via its receptor activates STAT1, then phosphorylated 
STAT1 induces transcription of IFN-γ-related genes 
such as genes involving in M1 phenotype (69). Activated 
macrophages secrete IL-12 (70,71). IL-12 evokes NK and 
Th1 cells to produce IFN-γ, while IFN-γ itself induces 
the production of IL-12 (72). It is reported that IL-12 

overexpression can reverse M2 macrophage to M1 (73). In 
lung cancer patients, plasma IFN-γ levels were considerably  
dropped (74). TAMs in IFN-γ-/- mice polarized into M2 
phenotype, and those mice developed larger lung tumors 
than those in control mice (75). Several studies have shown 
the beneficial effects of IFN-γ in lung cancer inhibition. 
Low levels of this cytokine can induce tumor cell stemness 
through the ICAM1-PI3K-Akt-Notch1 pathway, whereas 
a high level of IFN-γ induced apoptosis in NSCLC via 
the JAK1-STAT1-caspase pathway (76). Recombinant 
IFN-γ enhanced the cytotoxic effects of TAMs through 
TNF-α and NO in lung cancer patients (77). A study 
by Ren and colleagues indicated that IFN-γ and/or 
celecoxib can modulate M2/M1 macrophage ratio in the 
tumor microenvironment that may prevent lung tumor  
growth (26). This study revealed that IFN-γ via p-STAT1 
activates transcription of M1-related genes (26). In another 
study, it was concluded that IFN-γ, in combination with 
TLR agonists like LPS activates the M1 phenotype to 
inhibit LLC cell growth (78) (Figure 2). These data suggest 
that IFN-γ can reprogram TAMs and switch them toward 
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the M1 subtype, which improves tumor elimination. So, 
this protein can play a fundamental role in host antitumor 
immunity (69).

Interleukin-6

M2-polarized macrophages in lung cancer can secrete 
some interleukins such as IL-6 (79,80), IL-8 (80), and IL-
10 (81) to promote tumorigenesis and metastasis. IL-6 
is reported as a cytokine which primes macrophages 
for M2 polarization through stimulating IL-4 receptor  
expression (82). IL-4 receptor activates STAT6, even 
though other STATs may also be involved (83) (Figure 2). 
In another hand, TAM-derived IL-6 promoted mouse 
lung tumor through activation of STAT3 (84). Anti-IL-6 
receptor monoclonal antibody abrogated the ability of 
triple-negative breast cancer cell (MCF-10A) to induce 
M2 phenotype in macrophages (85). Targeting IL-6 and 
IL-6 receptor using monoclonal antibodies Siltuximab 
and Tocilizumab in a K-ras mutant mouse model for lung 
cancer suppressed cancer progression via inhibition of 
STAT3 tyrosine phosphorylation (86,87) and polarized 
macrophages towards an anti-tumor phenotype (87). A 
study showed that IL-6 via STAT6 signaling polarized 
macrophages towards IL-4-dependent M2 phenotype by 
IL-4 receptor overexpression (82). Although the mechanism 
of Siltuximab action in TAM repolarization in lung cancer 
was not elucidated, it may work through blocking a similar 
mechanism. A phase I clinical trial showed acceptable safety 
profile of Tocilizumab in combination with chemotherapy 
and IFN-α2b in recurrent epithelial ovarian cancer (88). 
A small phase II randomized clinical trial on patients with 
high-risk smoldering multiple myeloma showed moderately 
increased progression-free survival with Siltuximab 
treatment (43 patients) in comparison with placebo (42 
patients) (89). Several antibodies against IL-6 in lung 
cancer showed beneficial effects in lung cancer patients, 
although their roles in the re-education of TAMs have not 
been examined. ALD518, a humanized anti-IL-6 antibody, 
was examined in a randomized phase II clinical trial for 
NSCLC and showed preliminary evidence of efficacy for 
this population (90). 

Myeloid colony-stimulating factors

Granulocyte-macrophage colony-stimulating factor 
(GM-CSF), also called CSF2 and Macrophage Colony-
Stimulating Factor (M-CSF), also called CSF1 are known 

cytokines involved in the regulation of macrophage 
polarization. The major function of myeloid colony-
stimulating factors is regulating the proliferation and 
differentiation of committed hematopoietic cells. 
GM-CSF is linked to M1 phenotype activation, and 
M-CSF is associated with M2 macrophage phenotype  
differentiation (91). Interaction of M-CSF with its 
cognate receptor CSF-1R leads to upregulation of 
PLC-γ2, STAT3, and Erk1/2 (92). Induction of GM-
CSF receptor recruits JAK2 and leads to STAT5, 
ERK, AKT, NF-κB, and IRF5 activation (93). Many 
of these regulator molecules are also part of TLR and 
IFN-γ signaling pathways. GM-CSF induces IL-6, IL-
8, M-CSF, G-CSF, TNF, and IL-1β in macrophages 
and monocytes (91). Although M-CSF and GM-CSF 
receptors share some common signaling pathways, they 
result in different transcriptional regulation and ultimate 
functional changes. For instance, both M-CSF and GM-
CSF activate Ras/MAPK pathway in macrophages to 
upregulate the expression of scavenger receptor (SR)-A; 
However, M-CSF-mediated upregulation of SR-A is 
caused by binding of AP-1 to the enhancer of SR-A gene 
but GM-CSF increases the expression of SR-A through a 
different enhancer region (94). While IRF5 is implicated 
in GM-CSF-induced M1 macrophage phenotype, IRF4 
orchestrates M2 macrophage polarization by M-CSF (95).  
A few studies reported high serum levels of M-CSF could 
be a biomarker in NSCLC patients (96,97). A study showed 
that TAMs with high expression of CSF1R were associated 
with a high death rate in lung cancer patients (98). 

