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Abstract: Petunia inflata small CDPK-interacting protein 1 (PiSCP1) was identified as a 

pollen expressed PiCDPK1 interacting protein using the yeast two hybrid system and the 

interaction confirmed using pull-down and phosphorylation assays. PiSCP1 is pollen specific 

and shares amino acid homology with uncharacterized proteins from diverse species of 

higher plants, but no protein of known function. Expression of PiSCP1-GFP in vivo inhibited 

pollen tube growth and was shown to localize to peroxisomes in growing pollen tubes. As 

PiCDPK1 is plasma membrane localized, we investigated the localization of a second 

isoform, PiCDPK2, and show that it co-localizes to peroxisomes with PiSCP1 and that the 

two proteins interact in the yeast 2 hybrid interaction assay, suggesting that interaction 

with the latter CDPK isoform is likely the one of biological relevance. Both PiCDPK2 and 

PiSCP1 affect pollen tube growth, presumably by mediating peroxisome function, however 

how they do so is currently not clear. 
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1. Introduction 

Ca
2+

 has long been known to play a key regulatory role in pollen tube growth [1–4]. A steep  

tip-focused free Ca
2+

 gradient is found in growing tubes, and its experimental dissipation leads to a 

reversible cessation of growth [2,5,6]. Recently, considerable progress has been made in identifying 

the channels by which Ca
2+

 enters the pollen tube cytosol (for reviews see [7,8]). There is a wealth of 

evidence to show that calcium entry and the free Ca
2+

 gradient are regulated by a class of plant specific 

Rho GTPases, designated Rop/Rac’s (Rho-like GTPase of plants) [9–12]. A considerable array of 

signaling molecules have been implicated in the regulation of the highly polar, tip focused growth in 

pollen tubes of which Rop/Rac’s are regarded as central regulators (for recent review see [13]), 

regulating not only the tip-focused Ca
2+

 gradient but also the apical actin cytoskeleton through 

antagonistic effector pathways [14]. 

One class of potential downstream effectors of Ca
2+

 signaling in pollen tubes is calcium dependent 

protein kinases (CDPKs). Depolarized growth has been reported to result from over-expression of a 

petunia CDPK isoform (PiCDPK1) in pollen, whereas a constitutively active mutant version of this 

isoform severely inhibited growth [15]. Further, double T-DNA insertion mutants of Arabidopsis 

CPK-17 and -34 (the CDPK isoforms most closely related to PiCDPK1 in the Arabidopsis), exhibited 

a ~3 fold reduction in growth rate and 350 fold reduction in transmission efficiency [16]. Though the 

immediate downstream target of these CDPK’s is unknown, over-expression of PiCDPK1 caused a 

dramatic increase in tip focused Ca
2+

 concentration, suggesting the involvement of a positive feedback 

loop [15]. The CDPK isoforms mentioned above appear to be involved in regulating the polarity of 

pollen tube growth, there are however, additional isoforms expressed in pollen tubes. Experiments 

using Arabidopsis gene chips have identified 16 of the 34 CDPK isoforms in the Arabidopsis genome 

as being expressed in pollen, six at high levels (AtCPKs 14, 16, 17, 24 and 34) [17]. Over-expression 

of Petunia PiCDPK2 (a homolog of AtCPK24) has been shown to inhibit pollen tube extension [15] 

but not affect growth polarity, and in addition localized to an underdetermined internal membrane 

compartment as opposed to PiCDPK1, which localized to the plasma membrane [15]. Though most 

commonly plasma membrane associated, CDPKs have been shown to localize to a variety of intracellular 

location including the cytosol, nucleus, endoplasmic reticulum, peroxisomes, mitochondrial outer 

membrane and oil bodies [16–22]. Either by direct demonstration, or inference based on functional 

commonality with PiCDPK1, AtCPKs 16, 17 and 34 localize to the plasma membrane [15,22], but the 

cellular locations of AtCPK14 and 24 (and the AtCPK24 homolog PiCDPK2) remain to be determined, as 

do their roles in pollen tube growth. 

