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Subsecond fear discrimination in rats: adult impairment
in adolescent heavy alcohol drinkers
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Discriminating safety from danger must be accurate and rapid. Yet, the rapidity with which fear discrimination emerges

remains unknown. Rapid fear discrimination in adulthood may be susceptible to impairment by adolescent heavy

alcohol drinking, which increases incidence of anxiety disorders. Rats were given voluntary, adolescent alcohol access,

and heavy drinkers were identified. In adulthood, rapid fear discrimination of safety, uncertainty, and danger cues was as-

sessed. Normal rats, but not heavy drinkers, showed discriminative fear ,1 sec following cue onset. This provides the first

demonstration of subsecond fear discrimination and its adult impairment in adolescent heavy alcohol drinkers.

[Supplemental material is available for this article.]

The ability to discriminate cues predicting safety from cues pre-
dicting danger is vital. Given the importance, it is not surprising
that people and rats normally discriminate such cues accurately
(Schiller et al. 2008; McDannald 2010). However, people with
anxiety disorders, such as post-traumatic stress disorder (PTSD),
are markedly impaired at fear discrimination, showing inappro-
priate fear to safety cues (Jovanovic et al. 2010, 2011). Fear dis-
crimination should not only be accurate but should also emerge
rapidly following encounters. When walking home late, it is
more beneficial to notice that a street is poorly lit immediately
turning onto it, rather than halfway down it. Yet, the fundamen-
tal question of how rapidly fear discrimination emerges following
cue onset, in people or rats, remains unanswered.

PTSD and alcohol use disorders are highly comorbid (Kofoed
et al. 1993; Bremner et al. 1996; Stewart 1996; Keane and Kaloupek
1997; Kushner et al. 2000). Alcohol use following trauma or PTSD
onset is often emphasized (Stewart 1996), but prior alcohol use
likely increases PTSD risk (Keane and Kaloupek 1997; Kushner
et al. 1999). We propose that adolescent heavy alcohol drinking
impairs rapid fear discrimination, providing a potential mecha-
nism by which adolescent drinking influences adult PTSD risk.
Here, we have attempted to quantify the rapidity with which
fear discrimination emerges in rats and its possible adult impair-
ment in adolescent heavy alcohol drinkers.

Male, Long Evans rats were single-housed and given chronic
intermittent access to alcohol (20% ethanol, n ¼ 29) or water (n ¼
15; Supplemental Fig. 1) throughout adolescence (Fig. 1A) based
on established, voluntary drinking procedures (Doremus et al.
2005; Simms et al. 2008). Food and water were available at all
times, ensuring that alcohol drinking was not the result of caloric
restriction or water deprivation. Heavy drinkers (n ¼ 8, Fig. 1B)
were identified as rats whose mean alcohol drinking over the
final four sessions was at least 10 g/kg per 24 h. This alcohol-
drinking amount is comparable with the amount of drinking
demonstrated by alcohol-preferring rat strains (Marchant et al.
2013), is double terminal alcohol-drinking amounts observed in
adult long evans rats (Simms et al. 2008), and is similar to alcohol-
drinking amounts necessary to observe positive alcohol reinforce-
ment (DiLeo et al. 2015). To control for access to alcohol, the eight
rats showing the lowest alcohol drinking were identified as mod-

erate drinkers (Fig. 1B). Although not anticipated, heavy drinkers
gained weight less rapidly than controls during adolescence
(Supplemental Fig. 2). However, as will be evident below, differ-
ences in body weight did not account for differences in rapid
fear discrimination. After a brief abstinence period, behavioral
training for fear discrimination began.