Both cytokines can be potent therapeutic targets 
for manipulation in human diseases such as cancer. A 
study demonstrated that Imatinib, by targeting CSF1R, 
prevented M2 polarization of TAMs in primary lung 
tumor or metastatic sites via inhibition of STAT6 
phosphorylation (99) (Figure 2). Recombinant GM-CSF 
therapy promotes the anti-tumor activity of TAMs in 
lung cancer patients (100). CSF1R inhibitors may deplete 
M2 TAMs in a tumor microenvironment or modulate 
M1/M2 TAM ratio (101) (Figure 2). Several clinical 
trials are testing different classes of CSF-1R targeting 
agents in combination with cancer immunotherapy 
agents in various cancers such as NSCLC. Pexidartinib  
(NCT02452424) (102), classified as a small molecule 
kinase inhibitor,  and ARRY-382 (NCT02880371) 
and Emactuzumab (NCT02323191) ,  monoclonal  
antibodies (101), have been used for targeting CSF1R in 
NSCLC. 
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TLRs

TLRs are a class of pattern recognition receptors, which 
detect molecules of invading pathogens and are pivotal for 
innate immunity and inflammatory responses (103). Upon 
activation of TLRs, they transmit a signal through adaptor 
molecules and downstream mediators to regulate gene 
expression and induce pro-inflammatory responses (104).  
Alterations in the metabolic profile of macrophages alter 
their function and activation state. It is suggested that 
metabolic reprogramming can be induced via TLRs and 
influences activation, maturation, and immunogenicity of 
macrophages (105). Signal transduction through TLR1/2/4 
in macrophages leads to mitochondrial Reactive Oxygen 
Species (ROS) production, which enhances the bactericidal 
function of macrophages (106). 

It has been revealed that TLR4/5/7/8 and 9 are 
overexpressed in NSCLC than in normal lung tissue  
(107-110). TLR4 is activated by bacterial LPS and cationic 
polymers. TLR4 agonists through activation of Activator 
Protein-1 (AP-1) and interferon regulatory factor-3 (IRF-3)  
cascade, trigger activation of M1 phenotype-associated 
genes (111). It was shown that TLR4 signaling via NF-κB 
in TAMs is implicated in tumor promotion in experimental 
lung metastasis model (112). TLR2 is an important receptor 
for M2b phenotype polarization in vitro (113). Lewis lung 
carcinoma cell line-conditioned medium stimulates TNF-α 
production by macrophages through TLR2 activation, and 
in consequence, it promotes lung cancer progression (114).  
The overexpression of TLR7 is highly associated 
with tumor progression, poor clinical outcomes, and 
chemotherapy resistance in NSCLC (110). It has been 
suggested that TLR7 acts as a mediator of switching to 
M2 macrophage phenotype (65). Other TLR inducers like 
lipoteichoic acid (LTA) (115), R848 (116), and CpG (117) 
have potency for induction of antitumor M1 macrophages. 

TLR signaling cascade regulates pro-inflammatory 
gene expression through activation of STAT1 and  
NF-κB (118). STAT1 has been proved to be a crucial 
regulator of biological responses of various TLRs. TLR/
NF-κB axis is a vital signaling pathway in the regulation 
of macrophage polarization (119). In most cases, TLR/
NF-κB activation promotes M1 macrophage phenotype. 
However, this depends on NF-κB subunit composition. 
For instance, NF-κB p65/p50 heterodimer boosts pro-
inflammatory cytokines, and M1 macrophages are 
generated (120) while p50/p50 homodimer induces M2 
macrophage phenotype (61). 

P s e u d o m o n a s  a e r u g i n o s a - m a n n o s e - s e n s i t i v e 
hemagglutinin (PA-MSHA) through TLR4 activation re-
educated M2 macrophage towards M1 in the malignant 
pleural effusion of lung cancer, and TLR4 blocking 
prevented this effect (121). Some studies confirmed the 
influence of PA-MSHA for advanced lung cancer treatment 
(111,121,122) (Figure 2). SPC-A1 NSCLC cell line in 
co-culture with TAMs overexpressed TLR1/6/7, and 
pretreatment with agonist ligands for these receptors led 
to induction of IL-1β, IL-8, and IL-6, which supported 
the inflammatory microenvironment and promoted 
the development and progression of lung cancer (116). 
The combination of Motolimod (a TLR8 agonist) with 
PEGylated liposomal Doxorubicin did not prolong overall 
survival or progression-free survival of recurrent ovarian, 
fallopian tube, or primary peritoneal carcinoma over 
placebo and PEGylated liposomal Doxorubicin in a phase 
II randomized clinical trial (123). EMD1201081 (a TLR9 
agonist) and Cetuximab did not have superior efficacy 
than Cetuximab monotherapy in patients with recurrent 
or metastatic squamous cell carcinoma of head and neck 
revealed by a phase II randomized clinical trial (124). A 
phase I dose-finding trial enrolling previously-treated 
NSCLC patients showed acceptable safety and moderate 
overall response (15%) of IMO-2055 (a TLR9 agonist) with 
Erlotinib and Bevacizumab (125). Although a few researches 
have been performed in the manipulation of TLR pathways 
of macrophages in lung cancer for therapeutic aims, 
this pathway could open novel avenues for finding new 
approaches in the suppression of lung cancer.