The downstream targets of CDPK activities involved in pollen tube growth are not known, and 

identification of CDPK substrates is an important goal in elucidating the signaling pathways in which 

they are involved. As plants appear to employ a combination of strategies to functionally specialize 

individual CDPKs, including tissue-specific distribution, subcellular localization, and enzyme kinetics 

and properties [23,24] it is important to recognize that methods for identifying substrates are based on 

biochemical interaction. With this in mind we sought to identify CDPK substrates in pollen tubes by 

screening a pollen cDNA yeast 2 hybrid library using the kinase domain of PiCDPK1 as bait and 

report the identification and characterization of Petunia inflata Small CDPK interacting Protein 1 

(PiSCP1), and demonstrate that its protein product co-localizes to peroxisomes with PiCDPK2. 



Plants 2013, 2 74 

 

 

2. Results and Discussion 

2.1. Identification of a cDNA Clone Product That Interacts with the PiCDPK1 Kinase Domain 

The GAL4 yeast two hybrid system was used to identify proteins that interact with PiCDPK1. The 

kinase domain of PiCDPK1 with a 6 amino acid N-terminal deletion was used a bait construct to avoid 

possible problems resulting from putative myristoylation and palmitoylation sites at the N-terminus [15]. 

The bait construct was tested for ability to auto-activate the histidine (HIS) nutritional reporter and 

found not to activate the reporter. Approximately 2 × 10
7
 yeast cells were transformed with the kinase 

bait construct and a Petunia inflata pollen cDNA library in the yeast 2-hybrid prey vector. After several 

rounds of selection with appropriate controls, 4 classes of interacting clones were identified and 

sequenced. Only one class was found to encode an insert that created an in-frame fusion, this was 

transformed back into yeast, and re-assayed for activation of ß-gal, alone and in combination with the 

bait construct. These controls confirmed that the interaction was reproducible and not a result of  

auto-activation or genomic mutation. The clone obtained was a partial cDNA and was used to screen a 

pollen cDNA library to identify a full-length cDNA that we named P. inflata Small CDPK interacting 

Protein 1 (PiSCP1). PiSCP1 encodes a protein of 103 amino acids with a deduced molecular mass of 

11.7 kDa (GenBank accession# KC342807). 

BLAST searches with PiSCP1 revealed significant homology to a number of uncharacterized genes 

form higher plants, including 2 Arabidopsis expressed genes, but no gene of known function. Alignment 

with a selection of these genes revealed two conserved regions separated by a highly variable central 

region. The first, at the N-terminus being conserved in eudicot species and the second at the C-terminus 

being conserved in both eudicot and monocot species (Figure 1). The PiSCP1 protein contains multiple 

potential sites of phosphorylation by CDPK, based on the consensus Basic-X-X-S/T [25], the N- and 

C-terminal conserved regions each possess one site of potential serine phosphorylation which is 

conserved between the homologs (Figure 1). One of the Arabidopsis homologs (At5g46770) has been 

classified as pollen-enriched by microarray analysis [26]. 

2.2. PiCDPK1 Interacts with and Phosphorylates PiSCP1 in Vitro 

To confirm the interaction between PiCDPK1 and PiSCP1 proteins, we performed an in vitro 

binding assay with purified fusion proteins of PiCDPK1 and PiSCP1. Each protein was expressed as a 

6× His tagged fusion protein in E. coli and purified using Ni-NTA
+
 resin. PiSCP1 was then incubated 

with phenyl sepharose resin-bound His tagged PiCDPK1 or phenyl sepharose resin alone, in the presence 

of Ca
2+

 or EGTA. Phenyl sepharose resin binds specifically to proteins containing a calmodulin-binding 

domain in the presence of Ca
2+

 [27], facilitating pull down of PiCDPK1 but not PiSCP1 except through 

interaction with PiCDPK1. After washing, the resin-bound fraction was washed, eluted and subjected 

to Western blot using an anti-His tag monoclonal antibody. As shown in Figure 2a, PiSCP1 was pulled 

down only in the presence of PiCDPK1, demonstrating that it did indeed interact with PiCDPK1 in this 

assay was well as in the yeast 2 hybrid system.  
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Figure 1. Comparison of amino acid sequences of PiSCP1 homologs. Sequences were 

aligned using ClustalW2. Amino acids conserved among all sequences are underscored with 

an asterisk. Conserved potential CDPK phosphorylation sites are indicated in bold. MTR, 

Medicago trunculta; Vvi, Vitis vinifera; At, Arabidopsis thaliana; OSI, Oryza sativa; 

ZEAMMB, Zea mays. 