Single housing was maintained throughout adult testing.
Rats were restricted to 85% of their free-feeding body weight
and trained to nose poke in a central port to retrieve a food reward
from a cup below (Fig. 1C). In the next two sessions, rats were pre-
exposed to three auditory cues to be used in Pavlovian discrimina-
tion. Auditory cues used for fear conditioning were 10 sec long
and consisted of repeating, 500-msec motifs of a horn, siren, or
broadband click. In the subsequent 16 discrimination sessions,
each auditory cue was associated with a different probability of
foot shock (0.5 mA, 0.5 sec): safety, P ¼ 0.00; uncertainty, P ¼
0.25; or danger, P ¼ 1.00 (Fig. 1D). The physical identities of the
cues were counterbalanced across each group. The foot shock
was administered 1 sec following the termination of the auditory
cue. Importantly, the schedule for rewarded nose poking was
completely independent from the presentation of auditory cues
and foot shock. Accurate behavioral discrimination required the
relative pattern of cued fear to reflect each cue’s unique foot shock
probability.

Fear was measured using suppression of rewarded nose pok-
ing (Estes and Skinner 1941; Pickens et al. 2009; Quinones-
Laracuente et al. 2015; Wright et al. 2015), which permitted
behavioral analysis in short temporal windows. Nose poke rates
(pokes/min) were taken from two temporal windows: the 20-sec
“baseline window” immediately prior to cue onset, and a “cue
window” immediately following cue onset. The length of the
cue window was incremented in 50 msec steps from 50 to 2000
msec. A suppression ratio was calculated for each cue window
from the nose poke rates as follows: ((baseline rate 2 cue rate)/
(baseline rate + cue rate)). A value of “1” indicated complete sup-
pression of nose poking during the cue window, relative to
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baseline, and high fear. A value of “0” indicated no suppression
and no fear. Gradations between “0” and “1” permitted interme-
diate levels of cued fear to be measured.

Controls and heavy drinkers demonstrated equivalent base-
line nose poke rates over the 16 sessions of fear discrimination
(Fig. 2). In support, ANOVA comparing baseline nose poke rates
for controls and heavy drinkers over the 16 discrimination ses-
sions found an effect of session (F(15,315) ¼ 20.10, P , 0.025), but
no effect of or interaction with group (Fs , 0.2, Ps . 0.7). Simi-
larly, controls and moderate drinkers also demonstrated equi-
valent nose poking levels with ANOVA finding no effect of
group (F(1,21) ¼ 2.00, P ¼ 0.17) or group × session interaction
(F(15,315) ¼ 0.52, P ¼ 0.92). Observing equivalent baseline nose
poke rates is critical to the calculation of a suppression ratio,
which compares nose poke rates during baseline and cue periods.
This ensures that any differences in fear discrimination cannot be
explained by differences in baseline nose poking.

The critical question is, from the time of cue onset, how rap-
idly can fear discrimination be detected? For this analysis, we fo-
cused on the final four of 16 discrimination sessions. In this
study (Supplemental Fig. 3), as well as previous studies from our
laboratory (Berg et al. 2014; Wright et al. 2015), rats demonstrated
excellent discrimination during these final sessions. Starting with
cue onset (0 msec), a cumulative temporal window was incre-
mented in 50 msec steps to a maximum of 2000 msec for a total

of 40 temporal windows. Mean suppression ratios were calculated
for each cue (safety vs. uncertainty vs. danger), and a repeated
measures analysis of variance (ANOVA) with cue as the factor
was performed for each window. The result was a significance
map indicating the ANOVA P-value, revealing a main effect of
cue for each of the 40 temporal windows (Fig. 3A).

Impressively, control rats showed evidence of fear discrimi-
nation in a 450-msec window (Fig. 3A, yellow area). Even when
a more conservative significance threshold was adopted, subsec-
ond fear discrimination was detected (550 msec; Fig. 3A, orange
area). At 1000 msec (Fig. 3A, black line), the full pattern of discrim-
ination was readily apparent: high fear to danger, intermediate
fear to uncertainty, and low fear to safety. Discrimination was
achieved rapidly and maintained for the remainder of cue pre-
sentation. When the final 8 sec of the cue were analyzed in eight,
1000 msec windows, significant discrimination was observed in
every window (Fig. 3B). Subsecond fear discrimination was also
detected when sessions 9–12 were analyzed (Supplemental Fig.
4), although in a slightly longer temporal windows (550 msec,
P , 0.05; 750 msec, P , 0.01), demonstrating rapid fear discrimi-
nation was acquired with training.