PD-1/PD-L1 immune checkpoints

Programmed cell death protein 1 (PD-1)/PD-1 ligand 
(PDL) pathway plays an important part in establishing an 
immunosuppressive environment in the tumor and the 
evasion of cancer cells from anti-cancer immune responses. 
Of relevant clinical importance, PD-1/PD-L1 inhibition 
using blocking antibodies is being used for the treatment 
of many cancer types including melanoma, renal cell 
carcinoma, NSCLC, SCLC, squamous cell skin cancer, 
and triple-negative breast cancer (126). Tumor-infiltrating 
macrophages may express both PD-1 and PD-L1 (127). 
The anti-tumor effects of PD-1 and PD-L1 blocking 
antibodies were reversed following TAM depletion by anti-
CSF1R antibody in a mouse model of colon cancer (CT26 
cell line) (128); Hence, TAMs are significantly involved 
in the immunosuppressive potentials of PD-1/PD-L1 
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pathway in cancerous microenvironment. The majority of 
PD-1+ tumor macrophages display M2 phenotype. PD-1+  
macrophages show defective phagocytic function in 
comparison with PD-1- macrophages (128). Interferon-
sensitive responsive element (ISRE), STAT1, and STAT2 
are pivotal for PD-1 expression in TAM (129). 

TAMs are the most abundant PD-L1+ immune cells 
in human NSCLC stroma (130). While PD-L1 is mostly 
recognized for its inhibitory effects on T cells through 
interacting with PD-1 (126), it seems that the main function 
of PD-L1 in TAM is skewing macrophage polarization 
towards an immunosuppressive state. There is evidence 
that PD-L1 affects TAM function through downregulating 
Akt/mTOR pathway (131). Additionally, TAMs that cross-
present cancer antigen can evade immune destruction by T 
cells in a PD-L1 dependent manner (132). Pyruvate Kinase 
(PK) M2 isoform and Secreted Phosphoprotein 1 (SPP1) 
are the intracellular regulators of PD-L1 expression in 
TAM (133,134). To sum up, PD-1 and PD-L1 proteins are 
involved in regulating macrophage polarization.

PD-1/PD-L1 pathway has clinical implications in NSCLC. 
PD-L1 expression, both in cancer cells and TAMs, was 
inversely associated with survival in early-stage NSCLC (135).  
The high density of PD-L1+ TAM in tumor tissue predicted 
better survival in NSCLC patients who were treated with 
PD-1/PD-L1 inhibitors (130). PD-1/PD-L1 immune 
checkpoint inhibitors such as Pembrolizumab, Atezolizumab, 
and Nivolumab, either as single-agent or in combination 
with chemotherapy, have shown clinical efficacy in PD-L1+ 
NSCLC (136-139). In conclusion, clinical application of 
PD-1/PD-L1 pathway has come of age for NSCLC.

Role of miRNAs in macrophage polarization:

Micro RNAs (miRNAs) are small non-coding RNAs that 
are able to regulate gene expression by binding to target 
messenger RNAs (mRNAs) that either lead to their decay or 
translation inhibition (140). miRNAs have long been known 
for their different roles in development, differentiation, and 
homeostasis (141). A great body of studies has suggested the 
involvement of miRNAs in the macrophage polarization 
in human and murine-derived macrophages (142,143). 
Functional miRNAs that are involved in polarizing 
macrophages have been identified (144). Namely, miRNA-
125b decreases the level of IRF4 by targeting it. IRF4 is a 
key signaling molecule for the induction of M2 phenotype. 
In line, miRNA-125b overexpression in macrophages 
potentiates their antigen-presentation capabilities, priming 

of T cells, and cancer cell killing (145). The overexpression 
of miRNA-720 reprograms TAMs toward M1 phenotype 
by targeting GATA3 (146) (Table 1).

Neutrophils of high-risk heavy smokers secrets 
circulating miRNA-320a that through downregulation of 
STAT4 in macrophages promoted M2-like macrophage 
in lung cancer (180). It has been reported that miRNA-
130a repolarized M2 macrophage towards M1 phenotype 
and had a prognostic role in NSCLC. Downregulation of 
miRNA-130a was correlated with poor overall survival, 
tumor progression, and metastasis in NSCLC patients (158)  
(Figure 2 ) .  J ingushi and colleagues reported that 
upregulation of miRNA-130b in NSCLC tissue specimens 
was associated with poor overall survival in patients suffering 
from NSCLC (181). miRNA-155 expression showed a 
prognosis role in patients with NSCLC and digestive 
system carcinomas (182). According to the link between 
miRNAs, immunosurveillance, and cancer progression, 
miRNA targeting could promote the development of new 
therapeutic strategies or diagnostic and prognostic tools in 
NSCLC.

Role of extracellular vesicles in macrophage 
polarization

Extracellular vesicles are membrane-bound structures that 
originate from cells and can be endocytosed by other cells. 
These vesicles contain macromolecules such as DNA, RNA, 
and proteins and the transfer of macromolecules between 
cells by the means of extracellular vesicles provides an 
intricate mode of intercellular communication and tissue 
and systems-level homeostasis. Intriguingly, neoplastic cells 
utilize extracellular vesicles for regulating the functions 
of other malignant cells, tumor microenvironmental cells, 
cells related to hematopoiesis, and distant organ niche. 
The main categories of animal extracellular vesicles are 
exosomes (30–120 nm), microvesicles (100–1,000 nm), 
and apoptotic bodies (800–5,000 nm) (183). Cancer cell-
derived extracellular vesicles can promote M2 macrophage 
polarization. Non-coding RNAs including miRNA-
103a, miRNA-25-3p, miRNA-130b-3p, miRNA-425-
5p, and miRNA-301a-3p were present in lung cancer cell 
(CL1-5, NCI-42087, H1792, and H1437), colon cancer 
cell (HCT116), and pancreatic cancer cell (PANC1)-
derived extracellular vesicles. These miRNAs targeted 
and decreased the level of PTEN which resulted in M2 
macrophage polarization through STAT3 activation 
(184-186). Exosomes acquired from hypoxic epithelial 
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Table 1 Functional miRNAs regulate macrophage polarization