 

Figure 2. PiCDPK1 interacts with and phosphorylates PiSCP1. (a) In vitro binding assay 

with PiCDPK1. His-tag-PiSCP1 fusion protein was incubated with phenyl-sepharose 

bound His-tag-PiCDPK1 protein in the presence of 50 µM Ca
2+

. After washing, the bound 

fraction was separated by SDS-PAGE and subjected to Western blotting using anti-His 

antibody to detect His-tag fusion proteins. (b) In vitro phosphorylation assay of PiSCP1 by 

PiCDPK1 in the presence of 50 µM Ca
2+

 or 1 mM EGTA. 

 

We next assayed whether PiCDPK1 was able to phosphorylate PiSCP1 in vitro. As shown in Figure 2b, 

PiSCP1 was not phosphorylated in control samples lacking PiCDPK1 or in the presence of PiCDPK1 
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without Ca
2+

, but was phosphorylated in vitro in the presence of PiCDPK1 and Ca
2+

, consistent with 

PiSCP1 being a substrate of this protein kinase. 

2.3. Expression Profile of PiSCP1 

PiSCP1 was identified from a mature pollen cDNA library. To assess the tissue specificity of the 

expression of this gene as well as determine developmental regulation in pollen development PiSCP1 

gene expression was examined by RNA gel blot analysis (Figure 3). The transcript was found to be 

pollen-specific, expression starting late in pollen development (10 mm buds = pollen mitosis I), 

peaking in mature pollen and remaining high in germinated pollen tubes. This expression pattern is 

almost identical to those of PiCDPK1 and PiCDPK2 [15], consistent with the products of these genes 

being present at the same time in pollen development as well as in pollen tubes. 

Figure 3. Expression profile of PiSCP1. 

 

2.4. Transient Over-Expression of PiSCP1 in Pollen Tubes  

We transiently expressed PiSCP1-GFP in pollen tubes to investigate whether it would generate a 

phenotype and investigate sub-cellular localization. The fusion protein was found to cause significant 

inhibition of pollen tube growth, transformed tubes only growing to 56.5% (n = 50, s.d. 5.6%) of the 

length of untransformed tubes (from the same samples). Florescence associated with the fusion protein 

was found to localize to internal membrane compartments, mostly small spherical organelles and some 

slightly larger organelles (Figure 4a), which moved rapidly with cytoplasmic streaming. Counter 

staining with FM 4-64 showed that these small organelles largely stay out of the apical clear zone and 

are not stained by FM 4-64 (Figure 4a), indicating that these organelles are most likely not part of 

endocytic pathways. 

The localization observed for PiSCP1 was reminiscent of previously reported peroxisome localization 

in pollen [22]. To test whether PiSCP1 localized to peroxisomes, a co-localization experiment was 

performed using PiSCP1-YFP and cyan fluorescent protein (CFP)-tagged with the peroxisome-targeting 

signal PTS2 of an Arabidopsis thiolase [28]. Thiolase is a classical PTS2 peroxisomal protein first 

identified in yeast [29]. Co-expression of this peroxisome marker with a vector encoding soluble YFP 

alone confirmed that in our hands the localization of this marker was identical to published results and 

that we were able to image CFP and YFP fluorescence separately without ―bleed-over‖ fluorescence 
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(Figure 4b). When PTS2-CFP and PiSCP1-YFP were co-expressed, extensive co-localization was 

observed (Figure 4c), though some larger compartments emitted a PiSCP1-YFP signal but not PTS2-CFP 

fluorescence (indicated by arrows), the identity of these compartments is currently not known.  

Figure 4. Localization of PiSCP1 and PiCDPK2. Panels indicate fluorescence imaging of 

FM4-64 and fluorescent protein constructs, the identity of which is indicated below each 

image. Merged panels were produced by combining the two images immediately to the left 

of each. All images were generated using a confocal microscope. Scale bars = 5 µm. 