Having demonstrated robust evidence of subsecond fear dis-
crimination in controls, we next asked if heavy drinkers possessed
similar abilities. We applied the same temporal window analysis
to the heavy drinkers to identify the shortest window in which
fear discrimination could be detected. Remarkably, significant
fear discrimination was not achieved in any temporal window
of 2000 msec or shorter (Fig. 3C), indicating a profound deficit
in rapid fear discrimination. ANOVA significance in heavy drink-
ers was not obtained until 2150 msec (P , 0.05) or 2600 msec fol-
lowing cue onset (P , 0.01), approximately four to five times
longer than controls. Supporting this deficit, ANOVA for suppres-
sion ratios in the first 1000 msec after cue onset [factors: group
(controls vs. heavy drinkers), cue (safety vs. uncertainty vs. dan-
ger), session (13–16)] revealed a significant group × cue × session
interaction (F(6,126) ¼ 2.87, P , 0.025). The interaction was the re-
sult of controls, but not heavy drinkers, acquiring greater fear dis-
crimination over the four sessions. Individual session suppression
ratio data for each group over the 16 sessions of discrimination are
shown in Supplemental Figure 3.

Specifically, heavy drinkers were unable to rapidly reduce
fear to the safety cue, showing suppression levels equivalent to
that of the uncertainty cue. In support, a within-subjects t-test

Figure 1. Experimental timeline, adolescent drinking, and Pavlovian
fear discrimination procedure. (A) Starting postnatal day 25+1, adoles-
cent rats were given voluntary access to water or alcohol. Chronic
access ended postnatal day 60+1 and after a 10-d abstinence period,
nose poke acquisition began. The first session containing foot shock oc-
curred on postnatal day 80+4, and training ended on day 103+4. (B)
Mean+SEM drinking (g/kg/24 h) over the 16 sessions of chronic inter-
mittent access is shown for heavy drinkers (HD, gray) and moderate drink-
ers (MD, open). (C) All rats were shaped to poke in a central port to
retrieve food from the well below. During Pavlovian discrimination, audi-
tory cues were presented using a speaker mounted to the ceiling of the
sound attenuated chamber. Foot shocks were delivered through parallel
metal bars comprising the floor. (D) During Pavlovian fear discrimination,
three cues signaled foot shock (0.5 sec, 0.5 mA) with three different prob-
abilities: safety, P ¼ 0.00; uncertainty, P ¼ 0.25; and danger, P ¼ 1.00.
Number of trials per discrimination session is indicated in parentheses.

Figure 2. Baseline nose poke rates. Mean+SEM nose poke rate per
minute during the baseline period for each session of Pavlovian fear con-
ditioning is shown. “Baseline” is the 20-sec period preceding cue onset
and was used for the calculation of suppression ratios. For this figure, base-
lines were collapsed across all trial types, but for all analyses, each trial’s
own baseline was used to calculate the suppression ratio for that trial.
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restricted to the safety and uncertainty cues for the first 2000 msec
of cue sampling revealed no significant differences in heavy drink-
ers (t(7) ¼ 21.49, P ¼ 0.17), whereas the same analysis found a sig-
nificant difference in controls (t(14) ¼ 23.15, P , 0.05). Notably,
heavy drinkers did not exhibit a general deficit, as significant dis-
crimination was observed in each of the final eight, 1000 msec cue
windows (Fig. 3D). In contrast to the ANOVA for the first 1000
msec following cue onset, ANOVA for the last 1000 msec of the
cue, with all other factors the same, revealed no significant
group × cue × session interaction (F(6,126) ¼ 1.37, P ¼ 0.23), but
a significant effect of cue (F(2,42) ¼ 3.57, P , 0.025). Impaired rap-
id fear discrimination in heavy drinkers was not attributable to

differences in body weight, as there was
no correlation between body weight and
rapid fear discrimination within any
group or among all rats analyzed (Sup-
plemental Fig. 5).