miRNAs Promoted phenotype Target(s) Reference(s)

miRNA-155 M1 IL13Rα1, TLR4/IL-1R, C/EBP-β (147-149)

miRNA-27a M1 PPAR-γ (150)

miRNA-27b M1 PPAR-γ (151)

miRNA-125a M1 IRF4 (152)

miRNA-125b M1 IRF4 (145)

miRNA-21 M1 STAT3 (153)

miRNA-127 M1 Bcl-6, Dusp1, JNK (154)

miRNA-720 M1 GATA3 (146)

miRNA-223 M1 Pknox1 (155)

miRNA-26a M1 KLF4 (156)

miRNA-9 M1 PPAR-δ (157)

miRNA-125b M1 IRF4 (145)

miRNA-130a M1 PPAR-γ (158)

miRNA-130b M1 PPAR-γ (159)

miRNA-125a M2 KLF-13 (in mice) (160)

miRNA-34a M2 Notch1 (161)

miRNA-146a M2 INHBA, TLR4/IRF3, IRAK1, TRAF6 (162-165)

miRNA-146b M2 (166)

miRNA-223 M2 PBX/Knotted‌1 Homeobox 1 (Pknox1), STAT3 (167)

miRNA-210 M2 NF-κB, DR6 (168,169)

miRNA-33 M2 AMPK (170)

miRNA-222 M2 STAT3 (171)

miRNA-127 M2 DUSP1 (172)

miRNA-132 M2 AchE (173)

miRNA-124 M2 C/EBP-α, STAT3, TACE (174,175)

miRNA-145 M2 IL10 gene silencer histone deacetylase 11 (176)

miRNA-93 M2 IRF9 (177)

miRNA-21 M2 SIRPb1 (178)

Let-7c M2 C/EBP-δ, PAK1 (162,172)

miRNA-181a M2 KLF6, C/EBP-α (179)

ovarian cancer cells (SKOV3) harbored miRNA-21-3p, 
miRNA-125b-5p, miRNA-181d-5p, and miRNA-222-3p 
which degraded SOCS in macrophages and subsequently 
increased phosphorylated STAT3, a process which 
culminated in M2 macrophage polarization (171,187). 

In addition, STAT6 upregulation mediated by cGAS/
STING pathway is reported to be involved in cancer cell-
derived extracellular vesicle-induced M2 macrophage  
polarization (188). Exosomes derived from DLD-1 colon 
cancer cell line contained miRNA-145 which polarizes 
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TAMs towards M2 phenotypes by downregulating histone 
deacetylase 11 (189).

In a study by Chen et al., extracellular vesicles derived 
from lung cancer cell lines (HCC827, LLC, A549, and 
H460) were taken up by macrophages and promoted 
M2-like phenotype in TAMs. These TAMs produced 
IL-1β which enhanced lung cancer cell stemness and 
survival. It was revealed that lung cancer cell-derived 
microparticles contained non-coding RNAs that could 
stimulate TLR3 activation which subsequently increased 
pro-IL-1β expression in a NF-κB and MAPK-dependent 
pathway. Simultaneously, extracellular vesicles uptake by 
macrophages increased cytosolic calcium concentration 
and mitochondrial ROS production. ROS activated 
NLRP3 inflammosome which is required for IL-1β 
activation (190). In another study, the E3 Ubiquitin ligase 
TRIM59 was delivered to macrophages by lung cancer 
cell line (H1299 and A549)-derived exosomes. TRIM59 
promoted ubiquitination and proteasomal degradation 
of ABHD5, a hydrolase enzyme which is involved in 
lipid metabolism. Downregulation of ABHD5 activated 
NLRP3 inflammosome and resulted in enhanced IL-1β  
production (191). Collectively, these studies demonstrate 
the cardinal role of extracellular vesicles in regulating 
macrophage polarization.

Macrophage immunotherapy in cancer

As a matter of macrophage contribution to tumor 
growth, angiogenesis, and metastasis, there has been 
remarkable attention in macrophage therapy. Macrophage 
immunotherapy can be divided into those that reduce 
the number of TAMs in the tumor microenvironment 
by targeting TAM recruitment or survival and reduce 
circulating monocytes that are the progenitor of TAMs, 
those that reprogram activities of TAMs and using 
macrophages as carriers of anti-cancer drugs. Novel 
therapeutic approaches target survival, recruitment, 
polarization, and other properties of TAMs in cancer 
progression. Combinatorial approaches have emerged and 
shown efficacy in preclinical studies (58). These strategies 
are currently in assessment either to increase tumor 
immunity during standard radio- or chemotherapy or in 
combination with T cell-mediated immunotherapy (192).  
We will discuss some potential pathways that can be 
translated into therapeutic strategies to inhibit TAM-
mediated immune suppression. Table 2 summarizes the main 
molecular pathways that have been employed for TAM 

targeting in clinical trials so far.