 

2.5. PiCDPK2 Localized to Peroxisomes and Co-Localized with PiSCP1 

Though PiSCP1 was identified as a protein that interacted with PiCDPK1, we have previously 

shown that PiCDPK1 exhibits plasma membrane localization that is dependent on potential myristoylation 

and palmitoylation sites at the N-terminus, however a second isoform—PiCDPK2, exhibits localization 

pattern reminiscent of that of PiSCP1 [15]. As the identity of the membrane compartment that PiCDPK2 

associated with had not been determined, we performed further co-localization experiments between 

PiCDPK2-YFP and either the peroxisome marker or PiSCP1-CFP. Interestingly, PiCDPK2-YFP did 

co-localize with both PTS2-CFP and PiSCP1-CFP and hence localized to peroxisomes, however the 

peroxisomes appeared to be somewhat modified by its presence, as the fluorescent signal generated by 

the targeted fluorescent proteins (both the PTS2-CFP marker and PiSCP1-CFP) was consistently more 

diffuse when PiCDPK2 was present, causing visible co-localization to be less distinct (Figure 4d,e). In 

addition in the presence of PiCDPK2, peroxisomes were observed to enter the tip region, from which 

they are usually excluded (Figure 4d,e) [30]. 
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2.6. PiSCP1 Interacts with PiCDPK2 in the Yeast 2 Hybrid System 

As localization appears to be at least as, if not more, important than primary structure in determining 

the substrate specificity of CDPKs [25] co-localization of PiSCP1 with PiCDPK2 suggests that despite 

being identified by in vitro interaction with PiCDPK1, PiCDPK2 is more likely to be isoform 

interacting with PiSCP1 in vivo. Unfortunately, despite extensive efforts we were unable to express 

active PiCDPK2 in E. coli, hence to investigate putative interaction between PiSCP1 and PiCDPK2 we 

employed the yeast two hybrid system. We determined that PiSCP1 did interact with the N-terminal 

variable/kinase domain of PiCDPK2 to facilitate yeast growth under His selection, whereas neither 

PiSCP1 nor the N-terminal variable/kinase domain of PiCDPK2 alone was able to do so (Figure 5). 

Hence PiSCP1 interacted with the N-terminal variable/kinase domains of both pollen expressed CDPK 

isoforms despite these regions exhibiting only 21% amino acid identity overall and this identity being 

scattered through the domains [31]. As PiSCP1 and PiCDPK2 both localized to peroxisomes we 

suggest that most likely this is the interaction of physiological relevance. That our results suggest both 

PiCDPK1 and PiCDPK2 interact with PiSCP1 is significant. The kinase domains of CDPKs are highly 

conserved leading to speculation that isoform specificity may be encoded by tissue-specificity, 

subcellular localization, or enzyme kinetics/properties rather than primary structure [23,24]. However, 

recent results have shown that differences in substrate specificity between some CDPK isoforms is 

encoded by the sequence of the N-terminal variable domain [32]. The results presented here support 

the hypothesis that, at least for some isoforms, localization may be the most significant factor in 

determining specificity in vivo. It is interesting to note that the isoform for which the N-terminal 

variable domain determines specificity is plasma membrane localized [32], as are the majority of 

CDPK isoforms investigated to date [22]. As many isoforms exhibit this localization, this property 

alone is obviously insufficient to provide substrate specificity when comparing any individual pair. 

Conversely, to date only one isoform has been shown to exhibit peroxisomal localization in a 

particular cell type [22], hence the need for an additional mechanism(s) for generating substrate 

specificity between these and other isoforms is greatly reduced or absent. Thus we speculate that the 

mechanism generating substrate specificity between isoforms in vivo may in fact depend on the 

characteristics of the isoforms in question, in particular whether they are co-expressed in the same cell 

type(s) and exhibit the same cellular localization. 

Peroxisomes have recently emerged as organelles of critical importance in sexual plant reproduction. 

Functional peroxisomes on either the male or female side of the pollen-pistil interactions are a prerequisite 

for fertilization [33]. These organelles possess rich enzymatic machinery and have been implicated in 

many developmental processes in Arabidopsis [34–36]. In pollen, peroxisomes are the main site of 

intracellular nitrous oxide (NO) production [31]. Extracellular NO has been reported to be important in 

targeting pollen tube growth to ovules [37] as well as in pollen stigma interactions [38] and NO has 

been shown to stimulate pollen tube growth orientation [30]. Within pollen tubes, peroxisomes are 

excluded from the pollen tube tip and low NO within this region is a pre-requisite for growth [30]. 