It is possible that the deficit we ob-
served in heavy drinkers was due to a
smaller sample size (controls, n ¼ 15 vs.
heavy drinkers, n ¼ 8) or simple access
to alcohol in adolescence. To control
for this possibility, we performed an
identical analysis on moderate drinkers
(n ¼ 8), equating for sample size and
access to alcohol in adolescence. Moder-
ate drinkers showed rapid emergence of
fear discrimination following cue onset
similar to controls (Fig. 3E). Subsecond
fear discrimination was detected in
moderate drinkers when using either
standard (600 msec, P , 0.05) or con-
servative significance thresholds (850
msec, P , 0.01). Significance was main-
tained for the remainder of the cue peri-
od with the P-level hovering around
0.01 (Fig. 3E, orange and yellow bars).

In support of rapid fear discrimina-
tion by moderate drinkers equivalent
to that of controls, ANOVA for the first
1000 msec after cue onset [factors: group
(controls vs. moderate drinkers), cue
(safety vs. uncertainty vs. danger), and
session (13–16)] revealed no effects of
or interactions with group (Fs , 1.4,
Ps . 0.25), but found a significant eff-
ect of cue (F(2,42) ¼ 30.94, P , 0.025).
Moderate drinkers also maintained dis-
crimination for the remainder of the
cue (Fig. 3F). ANOVA for the last 1000
msec found no effects of or interactions
with group (Fs , 1.4, Ps . 0.25), but a
significant effect of cue (F(2,42) ¼ 43.90,
P , 0.025). Thus, simple access to alco-
hol in adolescence was insufficient to
impair rapid fear discrimination in adult-
hood. Rapid fear discrimination was
also present in intermediate drinkers
(n ¼ 13), supporting our finding that
adolescent heavy alcohol drinking selec-
tively impaired subsecond fear discrimi-
nation (Supplemental Fig. 6). Finally, a
comparison of adolescent alcohol drink-
ing and adult rapid fear discrimination
across all alcohol rats (n ¼ 29) found
that greater alcohol drinking was associ-

ated with a more restricted individual range of discrimination,
as well as impaired discrimination (Supplemental Fig. 7).

Here we have demonstrated that rats can readily achieve sub-
second fear discrimination. This is even more impressive consid-
ering discrimination required cued fear to differentiate between
three probabilities of foot shock. After an extensive literature
search, we were unable to find any previous study quantifying
the rapidity of fear discrimination, much less a study reporting
the emergence of fear discrimination on a subsecond time scale
following cue onset. Our finding of an �450–550 msec discrimi-
nation latency places normal fear discrimination abilities much
closer to those observed for rapid perceptual decisions in vision

Figure 3. Rapid emergence of Pavlovian fear discrimination. (A) Suppression ratio data from fear dis-
crimination are shown for control rats. Mean+SEM suppression ratios over the last four sessions for
each cue (safety—blue, uncertainty—purple and danger—red) are plotted for cumulative temporal
windows starting at cue onset and increasing by 50 msec until a maximum of 2000 msec. The black
dotted line indicates a temporal window of 1000 msec. For each window, a repeated measures ANOVA
was performed with color indicating the significance of the main effect of cue (P ≥ 0.05—gray, P ,

0.05—yellowand P , 0.01—orange). (B) Mean+SEM suppression ratios for the final 8 sec of cue presen-
tation were broken down into 1000 msec bins, and an ANOVA was performed for each bin. (C)
Suppression ratio data from fear discrimination are shown for heavy drinkers. (D) Mean+SEM suppres-
sion ratios for the final 8 sec of cue presentation were broken down into 1000 msec bins, and an ANOVA
was performed for each bin. (E) Suppression ratio data from fear discrimination are shown for moderate
drinkers. (F) Mean+SEM suppression ratios for the final 8 sec of cue presentation were broken down into
1000 msec bins, and an ANOVA was performed for each bin.
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and olfaction, which can reliably be observed in �200–300 msec
latencies (Uchida et al. 2006).