Targeting TAM recruitment and survival

One method to diminish the number of TAMs in the 
tumor microenvironment is preventing their replenishment 
by circulating inflammatory monocytes. Monocytes 
are mainly dependent on CCL2-CCR2 signaling for 
migration from the bone marrow and recruitment 
towards inflammatory centers. Therefore, CCL2-CCR2 
inhibition limits them in the bone marrow and reduces the 
number of TAMs in primary and metastatic sites (230).  
In preclinical  models,  inhibit ion of these targets 
improves the efficacy of chemotherapy, radiotherapy, 
and immunotherapy (231). A study indicated that PF-
04136309, a CCR2 antagonist, prevents the movement 
of CCR2+ monocytes from bone marrow to the tumor, 
which causes TAM depletion (232). CCL2 blockade using 
specific antibodies showed effective results in combination 
with chemotherapy in various cancer models such as 
lung, prostate, and liver neoplasms (233-235). Cross-
talk between TAMs and lung cancer cells through CCR2 
could play a critical role in lung tumor proliferation and 
metastasis. CCR2 antagonist (RS504393) treatment LLC 
murine model showed diminished primary tumor growth 
and metastasis and inhibited TAM accumulation (236).  
Anti-CCL2 monoclonal antibody reduced primary tumor 
growth in syngeneic flank and orthotopic animal models 
of NSCLC and suppressed lung metastases in spontaneous 
lung metastases of NSCLC. Although the CCL2 blockade 
did not influence the number of TAMs recruited into the 
tumor in this study, there was a significant decrease in the 
M2 macrophage phenotype (233).

The CSF1-CSF1R axis is another target pathway of 
interest for inhibition of TAM recruitment to tumor 
microenvironment in preclinical models. This axis is 
important for differentiation, survival, and recruitment 
of TAM (237). In numerous tumors, blockage of CSF1-
CSF1R signaling leads to the elimination of a remarkable 
portion of TAMs or repolarization of them (101,238,239). 
In animal models, CSF1R blockage improves T cell 
responses in combination with chemo- and radiotherapeutic 
agents (240-242). The combination of CSF1 and/or CSF1R 
blockage with immune checkpoint inhibitors such as CD40 
agonists, PD-1 or CTLA4 antagonists, and T cell therapy 
is a promising spot in TAM therapy (243,244). Small 
molecule CSF1R inhibitor BLZ945 in phase I/II clinical 
trial (NCT02829723) is being tested for advanced solid 

https://clinicaltrials.gov/ct2/show/NCT02829723
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Table 2 Clinical trials of potential drugs for TAM targeting 

Strategy Target Drug Drug type Tumor type Clinical trial number Ref.

TAM recruitment 
and survival

CCL2-CCR2 
axis

CNTO 888 
(Carlumab)

CCL2 inhibitor (mAb) Solid tumors
Prostate cancer

NCT00537368
NCT00992186

(193,194)

Trabectedin CCL2 inhibitor  
(small molecule)

Ovarian cancer
Liposarcoma

Leiomyosarcoma

NCT02163720
NCT01343277

(195,196)

PF-04136309 CCR2 inhibitor  
(small molecule)

Pancreatic ductal 
adenocarcinoma

NCT02732938
NCT01413022

(197,198)

MLN1202 CCR2 inhibitor 
(mAb)

Bone metastasis NCT01015560 (199)

CSF1-CSF1R 
axis

LY3022855 CSF1R inhibitor 
(mAb)

Solid tumors
Breast or prostate 

cancer

NCT01346358
NCT02265536

(200,201)

AMG 820 CSF1R inhibitor 
(mAb)

Solid tumors NCT01444404
NCT02713529

(202,203)

PLX3397 
(Pexidartinib)

CSF1R inhibitor 
(small molecule)

Solid tumors
Glioblastoma Multiforme

Pancreatic ductal 
adenocarcinoma and 

colorectal cancer

NCT02452424
NCT01349036
NCT02777710

(204-206)

RO5509554/
RG7155 

(Emactuzumab)

CSF1R inhibitor 
(mAb)

Solid tumors NCT01494688 (207)

Cabiralizumab CSF1R inhibitor 
(mAb)

Solid tumors
Pancreatic ductal 
adenocarcinoma

NCT03158272
NCT03599362

(208,209)

BLZ945 CSF1R inhibitor 
(small molecule)

Solid tumors NCT02829723 (210)

CXCL12-CXCR4 
axis

LY2510924 CXCR4 inhibitor 
(small molecule)

Solid tumors NCT02737072 (211)

X4P-001 
(Mavorixafor)

CXCR4 inhibitor 
(small molecule)

Melanoma NCT02823405 (212)

TAM activation CD40 ChiLob 7/4 CD40 agonist  
(mAb)

Non-Hodgkin lymphoma 
and solid tumors

NCT01561911 (213)

CP-870,893 CD40 agonist  
(mAb)

Solid tumors
Melanoma

NCT00607048
NCT01103635

(214,215)

GM.CD40L GM-CSF/CD40 
Ligand (vaccine)

Lung adenocarcinoma NCT01433172 (216)

APX005M CD40 agonist (mAb) Melanoma and NSCLC NCT03123783 (217)

TLR7 Imiquimod TLR7 agonist  
(small molecule)

Breast cancer
Basal cell carcinoma

NCT01421017
NCT00899574
NCT00803907

(218,219)

TLR7, 8, and 9 IMO-8400 TLR7,8, and 9 
inhibitor (anti-sense 

oligonucleotide)

Diffuse large B cell 
lymphoma

NCT02252146 (220)

Table 2 (continued)

http://clinicaltrials.gov/show/NCT02713529
http://clinicaltrials.gov/show/NCT03599362
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Table 2 (continued)

Strategy Target Drug Drug type Tumor type Clinical trial number Ref.