Both cGMP and Ca
2+

 have been implicated in NO regulated pathways involved in the growth  

re-orientation. Stimulation of pollen tube tips with NO leads to two peaks of cytosolic Ca
2+

, one 

associated with an initial cessation of growth and a second with re-orientation and regrowth [37]. 

Given this link between peroxisomes, NO and Ca
2+

, it is tempting to hypothesize that PiCDPK2, being 



Plants 2013, 2 79 

 

 

Ca
2+

 regulated and peroxisome localized, might be a component of a feedback loop. That PiCDPK2 

over-expression both led to inhibition of tube growth and caused peroxisomes to enter the tip region 

(Figure 4c,d) is consistent with this scenario [15], however if such a feedback loop existed (either positive 

or negative) over-expression of PiCDPK2 would be predicted to alter the intracellular tip-focused Ca
2+

 

gradient. We have previously shown that over-expression of PiCDPK2 (in contrast to the plasma 

membrane localized isoform PiCDPK1) had no affect on this gradient [15], leading us to conclude that 

PiCDPK2 is unlikely to participate in a feed back loop with NO and Ca
2+

. 

Figure 5. PiSCP1 interacts with PiCDPK2 in yeast. Yeast transformed with bait and prey 

constructs, was grown on selection media, either SD/-T-L (plasmid selection) or SD/-T-L-H 

(interaction selection). (a) Yeast containing BD-PiCDPK2 and AD-PiSCP1 grow on both 

plasmid and interaction selecting media. (b) and (c) Neither BD-PiCDPK2 nor AD-PiSCP1 

with their respective empty partner vectors was able to auto-active Histidine reporter gene.  

 

Information on Ca
2+

 signaling in peroxisomes is scarce and was only recently recognized in animal 

cells [39]. In plants, Ca
2+

 has been shown to stimulate detoxification of the reactive oxygen species H2O2 

by calmodulin activation of AtCAT3 activity within peroxisomes [40], and peroxisome localized AtCPK1 

has been shown to mediate pathogen resistance [41]. The lack of homology of PiSCP1 to any protein 

or domain of known function prevented us from hypothesizing its function in pollen tubes and in an 

effort to address this problem we performed an additional yeast two hybrid screen using PiSCP1 as 

bait in an attempt to identify proteins acting downstream of PiSCP1. 

2.7. PiSCP1 Forms Multimers 

A yeast 2 hybrid screen, using PiSCP1 as bait, yielded a single class of positive clone. The interaction 

was verified by re-transforming the bait and prey plasmids into yeast and repeating the assay (Figure 6). 

Sequencing this class determined that it contained PiSCP1 itself. Whilst not providing additional 

information concerning the biochemical function of PiSCP1 function, this result suggests that PiSCP1 

may be capable of forming homodimers or higher-level multimers. That it did this in the absence of 

either CDPK suggests that this characteristic is not phosphorylation dependent, though we cannot  

rule out the possibility that a yeast protein kinase might fulfill this activity in the heterologous 

expression system. 
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Figure 6. PiSCP1 interacts with itself in the yeast two hybrid assay. Yeast transformed with 

the bait and prey constructs, was grown on selection media, either SD/-T-L or SD/-T-L-H. 

A–E yeast containing BD-PiSCP1 and AD-PiSCP1 grows on both media. Neither BD-PiSCP1 

nor AD-PiSCP1 alone was able to activate the histidine reporter gene to facilitate growth 

under histidine selection.  

 

3. Experimental Section  

3.1. Plant Material 

Petunia inflata was grown under green house conditions with a supplemental light regime of 16 h 

light and 8 h dark. 