Adults with an adolescent history of heavy alcohol drinking
were impaired in rapid fear discrimination. Remarkably, robust
discrimination between all three cues was not observed until .2
sec following cue onset. The deficit largely stemmed from an in-
ability to rapidly reduce fear to the safety cue. Indeed, fear reduc-
tion to the uncertainty cue was not grossly impaired. While
speculative, this pattern may be observed because more inhibition
is necessary to rapidly reduce fear to the safety cue to appropriate/
low levels.

The performance of heavy drinkers has parallels to individ-
uals with PTSD, who demonstrate inappropriately high fear to
safety cues in a discrimination setting (Jovanovic et al. 2011,
2013), with a caveat that the deficit in PTSD is unlikely to be re-
stricted to cue onset. We propose that heavy alcohol-drinking
adolescents are already at a behavioral and neural disadvantage
in adulthood, as they are less able to rapidly and accurately dis-
criminate dangerous from safe events. Traumatic experiences
likely affect behavioral and neural systems already impaired in
these individuals. Further, adolescent heavy alcohol drinking is
associated with increased risk for traumatic encounters (Clark
et al. 1997; Swahn et al. 2004). This may set in motion a cruel
feedforward process in which heavy adolescent drinking simulta-
neously weakens neurobehavioral systems for rapid fear dis-
crimination and increases the risk for traumatic experiences
that can further weaken neurobehavioral systems for rapid fear
discrimination.

Of course, the results do not require that adolescent heavy al-
cohol drinking induces impairment in rapid fear discrimination. It
is possible that a predisposition for adolescent heavy alcohol
drinking co-occurs with a predisposition for poor, rapid fear dis-
crimination. Adolescent access to alcohol may only serve to reveal
this predisposition. Even so, our results still require overlap in the
neural and behavioral systems supporting alcohol drinking and
rapid fear discrimination. It is further possible that deficits in rap-
id fear discrimination are not exclusive to adolescent alcohol
drinking, and would be observed if heavy drinkers were identified
in adulthood and subsequently tested in fear discrimination.
However, even if adult access produced the same result, it would
still be the case that adolescent heavy alcohol drinking impairs
rapid fear discrimination in adulthood.

Our findings also do not preclude links between adolescent
alcohol and other adult capacities pertaining to fear and anxiety.
For example, adult rats with a history of adolescent binge drinking
demonstrate increased exploration of open arms in the elevated
plus maze. While this is consistent with a decrease in adulthood
anxiety, it might also reflect an increase in risk taking (Gilpin
et al. 2012). Adolescent alcohol experience has also been implicat-
ed in extinction and recall of fear in adult rats (Broadwater and
Spear 2013, 2014) and mice (Holmes et al. 2012) as well as increas-
es in other indices of anxiety (Vetreno et al. 2015). However, the
differing methods used to induce alcohol experience and the vary-
ing indices of adult fear make broad conclusions about the full re-
lationship between adolescent alcohol drinking and adult fear
and anxiety premature.

Rapid fear discrimination provides a tool to uncover novel
neural circuits critical to fear processing and their disruption by
adolescent experiences associated with increased risk for anxiety
disorders. While the amygdala (McDannald and Galarce 2011;
Genud-Gabai et al. 2013; Sangha et al. 2013; Sciascia et al. 2015)
is likely targeted by adolescent heavy alcohol drinking, broader
amygdalocortical (Murray and Izquierdo 2007), and amygdalo-
striatal (Setlow et al. 2002; Millan et al. 2015) networks are almost
certainly targeted. Mapping these neural circuits will be essential
to uncovering how subsecond fear discrimination is normally

achieved and how dysfunction contributes to maladaptive fear
and perhaps anxiety disorders.
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