TLR7/8 Resiquimod TLR 7/8 agonist 
(small molecule)

Melanoma
Cutaneous T cell 

lymphoma

NCT00821652
NCT01676831

(221,222)

NKTR-262 TLR 7/8 agonist 
(small molecule)

solid tumors NCT03435640 (223)

TLR8 Motolimod  
(VTX-2337)

TLR8 agonist  
(small molecule)

Ovarian cancer
ovarian, fallopian tube 
or primary peritoneal 

cancer
Squamous cell 

carcinoma of the head 
and neck

NCT02431559
NCT01666444
NCT01334177

(123,224,225)

TLR9 EMD 1201081 TLR9 agonist  
(small molecule)

Squamous Cell 
Carcinoma of the Head 

and Neck Cancer

NCT01040832 (124)

IMO-2055 TLR9 agonist  
(small molecule)

Colorectal Cancer
NSCLC

NCT00719199
NCT00633529

(125,226)

SD-101 TLR9 agonist 
(synthetic CpG 
oligonucleotide)

Low-grade B-cell 
lymphoma
Melanoma

NCT02254772
NCT02521870

(227,228)

IL6-IL6R axis Tocilizumab IL6R inhibitor (mAb) Ovarian cancer NCT01637532 (88)

Siltuximab IL6 inhibitor (mAb) Smoldering multiple 
myeloma

NCT01484275 (89)

SIRP-α/CD47 
axis

TTI-622 SIRP-α inhibitor  
(Fc-fusion protein)

Non-Hodgkin lymphoma NCT03530683 (229)

CCL C-C, motif chemokine ligand; CCR C-C, chemokine receptor; CD, cluster of differentiation; CSF, colony stimulating factor; CXCR, 
C-X-C chemokine receptor; GM, granulocyte-macrophage; IL Interleukin; mAb, monoclonal antibody; NSCLC, non-small cell lung 
carcinoma; TLR, toll-like receptor; SIRP, signal regulatory protein.

tumors such as lung cancer (245). This inhibitor limited 
the experimental LLC-induced malignant pleural effusion 
model (246). Pass and colleagues showed that CSF-1R 
inhibitor JNJ-40346527 reduced expression of genes related 
to epithelial-to-mesenchymal transition (EMT), stem cell 
markers, and cisplatin resistance genes in multiple lung 
cancer CSF-1R positive cell lines (A549, NCI-H1299, 
NCI-H157, CALU-1, NCI-H1975, NCI-H358, and 
NCI-H4660) (247).

Another  s ignal ing pathway that  i s  involved in 
macrophage recruitment is CXCL12-CXCR4. CXCL12-
CXCR4 inhibition in combination with radiotherapy and 
immunotherapy has displayed anti-tumor efficacy, and this 
axis has emerged as a target to intervene with the immune 
system in clinical trials (248). Selective CXCR4 antagonists 
have been developed by some pharma companies that can 
be divided into four major classes: (I) small peptide CXCR4 

antagonists such as BL-8040 and T140, (II) non-peptide 
CXCR4 antagonists such as AMD3100 and AMD070, (III) 
antibodies against CXCR4 such as LY2624587, and (IV) 
modified agonists and antagonists for CXCL12 such as 
CTCE-0214 and CTCE-9908, respectively (249,250). The 
expression of CXCR4 is high in lung cancer, specifically in 
SCLC. It has been shown that administration of AMD3100, 
in monotherapy or in combination with standard 
chemotherapy composed of etoposide and cisplatin, 
diminished the proliferation of SCLC primary tumor and 
inhibited metastasis in a xenograft mouse model (251). 

Despite the beneficial aspects of these kinds of 
studies,  tumor microenvironment can lead to the 
development of resistance to targeted pathways. Long-
term administration of CSF-1R inhibitor BLZ945 in 
the animal model of Glioblastoma Multiforme (GBM) 
developed acquired resistance to CSF-1R inhibition by 
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elevated phosphoinositide 3-kinase (PI3K) signaling that 
led to disease recurrence without tumor cell intrinsic 
modifications (252). Compensatory resistance pathways and 
loss of tissue-resident macrophage populations, which are 
crucial for maintaining homeostasis, limit the application of 
these methods in clinical trials (192). 

Targeting TAM activation

Another strategy in macrophage immunotherapy is the 
inactivation of macrophage immune-stimulatory activities as 
the primary phagocyte and professional antigen-presenting 
cell inside tumors. Reprogramming or macrophage 
repolarization towards an anti-tumor phenotype can be an 
effective approach to enhancing the efficacy of other types 
of immunotherapy. 

Targeting the main molecular pathways which drive the 
immunosuppressive effects of M2-like phenotype TAMs, 
such as IL-4, IL-10, and IL-13, can be utilized as effective 
therapies against the pro-tumorigenic subtype of TAMs 
in cancers (58,253). IL-10 showed a close association with 
M2 TAMs, and it is reported that upregulation of IL-10 in 
TAMs correlates with late stage of lung cancer (46). IL-10 
in cultured human macrophages induces chemoattractants, 
pattern recognition receptors such as TLRs, macrophage 
receptor with collagenous domain (MARCO), and cytokine 
receptors (254). MARCO drives macrophages towards 
immunosuppressive phenotype M2. In human melanoma 
samples and B16 melanoma murine tumors, MARCO is 
broadly expressed by TAM, and anti-MARCO antibody 
treatment significantly reduces the rate of a distinct TAM 
population that expresses arginase 1 (ARG1) and inhibits in 
vitro T cell proliferation (255). 

TAM receptors, including Tyro3, Axl, and MERTK, 
are a group of tyrosine kinase receptors with common 
ligands Gas6 and Protein S. They stimulate macrophage 
polarization toward M2-like phenotype (256). Some studies 
have reported overexpression of Axl and MERTK in 
some cancers such as NSCLC (257-259). Small molecule 
inhibitor of MERTK, UNC2025, decreased tumor 
xenograft growth in the murine model of NSCLC (260). 