3.2. Yeast Two Hybrid Library Screening 

We used a modified system for yeast two hybrid library screening [42]. The yeast strain AH109 

(MATa, trp1-901, leu2-3, 112, ura3-52, his3-200, gal4Δ, gal80Δ, LYS2::GAL1UAS-GALTATA-HIS3, 

MEL1, GAL2UAS-GAL2TATA-ADE2, URA3::MEL1UAS-MEL1TATA-lacZ) was used in the screen. AH109 

was sequentially transformed first with pGBD/∆N-PiCDPK1 bait construct, and then with a Petunia 

inflata pollen cDNA library in pGAD424 by the lithium acetate method [43]. Transformation was plated 

onto synthetic drop-out (SD) medium lacking leucine, tryptophan and histidine. After 7 days, cells were 

replicated onto SD medium lacking leucine, tryptophan, histidine and adenine, and positive transformants 

were subjected to a colony lift assay as described in yeast protocol handbook (Clontech, Palo Alto., 

CA, USA). Yeast plasmid DNA was extracted from positive clones and transformed into competent  

XL1-blue MRF’ (Stratagene, La Jolla, CA, USA) and plated on LB agar plate with 100 µg mL
−1

 

ampicillin. Plasmids extracted from XL-blue MRF’ were amplified with pGAD vector primers  

(GAD-F, 5'-TACCACTACAATGGATGATC-3', GAD-R, 5'-GCACAGTTGAAGTGAACTTG-3') to 

verify the insert size and amplified fragments were digested with 4-base cutting restriction enzyme, 
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Taq I, to group positive clones in classes based on resulting digestion patterns. Positive clones were 

back-transformed into the AH109 yeast strain with the bait construct to confirm the interaction. 

3.3. Isolation of Full-Length PiSCP1 cDNA 

A Petunia inflata flower cDNA library was constructed in λZapII (Stratagene) as previously 

described [44]. This library was screened to isolate the full-length PiSCP1 cDNA. A 500 bp partial 

cDNA of PiSCP1 obtained by yeast two hybrid screening was used to synthesize radio-labeled probes 

using the RTS RadPrime DNA labeling (Life Technologies, Gaithersburg, ML, USA) and hybridized 

to filters for 16 h in hybridization buffer at 62 °C. After hybridization, filters were washed sequentially 

with 2× SSC buffer, 0.1% (w/v) SDS; 0.5% (w/v) SDS and 0.1% SSC buffer, 0.1% (w/v) SDS for  

20 min per wash. Positive plaque were excised and subjected to secondary screening. Hybridization 

plaques were purified and in vivo excision was performed following the manufacture protocols and the 

full-length PiSCP1 cDNA was sub-cloned in pGAD vector (Clontech). 

3.4. RNA Gel Blot Analysis 

Total RNA was extracted from 100 mg of P. inflata pollen. 15 µg of total RNA was separated on a 

formaldehyde gel and stained with ethidium bromide to verify equal loading. The RNA was then 

transferred to Biodyne B membrane (Life Technologies) for hybridization. DNA probes were prepared 

using the RTS RadPrime DNA labeling (Life Technologies) and hybridized to filters for 16 h in 

hybridization buffer at 62 °C. After hybridization, filters were washed sequentially with 2× SSC 

buffer, 0.1% (w/v) SDS; 0.5% (w/v) SDS and 0.1% SSC buffer, 0.1% (w/v) SDS for 20 min per wash. 

Autoradiography was carried out at −70 °C with an intensifying screen. Autoradiographs were scanned 

using a LIDE flat bed scanner (Canon USA Ins., New York, NY, USA). 

3.5. Plasmid Constructs for Recombinant Proteins 

Standard molecular cloning methods were used and all constructs were confirmed by DNA sequencing. 

pRSET-B vector (Invitrogen, Carlsbad, CA, USA) was used to express full-length PiCDPK1 and 

PiSCP1 fusion constructs possessing an N-terminal 6× His tag. The coding regions of PiCDPK1 and 

PiSCP1 were amplified by PCR using the following primers: PiCDPK1-NcoI-5', 5'-CCATGGGGAAC 

TGTTGTTCAAG-3'; PiCDPK1-NcoI-3', 5-CCATGGCAACAAATGACTCCCTCC-3'; PiSCP1-NcoI-5', 

5'-CCATGGAGATGAGTTTAAGTTGCTTG-3'; PiSCP1-NcoI-3', 5-CCATGGCTAAGATGAGTTT 

AGTTGCTTG-3'. Amplified DNA fragments were cloned into pGEM-T Easy vector (Promega, 

Madison, WI, USA), digested with Nco I and sub-cloned into the Nco I site of pRSET-B.  