TAMs express a membrane glycoprotein called Signal 
Regulatory Protein-alpha (SIRP-α). Interaction of SIRP-α 
with CD47 on cancer cells inhibits cancer cell phagocytosis 
by TAMs (261). Inhibition of SIRP-α by blocking antibody 
prevented the development of resistance to anti-angiogenic 
therapy in the mouse model of NSCLC (262). Mechanistic 
studies revealed that antibodies against SIRP-α increased 

the phagocytic function of TAMs and macrophage-mediated 
cytotoxicity against cancer cells (262,263). CD40 signaling is 
implicated in monocyte maturation and differentiation into 
M1 macrophage and dendritic cells and can re-educate M2 
phenotype macrophages into M1. Targeting CD40/CD40L 
is a common strategy in cancer immunotherapy (264). 
CD40L gene transfer into 3LLSA murine lung cancer cells 
increased the anti-tumoral activity of TAMs and stimulated 
the production of NO, TNF-α, and IL-12 (265). Pilot 
clinical trials of CD40 agonist antibodies in combination 
with chemotherapy or immune checkpoint inhibitors have 
shown acceptable safety profile and preliminary response in 
a variety of solid tumors including NSCLC (213-215,217).

Epigenetic reprogramming of macrophages by inhibition 
of histone deacetylases (HDACs) can elicit a T cell 
supportive role. M2 macrophages express HDAC2, and 
its inhibition leads to macrophage repolarization to M1 
phenotype (266). Inhibition of this enzyme using genetic 
approaches (siRNA) or pharmacological inhibitors (ISAHA, 
VPA) in M2 macrophages and TAMs from lung tumors 
skewed them to M1-like phenotypes and controlled tumor 
cell functions (266). A selective class IIa HDAC inhibitor 
evokes anti-tumor macrophage phenotypes that assist T cell 
responses and augments responses to chemotherapy and 
immune checkpoint inhibition, particularly in mammary 
tumor models (267). 

It has been demonstrated that activation of PI3Kϒ 

signaling leads to TAM immunosuppressive activities in 
models of melanoma, lung, and pancreatic cancer (268). 
In animal models, PI3Kϒ blockage causes macrophage 
reprogramming and enhancement of T cell responses as 
a single agent or in combination with T cell checkpoint 
inhibition (269,270). Imatinib, through inhibition of STAT6 
phosphorylation and nuclear translocation, suppressed M2 
macrophage polarization and reduced migration of LLC 
cells both in vitro and in vivo, although it did not influence 
lung tumor growth (99). 

In conclusion, blocking the activating molecules of TAM 
is a promising strategy to enhance the efficiency of other 
therapies such as checkpoint inhibitor therapy. 

Using macrophages as a carrier for anti-cancer drugs 
delivery

TAMs can be employed as a carrier for anti-cancer drug 
delivery systems (Figure 3). Some key characteristics of 
TAMs make them suitable for drug delivery in cancer 
settings. Separating circulating monocytes from peripheral 
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blood is more feasible than other cellular carriers such as 
mesenchymal stem cells; macrophage phagocytic property 
can be used for drug loading into macrophage; and they 
inherently home to tumor microenvironment in the 
body (271). M1 phenotype is usually considered as the 
carrier for nano-particle delivery. M1 macrophages have 
more phagocytic potency for loading anti-cancer drugs 
nano-particles than other types of macrophages and can 
naturally home into tumor tissues. Furthermore, the tumor 
microenvironment cannot influence M1 cells, and their 
own activity can inhibit tumor progression (272,273). 
In a pivotal study by Choi et al., TAMs containing Gold 
Nano-shells moved along the central hypoxic region of 
breast tumor and destroyed surrounding cancer cells after 
irradiation with near-infrared laser waves (274). Wang and 
colleagues reported that monocytes internalized Fe/Fe3O4 
magnetic Nano-particles combined with topoisomerase 
I inhibitor SN38 by the carboxylesterase-cleavable 
linker and delivered them to tumors (275). Anchoring 
lipopolysaccharide (LPS) on macrophages mediates 
production of microtubule networks with A549 cells and 
leads to selective Doxorubicin delivery to cancer cells via 
intercellular microtubule conduits in orthotopic lung cancer 
model (276). Some limitations, including the low-load 

capacity of carrier, relatively low drug release, the possibility 
of drug cytotoxicity, and susceptibility of drugs to lysosomal 
degradation within macrophage have restricted the 
applicability of macrophages in this context (277). Further 
studies are needed to improve this approach and overcome 
its defects. 

Therapeutic limitations of macrophage 
regulation

TAM targeting for cancer treatment is challenged by some 
obstacles including predisposition to infection, organ 
dysfunction, the need for multiple dosing, and the presence 
of redundant pathways. Macrophages are cardinal in 
protecting body from invading pathogens. TAM targeting 
strategies that are based on eradicating macrophages 
may increase susceptibility to infections. On the other 
hand, tissue-resident macrophages such as liver Kupffer 
cells and brain microglial cells are ubiquitous throughout 
the body and are significantly involved in maintaining 
organ homeostasis and their depletion may give rise to 
serious organ dysfunction. One possible solution for 
overcoming these problems is to find novel targets that 
are specifically upregulated by macrophages in cancerous 

Figure 3 Macrophage-based drug delivery to tumors. (I) Nanoparticles that are loaded with anti-cancer drugs are engulfed by macrophages 
ex vivo. (II) Macrophages that contain nanoparticles are injected intravenously and migrate to tumors. (III) Anti-cancer drugs are released 
from macrophages into TME to kill cancer cells. TME, tumor microenvironment.
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microenvironment (25). Potential candidate molecules and 
pathways for TAM targeting may be present in diverse cell 
populations beyond TAM. For instance, CCR2 and CXCR4 
are also expressed by lymphocytes (278,279). Alterations 
of immune and non-immune cellular functions caused 
by unintended influence on cells that share the target 
with TAM may result in complications. This issue also 
necessitates finding of targets that are specific to TAM (25).

The optimal dosing and frequency of TAM targeting 
therapeutics have not been determined. One special 
difficulty related to TAM repolarization is that TAM 
phenotype and function may return to its primary 
immunosuppressive state after the drug is withdrawn from 
tumor microenvironment (280).

The ultimate functional status of TAM is controlled by 
the complex interactions of several microenvironmental 
and intracellular regulators. The presence of redundant 
pathways  of  macrophage polar izat ion and other 
immunosuppressive cells in tumor microenvironment may 
explain the observation that not all the tumors respond to 
TAM targeting strategies. Simultaneous interference with 
multiple contributors of immunosuppression and cancer 
progression either by combinatorial approaches or using 
agents with multiple relevant targets may enhance TAM 
targeting efficacy (192).

To conclude regarding the possible roles of TAM 
targeting in NSCLC, as TAMs are abundant in the tumor 
microenvironment of NSCLC and plays important parts 
in its progression, targeting TAM, either by eradicating 
them or re-educating them towards anti-cancer phenotype, 
will be a rationale strategy that can be translated to clinical 
application.

Macrophage and drug resistance

Drug resistance prevalently occurs against traditional 
chemotherapy drugs and targeted therapies in NSCLC 
patients (281,282). Neoplastic cell-extrinsic factors are 
involved in cytotoxic therapy resistance (283). In vivo studies 
have indicated that macrophages not only support tumor 
growth and progression but also mediate chemotherapy 
resistance by providing survival factors and upregulating 
genes responsible for anti-apoptotic programs in malignant 
cells. Soluble factors secreted by macrophages, such as IL-6, 
as well as extracellular deposition and cell-cell interactions, 
are involved in chemotherapy resistance (283-285). TAMs 
via CSF-1 signaling pathway diminishes the effectiveness 
of a combination therapy using Cyclophosphamide, 

Methotrexate, and 5-FU in a MCF-7 breast cancer 
xenograft model (286). TAMs defend MMTV-PyMT tumor 
cells against paclitaxel-induced cell death by secretion of 
lysosomal enzymes, Cathepsin B and S (287). In the animal 
model of colorectal cancer, TAMs mediate chemoresistance 
to 5-FU through secretion of IL-6 and the activation of IL-
6R/STAT3 signaling (288). TAMs mediate Gemcitabine 
resistance in pancreatic ductal adenocarcinoma cells by 
upregulating cytidine deaminase, the metabolizing enzyme 
of Gemcitabine (289). TAMs have a supportive role in 
cancer stem cell functions (290). The interplay between 
TAMs and cancer stem cells by macrophage-derived factors, 
including IL-6 and Milk-Fat Globule-epidermal growth 
factor-VIII (MFG-E8) through activation of Hedgehog 
signals and STAT3 mediates drug resistance and induces 
distinct important maintenance signaling for cancer stem 
cells (291-293). 

TNF-α  i s  one of  the crucial  factors mediating 
chemoprotection, either directly by NF-κB activation (294) 
or indirectly through stimulated IL-6 expression and further 
STAT3 activation (58). Macrophages can be considered as 
the main source of TNF-α in vivo (295). In this regard, it 
has been documented that macrophage-derived TNF-α 
promotes resistance to MAPK inhibitors in melanoma. 
The protective effect of TNF-α on melanoma cell lines 
was mediated by the upregulation of the microphthalmia 
transcription factor (MITF) in melanoma cells (296). In a 
recent study, it has been demonstrated that TAMs can evoke 
autophagy in hepatocellular carcinoma (HCC) cell lines, 
which are involved in resistance to Oxaliplatin (297). 

Conclusions

NSCLC is one of the most common malignancies in the 
world, and researchers are making considerable efforts for 
finding effective therapies. Unfortunately, all strategies do 
not work for all tumors, and all patients do not respond 
in the same manner to those therapies. It is partly because 
of tumor immunogenic properties and tumor niche 
composition. Increasing evidence demonstrates that TAM 
is one of the main components of the immune-suppressive 
tumor microenvironment. Since high macrophage 
infiltration causes poor survival in most cancers, these cells 
have emerged as promising aims for anticancer therapies. 
As briefed in this review, various studies have demonstrated 
that TAM targeting can synergistically improve the response 
to other conventional cancer treatments. However, most 
of these therapies are still at the preclinical stage, blocking 
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antibodies or antagonists have been examined in clinical 
trials for malignant solid tumors (101). Studies at the 
preclinical level have shown that the combination of TAM 
targeting strategies with checkpoint inhibitors can improve 
the therapeutic response in melanoma, colon, lung, and 
breast tumors (127). One main obstacle of TAM targeting 
is the occurrence of negative side effects in the patients. 
Due to the countless roles of macrophages, it seems 
that systemic depletion of these cells leads to increased 
infections or disabled activities of tissue-resident cells to 
do their normal function. To overcome this obstacle, one 
reasonable approach is to identify TAM-specific markers in 
order to precisely targeting this tumor immunosuppressive 
cell population. Targeting TAMs in lung cancer showed 
promising effects in the suppression of primary tumor 
growth or preventing lung metastasis. 

Totally, preclinical and early clinical studies show that 
targeting lung TAMs could remarkably enhance the efficacy 
of conventional therapies and immunotherapies, but 
there is a long way between understanding the roles and 
mechanisms of TAMs in lung cancer progression and using 
TAM-based immunotherapy to cure cancer. 
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