To create constructs for transient expression in pollen, PiCDPK1 and PiSCP1 coding sequences were 

amplified by PCR. For the Lat52-PiCDPK1-GFP construct PiCDPK1-NcoI-5' and PiCDPK1-NcoI-3' were 

used. For the Lat52-PiSCP1-GFP construct, PiSCP1-NcoI-5' and PiSCP1-NcoI-3' were used. 

Amplified DNA fragments were cloned into pGEM-T Easy vector (Promega), digested with Nco I and 

sub-cloned into pBluescript (KS) vector (Stratagene). For co-localization experiments, Lat52-CFP 

versions of each construct were generated by amplifying CFP fragment from eCFP (Clontech) using 

CFP-N-NCO 5'-CCATGGTGAGCAAGGGC-3' and CFP-C-SAC 5'-GAGCTCTTATGTCAGTTGG 
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TCATG-3' and cloned into the Lat52 expression vector to replace the coding region of GFP. The 

PTS2-CFP fusion protein was generated by amplifying the 5' 174 base pairs of Arabidopsis ped1 

thiolase that encode the N-terminal PTS2 signal sequence [28] using primers Perox-F 5'-ACCATG 

GAGAAAGCGATCGA-3' and Perox-R 5'-TCCATGGATAGTGGAGTCCTATG-3' and cloned into 

the Nco I site of Lat52-CFP vector. 

3.6. Expression and Purification of PiCDPK1 and PiSCP1 

E. coli cells (BL21) transformed with either pRSET-PiCDPK1 or pREST-PiSCP1 were grown 

overnight at 37 °C in 2 mL of LB/ampicillin (100 µg /mL), transferred to 250 mL of the same media 

and cultured until the OD600 was 0.7. Expression was induced by the addition of 1 mM isopropyl-thio-

β-D-galactoside for 2 h at 30 °C. Cells were harvested, resuspended in ice-cold lysis buffer (10 mM 

imidazole, 0.3 M NaCl, 50 mM phosphate buffer, pH 8.0, 10% glycerol, 100 μg/mL lysozyme, 1 mM 

PMSF) and sonicated. Fusion proteins were purified by affinity chromatography with nickel resin (Sigma). 

After loading the column with the recombinant proteins, it was washed with wash buffer (20 mM 

imidazole, 0.5 mM NaCl, 50 mM phosphate buffer, pH 6.0, 10% glycerol, 1 mM PMSF) and eluted 

with elution buffer. Protein concentration was determined using Bio-Rad Protein Assay Kit (Bio-Rad, 

Hercules, CA, USA). Purity and integrity of the recombinant proteins was assessed by SDS-PAGE. 

3.7. In Vitro Biding Assay and in Vitro Phosphorylation Assay 

The binding assay was performed by mixing 2 µg of His-tag-PiCDPK1 fusion protein attached to 

phenyl sepharose (Sigma) beads with 2 µg of His-tag-PiSCP1 fusion protein in the presence of 500 µL 

of binding buffer (20 mM HEPES, pH 7.5, 5 mM MgCl2, 1 mM DTT and 0.1% Triton X-100) with  

1 mM Ca
2+

. Samples were rotated at 20 rpm for 2 h at 4 °C, pelleted and washed three times with 

washing butter (20 mM HEPES, pH 7.5, 5 mM MgCl2, 0.3 M NaCl, 1 mM DTT and 0.1% Triton  

X-100). The proteins were eluted in 1× SDS sample buffer and resolved by SDS-PAGE and transferred to 

polyvinylidene difluoride (PVDF) membrane (Millipore, Bedford, MA, USA). The pull-down samples 

of 6× His-tag-PiCDPK1 and 6× His-tag-PiSCP1 fusion proteins were analyzed by Western blotting 

using monoclonal Anti-polyHISTIDINE Clone HIS-1 antibody (Sigma) and anti-mouse IgG alkaline 

phosphatase conjugated secondary antibody (Sigma). 

0.6 µg of His-tag-PiCDPK1 fusion protein was incubated with 0.5 µg of His-tag-PiSCP1 fusion 

protein in phosphorylation buffer (50 mM HEPES, pH 7.0, 1 mM MgCl2, 1 mM DTT) with either  

50 µM Ca
2+

or 1 mM EGTA. The reaction was initiated by the addition of 10 µCi of [γ-
32

P] ATP and 

incubated for 10 min at room temperature. The reaction was terminated by the addition of 5× SDS 

sample buffer and electrophoresed on a 10% SDS-PAGE. The gel was blotted to PVDF membrane and 

exposed to X-ray film. 

3.8. Transient Expression in Pollen 

Transient expression of GFP fusion constructs in pollen was performed as previously described [15]. 

Briefly, Petunia inflata pollen was collected from freshly dehisced anthers (10 flowers/bombardment), 

and suspended by gentle vortexing in 200 μL of pollen germination medium (PGM) (0.01% H3BO3, 
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0.02% MgSO4, 0.07% CaCl2, 15% PEG-4000, 2% sucrose). The pollen was spotted onto a 2.5 cm sq. 

piece of positively charge nylon membrane in a 9 cm Petri dish. 

Microprojectile bombardment was performed using a PDS-1000/He biolistic system (Bio-Rad). 

Gold particles (1.1 μm diameter) were prepared according to the manufacturer’s protocol using 2 μg of 

plasmid DNA/0.5 mg of particles. Co-bombardment was achieved by coating particle with 2 μg of 

each plasmid construct. 0.5 to 1 μg of plasmid DNA were used for co-localization. Bombardments 

were performed using 1,100 psi rupture disks, a 0.25 inch gap distance and 1 inch particle travel 

distance. After bombardment, the pollen was washed from the nylon membrane into a Petridish with  

4 mL PGM and cultured on an orbital shaker at 100 rpm for 4 h at 30 °C. 

Pollen tubes were stained with FM 4-64 according to Parton et al. [45]. FM 4-64 (Molecular 

Probes, Eugene, OR, USA) was added into PGM to a final concentration of 10 μM and visualized after  

15 min of gentle shaking. 

3.9. Analysis of Transformed Pollen Tubes 

Epifluorescence microscopy for GFP observation was performed using an Orthomat epifluorescence 

microscope (Leitz) with a 40×, dry, 0.7 numerical aperture, GFP fluorescence was visualized using a 

Fluor objective, 480 nm excitation, 500 nm dichroic mirror and >530 nm emission. Images were 

captured using a Sensys cooled CCD camera (Photometrics, Tucson, AZ, USA). 

Confocal images were obtained using either Bio-Rad MRC 600 or Zeiss 510 laser scanning confocal 

microscope (Carl Zeiss, Thornwood, NY, USA) 488 nm excitation and 515–565 nm emission was 

used for GFP signal, 543 nm excitation and 560 nm long-pass emission for FM 4-64, 514 nm 

excitation and 530–560 nm band-pass emission filter for YFP and 458 nm excitation and 450–490 nm 

band-pass emission filter for CFP. Confocal images were analyzed using the Metamorph v4.5 (Molecular 

Devices Corp., Downlington, PA, USA) and processed using Adobe Photoshop v5.5 (Adobe Systems 

Inc., San Jose, CA, USA). 

4. Conclusions 

The data presented in this manuscript provides evidence that a previously unknown pollen specific 

protein, PiSCP1, interacts with calcium dependent proteins kinases and localizes to peroxisomes. The 

determination that PiCDPK2 also localizes to peroxisomes suggests that this is the isoform that most 

likely interacts with PiSCP1 in vivo and that these genes are involved in a calcium regulated pathway 

that regulates peroxisome function. Over-expression of both PiCDPK2 and PiSCP1 are inhibitory to 

pollen tube growth, but the processes they affect remain a mystery. The observation that over-expression 

of PiCPDK2 leads to peroxisomes entering pollen tubes tips is intriguing as it has been reported that 

peroxisomes are usually excluded from the tip region and that an absence of NO (produced by the 

peroxisomes) is essential to growth [31], however these pollen tubes still grow albeit at a reduced rate 

and also exhibit a ―normal‖ tip-focused calcium gradient [15]. Hence, additional studies are needed to 

determine the role of this pathway in peroxisome function(s) and pollen tube growth.  
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